- Постольник Ю.С. Возможности МЭИ в решении ЗОУТПБ / Ю.С.Постольник // Обратные задачи и идентификация процессов теплообмена: Всесоюзн. семинар, материалы. – М., 1987. – С.204-205.
- 6. Лыков А.В. Методы решения нелинейных уравнений нестационарной теплопроводности / Лыков А.В. // Изв. АН СССР. Энергетика и транспорт. 1971. № 5. С.109-150.
- Постольник Ю.С. Применение МЭИ к решению ЗОУТП по быстродействию нагрева пластины при ограничениях на максимальную температуру. / Постольник Ю.С., Мащенко О.И. // Наука – производству: сб. науч. ст. ДИИ. – К.: Вища школа, 1991. – С.188-191.
- 8. Постольник Ю.С., Оптимальный по быстродействию режим нагрева пластины с функционально зависящими характеристиками при ограничениях на функцию управления и распределения. / Постольник Ю.С., Мащенко О.И. // Изв. вузов. Черная металлургия. 1994. №2. С.52-56.
- 9. Боли Б. Теория температурных напряжений. / Боли Б., Уэйнер Дж. М.: Мир, 1964. 517с.
- 10. Коваленко А.Д. Основы термоупругости. / Коваленко А.Д. К.: Вища школа, 1970. 307с.
- 11. Постольник Ю.С. Приближенные методы исследований в термомеханике / Постольник Ю.С. К.: Вища школа, 1984. 158с.

Поступила в редколлегию 01.12.2014.

УДК 536.2

ГОРБУНОВ А.Д., д.т.н., профессор УКЛЕИНА С.В., аспирант ТРИКИЛО А.И., к.т.н., доцент

Днепродзержинский государственный технический университет

РАСЧЕТ ВРЕМЕНИ ИНЕРЦИОННОГО ПЕРИОДА ПРИ ГРАНИЧНЫХ УСЛОВИЯХ III РОДА

Введение. К настоящему времени существует достаточно много точных [1] и приближенных методик [2-4] расчета процессов нагрева (охлаждения) тел на начальной стадии, однако, например, в [1, 2] отсутствуют формулы по определению времени инерционного периода, а в [3, 4] – по расчету среднемассовых температур, без знания которых невозможно определить термические напряжения.

Получим решения, свободные от указанных недостатков. Аналогичные решения были выведены ранее при решении задач для граничных условий I [5]. и II рода [6].

Постановка задачи. Математическая постановка задачи симметричного нагрева (охлаждения) тел простой геометрической формы от начальной температуры T_0 до температуры среды T_c имеет вид (рис.1):

$$\frac{\partial \mathcal{G}(X, \operatorname{Fo})}{\partial \operatorname{Fo}} = \frac{\partial^2 \mathcal{G}}{\partial X^2} + \frac{k-1}{X} \frac{\partial \mathcal{G}}{\partial X}, \qquad (1)$$

$$\mathscr{G}(X,0) = \mathscr{G}_0 = 1, \qquad (2)$$

$$\frac{\partial \mathcal{G}(0, \operatorname{Fo})}{\partial X} = 0, \qquad (3)$$

149

Рисунок 1 – К постановке задачи теплопроводности

$$-\frac{\partial \mathcal{G}(1, \operatorname{Fo})}{\partial X} = \operatorname{Bi} \cdot \mathcal{G}_n(\operatorname{Fo}), \qquad (4)$$

где $\vartheta = (T(x,\tau) - T_c)/\Delta T_0;$

 $\Delta T_0 = (T_0 - T_c)$ – максимально возможный перепад температур, °C; $\mathcal{P}_n(F_0) = \mathcal{P}(1, F_0)$ – относительная температура на поверхности; $X = x/R_0$; R_0 – характерный размер тела, м; Fo = $a\tau/R_0^2$ – число Фурье; Bi = $\alpha R_0/\lambda$ – число Био; k – фактор геометрической формы, равный 1, 2, 3 соответственно для пластины, цилиндра и шара.

При рассмотрении инерционной, начальной стадии (HC), когда процессу нагрева (охлаждения) подвержены только тонкие поверхностные слои массивного тела, последнее

можно считать полубесконечным плоским телом. Перенесем начало координат на поверхность (рис.2) и введем известное [3] понятие о толщине термического (прогретого) слоя переменной толщины $\delta(\tau)$. Считается, что при $x \ge \delta(\tau)$ температура в этих точках

отличается не более, чем на $\varepsilon_{\Pi} = 5\%$ от первоначальной T_0 , где ε_{Π} можно трактовать как степень прогрева центра тела.

Чаще всего, для большинства задач реализуется так называемый «корневой» закон изменения термического слоя во времени $\delta(\tau) = 2u_0 \sqrt{a\tau}$ или в безразмерном виде:

$$S(\text{Fo}) = \frac{\delta(\tau)}{R_0} = 2u_0\sqrt{\text{Fo}}, \qquad (5)$$

где a – коэффициент температуропроводности, м²/с, u_0 – постоянная величина, суще-

ственно зависящая от геометрии тела и вида граничного условия (4).

Результаты работы. *Решение задачи.* 1. Приближенный метод Ю.С.Постольника.

Согласно [3] уравнение для расчета толщины термического слоя S = S(Fo) имеет вид:

$$12 \cdot k \cdot \mathrm{Fo} = f(S), \tag{6}$$

где

$$f(S) = S^{2} + \frac{4S}{\operatorname{Bi}(\operatorname{Fo})} - \frac{8}{\operatorname{Bi}^{2}(\operatorname{Fo})} \ln\left(1 + \frac{S \cdot \operatorname{Bi}(\operatorname{Fo})}{2}\right).$$
(7)

Время инерционного периода Fo₁ находится из условия достижения теплового возмущения центральных точек тела, т.е. из условия $\delta(\tau_1) = R_0$ или $S(Fo_1) = 1$. Тогда из (6) следует

$$\operatorname{Fo}_{1} = \frac{f(1)}{12k}.$$
(8)

При Bi = ∞ из (6) получим уравнение (5), в котором $u_0 = \sqrt{3k}$.

2. Графически точные решения А.В.Лыкова.

Время инерционного периода Fo₁ найдено с помощью графиков [1] из условия достижения при соответствующих числах Био значений температур в центре тела $\mathcal{G}_{\mu} = (Fo_1) = 0.95$.

3. Предлагаемая методика.

Решая систему уравнений (1)-(4) методом разделения переменных, в [7] получено: температура в любой точке тела

$$\mathscr{G}(X, \operatorname{Fo}) = \sum_{n=1}^{\infty} P_n \cdot U_n(X) e^{-\mu_n^2 \operatorname{Fo}}, \qquad (9)$$

в центре при X = 0

$$\vartheta_{\mathrm{II}}(\mathrm{Fo}) = \sum_{n=1}^{\infty} A_n \cdot e^{-\mu_n^2 \cdot \mathrm{Fo}}, \qquad (10)$$

на поверхности при X = 1

$$\mathcal{G}_{\Pi}(\mathrm{Fo}) = \sum_{n=1}^{\infty} P_n \cdot e^{-\mu_n^2 \cdot \mathrm{Fo}}$$
(11)

и среднемассовая

$$\mathcal{G}_{\rm cp}({\rm Fo}) = \sum_{n=1}^{\infty} B_n \cdot e^{-\mu_n^2 \cdot {\rm Fo}},\tag{12}$$

где
$$P_n = \frac{2\mathrm{Bi}}{\mathrm{Bi}(\mathrm{Bi}+2-k)+\mu_n^2}; B_n = P_n \cdot \frac{k\mathrm{Bi}}{\mu_n^2}; A_n = P_n \cdot H_k$$
 – тепловые амплитуды; коорди-

натная функция $U_n(X) = \frac{\cos(\mu_n X)}{\cos\mu_n}$ — для пластины, $\frac{J_0(\mu_n X)}{J_0(\mu_n)}$ — цилиндра и

 $\frac{\sin(\mu_n X)}{(\mu_n X)} \cdot \frac{\mu_n}{\sin\mu_n}$ – для шара; $H_k = U_n(0)$; $k = 1, 2, 3; J_0, J_1$ – функции Бесселя первого рода; μ_n – корни соответствующего характеристического уравнения, например, для

иластины
$$\operatorname{ctg}\mu_n = \mu_n / \operatorname{Bi}$$
. (13)

Иногда необходимо знать температурную разность:

$$\Delta \mathcal{G}(\mathrm{Fo}) = \mathcal{G}_{\Pi}(\mathrm{Fo}) - \mathcal{G}_{\Pi}(\mathrm{Fo}) = \sum_{n=1}^{\infty} E_n \cdot e^{-\mu_n^2 \cdot \mathrm{Fo}}, \qquad (14)$$

где $E_n = P_n - A_n \equiv P_n(1 - H_k).$

Условно можно считать, что инерционный период нагрева закончится в момент времени Fo₁, когда заданная температура в центре станет равной $\mathcal{G}_{\text{L},3} = (1 - \varepsilon_n) = 0.95$ и свидетельствующей о том, что уже все тело начинает прогреваться.

Полагая в уравнении (10) $\mathscr{G}_{\mu}(Fo_1) = \mathscr{G}_{\mu,3}$. и используя два члена ряда, получим время инерционного периода:

$$\operatorname{Fo}_{1} = \frac{1}{\mu_{1}^{2}} \ln \frac{A_{1} \cdot (1 - \varepsilon_{1}(\operatorname{Fo}_{1}))}{\mathcal{G}_{\mathrm{II,3.}}}, \qquad (15)$$

где $\varepsilon_1(Fo_1) = (|A_2|/A_1) \cdot \exp(-a \cdot Fo_1); a = \mu_2^2 - \mu_1^2$.

Ввиду зависимости $\varepsilon_{l}(Fo_{l})$, уравнение (15) должно решаться методом последовательных приближений. Использование этого метода для пластины при Bi = ∞ на шестой итерации привело к точному значению Fo₁ = 0,099, однако для шара этот метод оказался расходящимся. В этом случае следует применить другой, более мощный метод решения трансцендентного уравнения, например, метод касательных Ньютона.

Итерационная формула Ньютона для уравнения (15) имеет вид:

$$x_{k+1} = x_k - f(x_k) / f'(x_k),$$
(16)

где
$$f(x_k) = \mathcal{G}_{u_3} - \sum_{n=1}^{\infty} A_n \exp\left(-\mu_n^2 \cdot x_k\right); \quad f'(x_k) = \sum_{n=1}^{\infty} \mu_n^2 A_n \cdot \exp\left(-\mu_n^2 \cdot x_k\right).$$

За нулевое приближение x_0 логично принять Fo₁, рассчитанное по формуле (15) при $\varepsilon_1 = 0$. Расчет по уравнению (16) можно прекратить при выполнении условия $|x_{k+1} - x_k| \le \varepsilon$, где ε – малое число, например, $\varepsilon = 0,0001$.

<u>Численный пример.</u> Пусть требуется для шара (k = 3) найти время инерционного периода при Ві = ∞ . Из табл.1 для шара выбираем $a_1 = \pi$; $a_2 = 2\pi$; $A_1 = 2$; $A_2 = -2$. Нулевое приближение по уравнению (15) при $\varepsilon_1 = 0$: $x_0 = (1/\pi^2) \ln(2/0.95) = 0.07543$.

Форма тела	Уравнение корней	Корни а _п	$U_n(X)$	$A_{n,\infty}$	$B_{n.\infty}$
<i>k</i> = 1	$\cos(a_n) = 0$	$(2n-1)\cdot \pi/2$	$\cos(a_n X)$	$\frac{(-1)^{n+1} \cdot 2}{a_n}$	$\frac{2}{a_n^2}$
<i>k</i> = 2	$J_0(a_n) = 0$	2,4048 и т.д.	$J_0(a_n X)$	$\frac{2}{a_n J_1(a_n)}$	$\frac{4}{a_n^2}$
<i>k</i> = 3	$\sin(a_n) = 0$	$n\pi$, $n = 1, 2$	$\frac{\sin(a_n X)}{(a_n X)}$	$(-1)^{n+1} \cdot 2$	$\frac{6}{a_n^2}$

Таблица 1 – Значения a_n , $U_n(X)$, $A_{n,\infty}$ и $B_{n,\infty}$ при Bi = ∞ в зависимости от формы тела

Расчет по уравнению (16) ведем с учетом двух членов ряда:

$$f(x_0) = 0.95 - \left(2 \cdot e^{-\pi^2 \cdot x_0} - 2 \cdot e^{-4 \cdot \pi^2 \cdot x_0}\right) = 0.1018;$$

$$f'(x_0) = \pi^2 \cdot 2 \cdot e^{-\pi^2 \cdot x_0} - 4 \cdot \pi^2 \cdot 2 \cdot e^{-4 \cdot \pi^2 \cdot x_0} = 5.5369.$$

Первое приближение $x_1 = x_0 - f(x_0)/f'(x_0) = 0.0754 - \frac{0.1018}{5.3557} = 0.0564$.

Второе приближение по формуле (16) $x_2 = 0,0548$ практически совпало с точным значением Fo₁ = 0,0547 (табл.4.6 [1]), когда $\mathcal{G}_{II} = (Fo_1) = 0,95$.

При известном времени Fo1 постоянная

$$u_0 = 1/(2/\sqrt{Fo_1}).$$
 (17)

Наибольшую и основную трудность при практических расчетах по уравнениям (9)-(16) представляет определение бесчисленного множества корней μ_n характеристического уравнения (13) и др. В работе [7] предложена общая для всех трех тел формула при Bi < 10 $\mu_1 = \sqrt{D/\gamma}$ (18)

и когда Bi
$$\ge$$
 10: $\mu_n = a_n (1 - \beta),$ (19)

где $D = k \cdot \text{Bi} / m$; m = (1 + gBi) -коэффициент термической массивности тела (КТМТ); $\gamma = (1 + \sqrt{1 + 4\rho})/2;$ $a_n -$ корни (13) при $\text{Bi} = \infty;$ $\rho = D^2 / [k(k+2)^2(k+4)];$ $\beta = 1 / \text{Bi}; g = 1 / (k+2).$

При исследовании задач конвективного нагрева рассматривают два предельных случая, когда расчетные соотношения могут значительно упроститься. Это нагрев термически тонких тел (TTT), когда Bi < 1, и термически массивных тел (TMT), когда Bi > 10.

Асимптотика при малых числах Био. Первая амплитуда, входящая в уравнение (10), согласно [7] примерно равна $A_1 \approx 1 + K_A \cdot \text{Bi}$, где $K_A = gk/2$. Тогда уравнение (15) с учетом разложения логарифмической функции (ln(1 + x) \approx x) станет

$$Fo_1 = \gamma (K_A \cdot Bi + \varepsilon_n) / D \tag{20}$$

или при очень малых числах Био

$$Fo_1 = m\varepsilon_n / (kBi).$$
⁽²¹⁾

Асимптотика при больших числах Био. Первая амплитуда согласно [7]

$$A_n \approx A_{n,\infty} \cdot \sqrt{1 - z^2} , \qquad (22)$$

где $z - \mu_n / \text{Bi} = a_n (1 - \beta) \cdot \beta$. Амплитуды $A_{n,\infty}$, $B_{n,\infty}$ и a_n – корни уравнения (13) и других при числах $\text{Bi} = \infty$ приведены в табл.1.

Используя инженерную методику [7] расчета корней, время инерционного периода при $Bi = \infty$ можно записать в приближенном, но удобном для расчетов обобщенном виде:

$$Fo_1 = \frac{\gamma_{\infty}}{D_{\infty}} \cdot \ln \frac{A_{\infty}}{0.95},$$
(23)

где $A_{\infty} \approx 0.4(k+2)$; $D_{\infty} = k(k+2)$; $\gamma_{\infty} = (1+\sqrt{1+4\rho_{\infty}})/2$; $\rho_{\infty} = k/(k+4)$ – величины, входящие в уравнение (18) при Ві = ∞ . Для пластины расчет по (23) дал Fo₁ = 0,0912. Это примерно равно точному Fo₁ = 0,099 и Fo₁ = 0,1187 в случае его определения по формуле (15) при $\varepsilon_1 = 0$.

Из зависимостей (15), (20) и (23) по расчету времени инерционного периода наиболее достоверной можно считать (15) с использованием табулированных в [1] точных значений корней $\mu_n = f(\text{Bi})$ и $A_n(\text{Bi})$ или рассчитанных на ПВМ.

Для анализа результатов в табл.2 приведены: графически точные данные [1], рассчитанные по формуле (15) при $\varepsilon_1 = 0$ и по уравнению (8). На рис.3 представлена зависимость (15) времени инерционного периода от числа Био и формы тела, полученная с помощью OriginPro 8.5.1.

Анализ данных табл.2 показал, что разработанная аналитическая методика расчета времени инерционного периода достаточно проста и имеет приемлемую для инженерных расчетов точность.

Форма тела	Источник	Число Ві				
+ opina resia		0,1	1	10	100	∞
Плоотнио	Точное по [1]	0,68	0,20	0,11	-	0,099
Пластина $k = 1$	По уравнению (15)	0,6939	0,2242	0,1392	0,1209	0,1187
<i>κ</i> 1	По уравнению (8)	0,1640	0,1464	0,1047	0,0864	0,083
Uuuuuun	Точное по [1]	0,38	0,12	0,08	-	0,068
цилиндр 1—2	По уравнению (15)	0,3870	0,1519	0,1054	0,0921	0,0904
<i>n</i> −∠	По уравнению (8)	0,0819	0,0732	0,0523	0,0432	0,0417
IIIan	Точное по [1]	0,26	0,099	0,061	-	0,055
k=3	По уравнению (15)	0,2739	0,1187	0,0878	0,0769	0,0754
~ 5	По уравнению (8)	0,055	0,0488	0,0349	0,0288	0,0278

Таблица 2 – Зависимость времени Fo1 от числа Био и формы тела

Рисунок 3 – Зависимость времени инерционного периода от числа Био и формы тела В заключение следует отметить, что в реальных сложных условиях постоянная U_0 находится между двумя характерными режимами $T_n = \text{const}$ (ГУ I рода) и $q_n = \text{const}$ (ГУ II рода), т.е. $U_0^{\text{II}} \le U_0 \le U_0^{\text{I}}$ или относительно времени инерционного периода

$$\operatorname{Fo}_{1}^{I} \le \operatorname{Fo}_{1} \le \operatorname{Fo}_{1}^{II}. \qquad (24)$$

Доказательство неравенства (24). Пусть для пластины (k=1) Bi=10.

Тогда расчет по (15) дает Fo₁ = 0,139 (табл.2), для ГУ II рода согласно [5] Fo₁ = g/2 = 1/6 и по уравнению (23) при Bi = ∞ Fo₁ = 0,0912. Окончательно 0,0912<0,139<0,167, что и требовалось доказать. Среднее значение дает Fo₁ = (0,091+0,167)/2 = 0,13.

Анализируя уравнение (14), наблюдаем, что с ростом времени температурная разность вначале возрастает, достигает максимального значения $\Delta \theta_{\text{max}}$ при числах Фурье Fo_{M.2} = 0,03...0,30, а затем постепенно падает, приближаясь к нулю по экспоненте. Это время наступления максимальной разности температур логично считать временем инерционного периода Fo₁ = Fo_{M.2}.

Выведем приближенную аналитическую формулу для расчета Fo_{м.2}. Дифференцируя уравнение (14) по времени, приравнивая производную нулю и используя два члена в сумме ряда, получим:

$$Fo_{M,2} = (1/a) ln(1/e_2),$$
 (25)

где $a = \mu_2^2 - \mu_1^2$; $\delta = (\mu_1/\mu_2)^2$; $e_2 = \delta \cdot E_1/E_2$.

В двух предельных случаях уравнение (25) значительно упрощается.

Так, согласно [7] при малых числах Био (Bi < 1)

Fo_{M.2} =
$$\frac{1}{5(1+k)} \ln \frac{7+k}{Bi}$$
, (26)

а при больших (Bi >> 1)

Fo_{M.2} = 0,056/
$$(1 - \beta)^2$$
. (27)

На рис.4 представлена зависимость максимального времени Fo_{м.2} от числа Био и формы тела, рассчитанная по уравнению (25).

Рисунок 4 – Зависимость времени Fo_{м.2} от числа Био и формы тела

Из анализа рис.3 и 4 следует, что время наступления Fo_{м.2} максимума температурной разности практически совпадает со временем инерционной стадии Fo₁, оставаясь чуть ниже его.

Расчетные формулы, работающие на начальной стадии при Fo < 0,1 приведены в работе [4].

Выводы.

1. Разработана инженерная методика аналитического расчета времени инерционного периода в линейных задачах нагрева (охлаждения) тел правильной геометрической формы при граничных условиях III рода.

2. Показано, что время прогрева в реальных сложных условиях находится между двумя характерными режимами нагрева: постоянным тепловым потоком и неизменной температурой среды.

3. Предложено в качестве времени инерционного периода также считать время наступления максимума разности температур между поверхностью и центром тела.

ЛИТЕРАТУРА

- 1. Лыков А.В. Теория теплопроводности / Лыков А.В. М.: Высшая школа, 1967. 600с.
- 2. Гольдфарб Э.М. Теплотехника металлургических процессов / Гольдфарб Э.М. М.: Металлургия, 1967. 439с.
- 3. Постольник Ю.С. Приближённые методы исследования в термомеханике / Постольник Ю.С. К.-Донецк: Высшая школа, 1984. 158с.
- 4. Горбунов А.Д. Аналитический расчет процессов нагрева тел на начальной стадии / Горбунов А.Д., Уклеина С.В. // Математическое моделирование. Днепродзержинск: ДГТУ. – 2008. – № 1 (18). – С.29-33.
- 5. Горбунов А.Д. Аналитический расчет температур и термических напряжений при граничних условиях I рода / Горбунов А.Д., Уклеина С.В. // Математическое моделирование. Днепродзержинск: ДГТУ. 2014. № 2 (31). С.8-13.
- 6. Горбунов А.Д. Аналитический расчет температур и термических напряжений при граничних условиях II рода / Горбунов А.Д., Трикило А.И., Уклеина С.В. // Металлургическая теплотехника: сборник научных трудов НМетАУ. Днепропетровск: Новая идеология. 2015. Вып.6 (21). С.18-27.
- 7. Горбунов А.Д. К аналитическому расчету термических напряжений при конвективном нагреве тел простой формы / Горбунов А.Д. // Математическое моделирование. Днепродзержинск: ДГТУ. 2012. № 1(26). С.39-45.

Поступила в редколлегию 03.03.2015.