4. Напряженное состояние в очаге деформации определяется едиными выражениями.

5. Указанные исследования показывают, что решение в гармонических функциях позволяет определять напряжения для граничных условий разной сложности.

6.Предложенное решение можно использовать при расчетах напряжений в процессах обработки металлов давлением, в которых внешняя нагрузка имеет несимметричный характер приложения.

ЛИТЕРАТУРА

- 1. Целиков А.И. Теория прокатки / Целиков А.И., Гришков А.И. М.: Металлургия, 1970. 358с.
- 2. Василев Я.Д. Теория продольной прокатки / Василев Я.Д., Минаев А.А. Донецк: УНИТЕХ, 2009. 488с.
- Чигиринский В.В. Определение напряженного состояния пластического тела в условиях плоской деформации / Чигиринский В.В. // Изв. вузов. Черная металлургия. – 1990. – №7. – С.48-49.
- 4. Чигиринский В.В. Определение деформированного состояния пластического тела в условиях плоского течения / Чигиринский В.В. // Изв. вузов. Черная металлургия. 1990. №9. С.32-33.
- 5. Чигиринский В.В. Метод решения задач теории пластичности с использованием гармонических функций / Чигиринский В.В. // Изв вузов. Черная металлургия. 2009. №5. С.11-16.
- 6. Чигиринский В.В. Аналитическое исследование модели пластической среды / Чигиринский В.В. // Изв вузов. Черная металлургия. – 2012. – №1. – С.55-57.
- 7. Производство тонкостенного проката специального назначения / [Чигиринский В.В., Кресанов Ю.С., Качан А.Я. и др.]. Запорожье: ВАЛПИС, 2014. 295с.
- 8. Малинин Н.Н. Прикладная теория пластичности и ползучести / Малинин Н.Н. М.: Машиностроение, 1975. 399с.
- 9. Клименко П.Л. Контактные напряжения при прокатке / Клименко П.Л., Данченко В.Н. Днепропетровск: ПОРОГИ, 2007. 285с.
- Максименко О.П. Развитие теории смазочного действия и совершенствование процесса прокатки на ее основе: дис. ... доктора техн. наук: 5.03.05 / Максименко Олег Павлович. – Днепропетровск, 1992. – 564с.

Поступила в редколлегию 20.03.2018.

УДК 539.374.001.8

DOI 10.31319/2519-2884.32.2018.163 ЧИГИРИНСКИЙ В.В., д.т.н., профессор

Днепровский государственный технический университет, г. Каменское

ГРАНИЧНЫЕ УСЛОВИЯ В РЕШЕНИЯХ ПРИКЛАДНЫХ ЗАДАЧ ТЕОРИИ ПЛАСТИЧНОСТИ

Введение. Разные процессы обработки металлов давлением могут быть охарактеризованы едиными уравнениями теории пластичности, но разными граничными условиями. При этом постоянные и функции интегрирования определяются физическими и математическими моделями, которые заложены в краевых условиях задачи. Возникает необходимость их обобщения. Это позволит с единых позиций оценить результат решения, упростить подходы определения граничных условий, получить решение заданной системы уравнений. Для анализа граничных условий в напряжениях воспользуемся известными соотношениями, полученными из уравнений равновесия сил наклонной площадки и сил компонентов тензора напряжений в виде [1, 2]

$$\sigma_x \cdot a_x + \tau_{xy} \cdot a_y + \tau_{xz} \cdot a_z = p_{nx},$$

$$\tau_{yx} \cdot a_x + \sigma_y \cdot a_y + \tau_{yz} \cdot a_z = p_{ny},$$

$$\tau_{zx} \cdot a_x + \tau_{zy} \cdot a_y + \sigma_z \cdot a_z = p_{nz}.$$

Для плоской задачи на основании приведенных выражений после упрощений контактное касательное напряжение имеет вид [3]

$$\tau_n^2 = \left[(\sigma_x - \sigma_y) \cdot a_x \cdot a_y - \tau_{xy} \cdot (a_y^2 - a_x^2) \right]^2, \text{ или}$$

$$\tau_n = \mp \left[\frac{\sigma_x - \sigma_y}{2} \cdot \text{Sin} 2\varphi - \tau_{xy} \cdot \text{Cos} 2\varphi \right], \tag{1}$$

где a_x и a_y – направляющие косинусы; φ – угол между направлением действия напряжения и осью координат или угол наклона контактной поверхности. Выражение (1) можно упростить, используя тригонометрический закон распределения напряжений в очаге деформации. Если

$$\tau_{xy} = k \cdot SinA\Phi, \qquad (2)$$

то с учетом условия пластичности плоской задачи Губера-Мизеса выражение (1) принимает вид

$$\tau_n = \mp k \cdot Sin(A\Phi - 2\varphi), \tag{3}$$

где k – сопротивление пластической деформации сдвига; A – постоянный коэффициент; Φ – неизвестная функция координат. Как показал дальнейший анализ, использование тригонометрической функции имеет под собой как теоретическое, так и практическое обоснование. Из последних соотношений видно, что обобщающим фактором, о котором говорилось выше, является тригонометрическая связь касательного напряжения и сопротивления пластической деформации сдвига. Выражение (3) представляет собой граничное условие для напряжений, в котором учтены элементы взаимодействия между поверхностями инструмента и металла на контакте через сопротивление пластическому сдвигу k, а также геометрические характеристики очага деформации через аргумент-функцию $A\Phi$ и угол φ . Покажем влияние граничных условий (3) на решение прикладных задач теории пластичности. Рассмотрим предложенную постановку и решение задачи с использованием метода гармонических функций [4, 5].

Постановка задачи. Постановка плоской замкнутой задачи теории пластичности известна [2, 6], имеет вид:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} = 0, \quad \frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \sigma_y}{\partial y} = 0, \quad (\sigma_x - \sigma_y)^2 + 4 \cdot \tau_{xy}^2 = 4 \cdot \kappa^2,$$
$$\frac{\sigma_x - \sigma_y}{2 \cdot \tau_{xy}} = \frac{\xi_x - \xi_y}{\gamma_{xy}} = F, \quad \xi_x + \xi_y = 0, \quad \frac{\partial^2 \xi_x}{\partial y^2} + \frac{\partial^2 \xi_y}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial y \partial x}. \tag{4}$$

Граничные условия заданы в напряжениях и скоростях деформаций (3), [8]

$$\tau_n = -k \cdot Sin(A\Phi - 2\varphi), \quad \gamma_n = -2\beta \cdot Sin(B\Phi - 2\varphi).$$

Для использования граничных условий (4) необходимо знать угол φ как функцию координат очага деформации. Первые три уравнения системы (4) можно привести к обобщенному уравнению равновесия [1, 6]

$$\frac{\partial^2 \tau_{xy}}{\partial x^2} - \frac{\partial^2 \tau_{xy}}{\partial y^2} = \pm 2 \cdot \frac{\partial^2}{\partial x \partial y} \sqrt{k^2 - \tau_{xy}^2}.$$
(5)

Это гиперболическое неоднородное нелинейное дифференциальное уравнение второго порядка в частных производных, в котором разрешающей функцией является величина τ_{xy} . Следует обратить внимание на то, что соотношение (3) позволяет не только внести определенность в постановку задачи, но линеаризировать уравнение (5) и при дальнейших упрощениях получить его аналитическое продолжение. Если угол φ принимается равным нулю, то возможна модель напряженного состояния при осадке, если принять переменным, то рассматривается асимметричный процесс, например, прокатка. При этом угол изменяется от 0 до a, где a – угол захвата [7].

Результаты работы. *Решение задачи.* Дальнейшее упрощение задачи, связанное с использованием модели пластической среды. Анализ показывает, что следует использовать упрочняющуюся среду или среду, учитывающую пространственные параметры очага деформации, в виде [8]

$$k = H_{\sigma} \cdot exp\theta \tag{6}$$

где H_{σ} и θ' – функции координат *x* и *y* непрерывные дважды дифференцируемые, подлежащие определению в процессе решения задачи. Подставляя (2), (6) в обобщенное уравнение равновесия (5), после упрощений и приведения подобных можно получить аналитическое решение в виде [4, 9]

$$\tau_{xy} = H_{\sigma} \cdot exp\theta' \cdot SinA\Phi,$$

$$\theta'_{x} = -A\Phi_{y}, \quad \theta'_{y} = A\Phi_{x}, \quad \theta'_{xx} + \theta'_{yy} = 0, \quad A\Phi_{xx} + A\Phi_{yy} = 0.$$
(7)

Дифференциальные ограничения (7), которые накладываются на аргумент функции, позволяют не только замкнуть решение, но и определить целый класс функций, которые являются гармоническими. Функция [9] приобретает вид:

$$H_{\sigma} = C'_{\sigma} (x^2 + C'_{\sigma 2} x + C'_{\sigma 3}) + C''_{\sigma} (y^2 + C''_{\sigma 2} \cdot y + C''_{\sigma 3}) + C_{\sigma}.$$
(8)

При известных функциональных зависимостях (7) и (8) и соответствующих ограничениях на аргумент-функции можно из уравнений равновесия определить нормальные напряжения

$$\sigma_x = -H_{\sigma} \cdot exp\theta' \cdot CosA\Phi + C, \quad \sigma_y = -3 \cdot H_{\sigma} \cdot exp\theta' \cdot CosA\Phi + C. \tag{9}$$

Компоненты тензора напряжений (7), (9) удовлетворяют часть замкнутой системы уравнений теории пластичности (4) – это уравнения равновесия и условие пластичности. Анализ показывает, что возможны дальнейшие упрощения и в деформационной задаче. Действительно, записывая компоненты тензора напряжений в уравнениях связи, получим

$$\frac{\sigma_x - \sigma_y}{2 \cdot \tau_{xy}} = \pm ctgA\Phi, \quad \frac{\xi_x - \xi_y}{\gamma_{xy}} = \pm ctgB\Phi.$$

С учетом того, что $\xi_x = -\xi_y$, имеем $\gamma_{xy} = \pm 2 \cdot tg B \Phi \cdot \xi_x$ или

$$\gamma_{xy} = \mp 2 \cdot tg B \Phi \cdot \xi_y$$
.

Последние выражения позволяют установить соответствие между линейными скоростями деформаций и сдвиговыми. Уравнение совместности скоростей деформаций (4) принимает вид

$$\frac{\partial^2 \xi_x}{\partial y^2} - \frac{\partial^2 \xi_x}{\partial x^2} = \pm 2 \cdot \frac{\partial^2}{\partial y \partial x} \xi_x \cdot tg B \Phi , \qquad (10)$$

Уравнение (10), как и (5), относится к уравнениям гиперболического типа, и по структуре они не отличаются. В случае (10) разрешающей является функция координат ξ_x . Решение уравнения (10) имеет вид [4, 9]

$$\xi_{x} = -\xi_{y} = \beta \cdot CosB\Phi = H_{\xi} \cdot exp\theta'' \cdot CosB\Phi,$$

$$\gamma_{xy} = 2 \cdot \beta \cdot SinB\Phi = 2 \cdot H_{\xi} \cdot exp\theta'' SinB\Phi.$$
(11)

(12)

при $\theta_x'' = -B\Phi_y$, $\theta_y'' = B\Phi_x$, $\theta_{xx}'' + \theta_{yy}'' = 0$, $B\Phi_{xx} + B\Phi_{yy} = 0$. Функция скоростей деформации имеет вид

$$H_{\xi} = C'_{\xi} (x^2 + C'_{\xi 2} \cdot x + C'_{\xi 3}) + C'_{\xi} (y^2 + C''_{\xi 2} \cdot y + C''_{\xi 3}) + C_{\xi}.$$

Сопоставляя функции (7)...(9) и (11), (12), видно, что они по структуре одинаковые, имеют в своей основе одни и те же координатные функции Φ , следовательно, и θ . Таким образом, поля напряжений и поля скоростей деформаций, в своей основе, определяются одинаковыми координатными функциями, которые обозначаются уравнениями Лагранжа и соотношениями Коши-Римана.

Анализ полученных результатов. Покажем, как меняется результат задачи с изменением граничных условий (3). Рассмотрим конкретный случай, когда угол равен нулю. Это практический случай обработки металлов давлением – осадка поковки между шероховатыми параллельными бойками.

Решая уравнение Лапласа, получим координатную зависимость для аргументфункции $A\Phi$. Используя соотношения Коши-Римана, определяем функцию θ' , имеем

$$A\Phi = AA_{6}xy - AA_{13}xy(x^{2} - y^{2}),$$

$$\theta' = -\left\{0.5 \cdot AA_{6} \cdot \left(x^{2} - y^{2}\right) - AA_{13} \cdot \left[0.25 \cdot \left(x^{4} + y^{4}\right) - 1.5 \cdot x^{2} \cdot y^{2}\right]\right\}.$$
(13)

Выражения (13) позволяют охарактеризовать переходные зоны очага деформации. Постоянные величины определялись из граничных условий с использованием выражения (3). Через указанные граничные условия определялась область существования решений (7), (9), которые для данной прикладной задачи показывали приемлемый качественный и количественный результат, в чем, собственно, и заключается полуобратный метод решения задачи [9]. Запишем

$$AA_{6} = 4 \cdot \frac{\psi_{0}}{l \cdot h}, \quad AA_{13} = 16 \cdot \psi_{1} \cdot \frac{l - 2 \cdot h}{l^{3} \cdot h \cdot (l + h)},$$
$$\psi_{0} = \operatorname{arctg} \left[2 \cdot f \cdot (1 - f) \right], \quad \psi_{1} = \operatorname{arctg} \left[1.7 \cdot f \cdot (1 - f) \right],$$

где l и h – длина и высота очага деформации при осадке полосы, f – коэффициент трения. Принимая в (7), (9) $H_{\sigma} = C_{\sigma}$, с учетом граничных условий

$$C_{\sigma} = \frac{k_0}{\cos A\Phi_0} \cdot \exp(-\theta'_0),$$

при этом

$$A\Phi_0 = AA_6 \cdot \frac{l \cdot h}{4} - AA_{13} \cdot \frac{l \cdot h}{4} \cdot \left(\frac{l^2}{4} - \frac{h^2}{4}\right)$$

$$\theta_0' = -A\theta_0 = -\left\{ 0.5 \cdot AA_6 \cdot \left(\frac{l^2}{4} - \frac{h^2}{4}\right) - AA_{13} \cdot \left[0.25 \cdot \left(\frac{l^4}{16} + \frac{h^4}{16}\right) - 1.5 \cdot \frac{l^2 \cdot h^2}{16} \right] \right\}$$

Подставляя полученные выше значения в (7), (9), имеем

$$\sigma_{x} = -k_{0} \cdot \frac{exp(\theta' - \theta_{0}')}{CosA\Phi_{0}} \cdot CosA\Phi + k_{0}, \quad \sigma_{y} = -3 \cdot k_{0} \cdot \frac{exp(\theta' - \theta_{0}')}{CosA\Phi_{0}} \cdot CosA\Phi + k_{0},$$

$$\tau_{xy} = k_{0} \cdot \frac{exp(\theta' - \theta_{0}')}{CosA\Phi_{0}} \cdot SinA\Phi.$$
(14)

где k_0 – ненаклепанное сопротивление сдвигу.

Рисунок 1 – Распределение нормальных и касательных напряжений на контакте при осадке на шероховатых бойках $\frac{l}{h} = 8$, f = 0,1...0,5

Прокатне виробництво

По выражениям (14) рассчитаны напряжения на контакте в очаге деформации при осадке. На рис.1 представлены эпюры нормальных и касательных напряжений при разных значениях коэффициентов трения f.

По вертикали отложены относительные напряжения $\sigma_y/2k_0$ и τ_{xy}/k_0 , по горизонтали – относительная длина очага деформации x/l. Особенностью данного решения является использование единых формул для всего очага деформации, без разбиения на отдельные зоны с разными законами трения. Всегда было проблемой математическое описание переходных зон очага деформации. Большинство решений предполагало в нейтральном сечении разрыв по касательным и нормальным напряжениям. В выражениях (14) используются тригонометрические функции, приемлемые как по корректности решения дифференциального уравнения (5), так и по практическому результату, подтвержденному экспериментальными и теоретическими составными решениями многих авторов [10, 11].

Рассмотрим случай, когда в граничных условиях (3) предусмотрен угол φ не равным нулю. Он изменяется по длине очага деформации. Очаг деформации рассматривается как цельная система без разбиения его на отдельные зоны. Угол

$$\varphi = \frac{\frac{l}{2} - x}{R},\tag{15}$$

при этом на входе в очаг деформации $x = -\frac{l}{2}, \ \varphi = \alpha$, на выходе из очага деформации

 $x = \frac{l}{2}, \ \phi = 0$, длина дуги контакта $l = R \cdot \alpha$. Так как постоянные на входе и выходе из

очага деформации разные, возникает необходимость в их определении. Для этого воспользуемся выражениями (7)...(9). Переменную (8) можно привести к виду

$$H_{\sigma} = \frac{C_0 \cdot \left(\frac{l}{2} - x\right) + C_1 \cdot \left(\frac{l}{2} + x\right)}{l},\tag{16}$$

где C_0 , C_1 – постоянные, определяющие напряжения на входе и выходе из очага деформации. Подставляя граничные условия на контакте в (7), с учетом условия пластичности получим

$$C_0 = \frac{k_0 \cdot \xi_0}{\exp \theta_0 \cdot \cos A \Phi_0}, \quad C_1 = \frac{k_1 \cdot \xi_1}{\exp \theta_1 \cdot \cos A \Phi_1},$$

где k_0 , k_1 – сопротивления пластической деформации сдвига на входе и выходе из очага деформации; θ_0 , θ_1 – значения функции θ на входе и выходе из очага деформации; $A\Phi_0$, $A\Phi_1$ – значения функции $A\Phi$ на входе и выходе из очага деформации; ξ_0 и ξ_1 – постоянные, учитывающие влияние натяжения или подпора.

Из уравнения Лапласа определяем простейшее его решение с учетом граничных условий (3)

$$A\Phi' = -\left[AA_6' \cdot \left(\frac{l}{2} + x\right) \cdot y + AA_6'' \cdot \left(\frac{l}{2} - x\right) \cdot y - 2 \cdot \varphi\right],(17)$$

С учетом соотношений Коши-Римана и уравнения Лапласа определяем функцию θ , т.е. запишем

$$\theta'_{x} = -A\Phi_{y}, \quad \theta'_{y} = A\Phi_{x},$$

$$\theta' = -\frac{1}{2} \cdot \left(AA_{6}' + AA_{6}''\right) \cdot \left[(x + x_{0})^{2} - y^{2}\right] - \left(AA_{6}' \cdot l_{om} - AA_{6}'' \cdot l_{on}\right) \cdot (x - x_{0}). \quad (18)$$

В нейтральном сечении контактное касательное напряжений должно быть равно нулю, т.е. $A\Phi' = 0$. Этому значению аргумент-функции должны соответствовать определенные координаты очага деформации. Действительно, при $x = x_0$ $y = h_{\gamma} / 2 \approx h_1 / 2$, $\varphi = \gamma$, $A\Phi' = 0$, где x_0 – координата, определяющая положение нейтрального сечения. Для определения нейтрального угла необходимо знать постоянные величины AA_6 . После подстановки граничных условий имеем

$$AA_6' = 2 \cdot \frac{A\Phi_l - \alpha}{l \cdot h_l}, \quad AA_6'' = 2 \cdot \frac{A\Phi_0 + 2 \cdot \alpha}{l \cdot h_0},$$

с учетом (17) и упрощений при $A\Phi_0 = A\Phi_1 = f \cdot (1 - f)$ получим

$$\gamma = \frac{\alpha}{2} \cdot \frac{A\Phi_1 - \alpha}{\left(A\Phi_1 + \alpha\right) \cdot \left(1 - \frac{1}{2} \cdot \varepsilon\right)}.$$
(19)

Сравнивая численные значения для нейтрального угла (19) с формулой Экелунда-Павлова, качественно и количественно получаем близкий результат. Постоянные значения θ_0 и θ_1 с учетом граничных условий запишутся

$$\theta_{0}' = -\frac{1}{2} \cdot \left(AA_{6}' + AA_{6}'' \right) \cdot \left(l_{om}^{2} - \frac{h_{0}^{2}}{4} \right) + \left(AA_{6}' \cdot l_{om} - AA_{6}'' \cdot l_{on} \right) \cdot l_{om},$$

$$\theta_{1}' = -\frac{1}{2} \cdot \left(AA_{6}' + AA_{6}'' \right) \cdot \left(l_{on}^{2} - \frac{h_{1}^{2}}{4} \right) - \left(AA_{6}' \cdot l_{om} - AA_{6}'' \cdot l_{on} \right) \cdot l_{on}.$$
(20)

Согласно выражениям (7), (9), (16)...(20) получены рабочие формулы для расчета напряженного состояния металла в очаге деформации при прокатке

$$\sigma_{x} = -\frac{\frac{k_{0}}{\cos A\Phi_{0}}\left(\frac{l}{2} - x\right)exp(\theta - \theta_{0}) + \frac{k_{1}}{\cos A\Phi_{1}}\left(\frac{l}{2} + x\right)exp(\theta - \theta_{1})}{l} \cdot \cos A\Phi + k_{0}$$

$$\sigma_{y} = -3\frac{\frac{k_{0}}{\cos A\Phi_{0}}\left(\frac{l}{2} - x\right)exp(\theta - \theta_{0}) + \frac{k_{1}}{\cos A\Phi_{1}}\left(\frac{l}{2} + x\right)exp(\theta - \theta_{1})}{l} \cdot \cos A\Phi + k_{0}, (21)$$

$$\tau_{xy} = \frac{\frac{k_{0}}{\cos A\Phi_{0}}\left(\frac{l}{2} - x\right)exp(\theta - \theta_{0}) + \frac{k_{1}}{\cos A\Phi_{1}}\left(\frac{l}{2} + x\right)exp(\theta - \theta_{1})}{l} \cdot \sin A\Phi.$$

По формулам (21) подсчитаны значения относительных контактных напряжений, представленных на рис.2. Распределение контактных напряжений имеет асимметричный характер как для нормальных, так и касательных напряжений. Сопоставляя

Прокатне виробництво

эпюры контактных напряжений, представленных на рис.1 и 2, с разными граничными условиями, убеждаемся, что имеет место разница в распределении контактных напряжений по длине очага деформации. В случае прокатки появляется дополнительный параметр влияния на величину и характер изменения эпюры напряжений – это угол захвата α , который при осадке отсутствовал. С увеличением обжатия увеличиваются максимальные значения напряжений со сдвигом в сторону выхода металла из валков. При этом в зоне отставания имеет место обратная зависимость в распределении и по величине напряжений. При большем угле захвата напряжения снижаются, что объясняется появлением растягивающих напряжений за счет усиления выталкивающего воздействия на металл со стороны валков в сторону, противоположную направлению прокатки. Это обстоятельство во многом является решающим, т.к. обжатие определяет возможность процесса прокатки в целом. Дальнейший анализ показывает, что при большем увеличении угла захвата эпюра напряжений меняет свою конфигурацию и становится вогнутой в той степени, в которой угол захвата превышает коэффициент трения. Вогнутость может распространяться на весь очаг деформации.

Следует заметить, что разные процессы обработки металлов давлением определяются разными граничными условиями и разным силовым воздействием по длине очага деформации, как это видно из представленной работы. Симметричный очаг деформации определяет симметричное воздействие на деформируемый металл, асимметричный – предопределяет асимметрию и в распределении контактных напряжений по их величине. При разных соотношениях обжатий асимметрия может быть разной, с убыванием по величине в отдельных зонах. Главным результатом является то, что граничные условия (3) позволяют в сочетании с методом гармонических функций правильно характеризовать контактные напряжения разных процессов обработки металлов давлением, качественно и количественно, едиными выражениями для зон пластического течения, определять компоненты тензора напряжений замкнутой плоской задачи.

Выводы.

1. Определены граничные условия для плоской задачи теории пластичности.

2. Показаны обобщающие факторы для граничных условий и решений замкнутой задачи теории пластичности.

3. С помощью полученных решений проанализированы процессы обработки металлов давлением, показано влияние граничных условий задачи на силовые параметры пластического формоизменения.

4. Предложенные аналитические решения и обобщенные граничные условия могут использоваться в прикладных задачах с симметричным и асимметричным нагружениями.

ЛИТЕРАТУРА

1. Безухов Н.И. Основы теории упругости пластичности и ползучести / Безухов Н.И. – М.: Высшая школа, 1968. – 512с.

2. Малинин Н.Н. Прикладная теория пластичности и ползучести / Малинин Н.Н. – М.: Машиностроение, 1975. – 399с.

3. Производство высокоэффективного металлопроката / [Чигиринский В.В., Мазур В.Л., Бергеман Г.В. и др.]. – Днепропетровск: РВА "Дніпро - Вал", 2006. – 261с.

4. Чигиринский В.В. Метод решения задач теории пластичности с использованием гармонических функций / Чигиринский В.В. // Изв вузов. Черная металлургия. – 2009. – №5. – С.11-16.

5. Чигиринский В.В. Аналитическое исследование модели пластической среды / Чигиринский В.В. // Изв вузов. Черная металлургия. – 2012. – №1. – С.55-57.

6. Надаи А. Пластичность и разрушение твердых тел / Надаи А. – М.: Издательство иностранной литературы, 1954. – 647с.

7. Василев Я.Д. Теория продольной прокатки / Василев Я.Д., Минаев А.А. – Донецк: УНИТЕХ, 2009. – 488с.

8. Чигиринский В.В. Определение напряженного состояния пластического тела в условиях плоской деформации / Чигиринский В.В. // Изв. вузов. Черная металлургия. – 1990. – №7. – С.48-49.

9. Производство тонкостенного проката специального назначения / [Чигиринский В.В., Кресанов Ю.С., Качан А.Я. и др.]. – Запорожье: "ВАЛПИС", 2014. – 295с.

10. Клименко П.Л. Контактные напряжения при прокатке / Клименко П.Л., Данченко В.Н. – Днепропетровск: ПОРОГИ, 2007. – 285с.

11. Сторожев М.В. Теория обработки металлов давлением / Сторожев М.В., Попов Е.А. – М.: Машиностроение, 1977. – 422с.

Поступила в редколлегию 27.03.2018.

УДК.621.771.01

DOI 10.31319/2519-2884.32.2018.164

МАКСИМЕНКО О.П., д.т.н., профессор ЛОБОЙКО Д.И., ассистент ГОРБАТЕНКО Ю.А., магистр

Днепровский государственный технический университет, г. Каменское

ВЛИЯНИЕ НАТЯЖЕНИЯ ПОЛОСЫ НА СУММАРНЫЙ МОМЕНТ ПРИ НЕПРЕРЫВНОЙ ПРОКАТКЕ

Введение. Разработка энергосберегающей технологии прокатки на непрерывных станах представляется важной теоретической и практической задачей, одним из эффективных путей решения которой является оптимизация режимов натяжения полосы в межклетевых промежутках. Методика расчета оптимальных с точки зрения энергосбережения режимов натяжения пока не в полной мере разработана, хотя отдельные публикации по данному вопросу в технической литературе имеются. Так, в работе [1] при определении рационального режима натяжения полосы при холодной прокатке исхо-