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SOIL PLASTICITY IN FINITE ELEMENTS

The phenomenological model for a soil in the form of the associated theory of the
plasticity, based on a loading surface of the closed form, is formulated. The analytical form of
this surface is offered. Dilatancy, deformation hardening and sofiening are considered. The
paper is focused on nonlinear analysis using finite elements method. The examples of
calculations, confirming reliability of model, are proposed.
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Daxyremem mexHiunux Hayk, Bapmincoko-Mazypcokuii yrnieepcumem ¢ Onvwimuni, Ionvua
JI. Manuoicko

Biooin mexaniku i pynoamenmis npoexmyeanns 6yoisens, I[lonvya

IIJIACTUYHA MOJEJIb IPYHTY B CKIHUEHHUX EJIEMEHTAX

Copmynvosano penomenonociuny mooenv IpyHmy y ¢popmi acoyitiosanoi meopii
niacmuyHocmi, wo 0a3yEmvbCa HA NOGEPXHI 3a8anmadicenus 3amknymoi gopmu. Haeeoeno
ananimuuny gopmy yici nosepxmi. Pozenanymo npoyecu ounamanyii, 0epopmayitino2o 3miyHeH s
ma ocnabnenns. Bukonano meniniiinuii ananiz 3 6UKOPUCMAHHAM MEMOOY CKIHUEHHUX elleMeHmis.
Haseoerno npuxnaou pospaxymxis, ujo niomeepoxicyroms 00CmosipHicib MOOEIi.

Knrwouosi cnosa: ocnosHa moldenb IpYHmMy, NIACMUYHICMb, MEMOO CKIHYEHHUX
eleMeHmis.
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Daxyrbmem mexHuyeckux Hayx, Bapmuncko-Mazypckui ynusepcumem 6 Onvwmuine, [lonvua
JI. Manviocko

Omoenerue mexanuku u hyHoamenmoes npoekmuposanus 30anutl, Ionvua

IHJTACTUYECKASA MOJEJIb I'PYHTA B KOHEUYUHBIX 2JIEMEHTAX

Cohopmynuposarna chenomenonozcuueckas mooeib 2pyHma & gopme accoyuupo8aHHou
meopuu NAACMUYHOCMU, KOMOPAsi OCHOBAHA HA NOBEPXHOCMU 3A2PY3KU 3AMKHYMOU (opmbl.
Ipusedena anarumuueckas ¢gopma smou nosepxnocmu. Paccmompenvl  npoyeccwl
ounamanyuu, 0ePHoOPMAYUOHHO20 YNPOUHEHUs U PA3YNPOUHEHUs. Bulnoineno HenuHelinviil
AHAMU3 C UCNOTL30BAHUEM MEMOOd KOHEUHbIX dlleMeHmos. TIpusedenvl npumepvl paciemos,
KOmopule NoOmMEepHCOaIon 00CMOBEPHOCH L MOOEU.

Kniouesvie cnosa: ocnosnas mooenb cpyHma, NAACMUYHOCHb, MEMOO KOHEUHbIX
2/IeMEHMOS.

Introduction. The theory of a plastic flow with hardening is formulated in
the form of relations between increments of deformations d{g} and stresses d{o}
and defined as [1]

— elastic-plastic stiffness matrix

[D ]ep

where
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where [D ] — initial elastic matrix, corresponding to the Hook’s law for an
isotropic material; F and Q — loading function and plastic potential (for
associated theory O=F); A — hardening function. If a hardening measure y is the

pl,, =[p]-

AT
work of stresses on the plastic deformations {SP} , and dy = o) d{gp}, that
hardening function is defined so
e A
oy olo} a{%l,}a{c} 3)

The plastic strain rate is normal to the surface, represented by loading
function F. This surface usually build in local cylindrical octahedrical
0

A=

. G,,7T,,
coordinates °’ °’" | where

1 2
C, =§(Gx to, +0.), 1, =\/;,/J2;

J
0 :larcco \/5—3 A
3 rﬁ

4)
Here J, and J; — the second and third stresses invariants.
Jo =—SySy, —8,8; =88, + tfy + 1)2,2 + ‘Ciz,'
Sy =0, =0,/ 8, =0, -0, 5, =0, =0,
_ 2 2 2
J3 = 5y8y8, =S, Ty =S =S, Thy —2T,0,T,, Ty,

In these coordinates ©© = 1 %o} 4 et =t 7o) , where
1 2
€, =§(sx +t&,+€.)7, = 2‘/;,/J28 ;

(2 .2 2
Jy = —€x€y —€y,e; —eye; +Z(y)g/ Yy Va2
€x =€y =€y, €, =€, —€,, €; =€; —&,
where ¢p and yy — octahedrical longitudinal and shear deformations; J>, —

second invariant of a deviator of deformations. The initial matrix of elasticity (]

in this case will look like
3k, O
- o]
°, &)

where K and Gy — the volumetric and shear modulus. Having carried out
matrix multiplication and addition, expression (2) can be presented in a usual
form
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Where

3K = 3K, —Maqq +aqade, / dy,)/ A;

G= GO —7\,(6122 + a12dy0 /d&o)/ A.

Here

a,=9K*(0F /éc,); a, =3K,G,(0F /| éc, \oF / dt,);

ay = GOZ(GF/GTO )2;A = _(an + alz)/(3K0)_

—0F | dy|o,(0F /65, )+1,(0F | 07, )]

Loading function. Expression for a loading surface is accepted as follows
Flo,t,0)=1,-4,(b+0,)\a-c, =0 %

This surface always passes through a point of current loading oy, 79, closed

from two sides and crosses an axis oy in points —b and a (fig. 1). In addition on
function (7) following conditions are imposed

TO|GO=0 =Cos a‘Eo/acyo|c$0=0 =M0, (8)

which allow to establish following relations between parameters of a
equation (7)

3 2Ja - 2ac,

A4, = , b=—"+T"—.
° 2a+b ° 2aM, - c,

)
The parameter a also can be established from (7). It can be defined also
approximately

c
arx ——>——+b

2
i)

Mo, . (10)
The curve (4) asymptotive comes nearer to a limiting failure line on Mohr
t9=Myop+co (Fig.1). Thus the site under a this line corresponds to a hardening
zone, above line — softening zone. On the stresses-strains diagram zy-yy (Fig. 1b)
it conforms to an ascending and descending branches. Besides, the derivative of
function (4) changes a sign on a site from -b to a. Change of a sign of a
derivative is the transfer from contraction to dilatancy. General view of loading
surface and its characteristic sections are presented on fig. 2. So-called,
deviational section of this surface is a curvilinear triangle with maximal t; and
minimal T, radiuses (fig. 2), corresponding to extreme values of a corner 0=n/3 at

61 = 62> o3 and 0=0 at 61 > 62 = 3. Thus on the Coulomb
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where ¢ and ¢ — corner of an internal friction and coupling.
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Fig. 2. General view of a surface and its intersections

Between two limiting cases 6=0 and 6=n/3 it is possible to present
interpolation so [4]

p(0)=1-4(1-g)cosp (1-cosB) P==-0
3, (12)
_3-sing

g=7—o _ _
where 3+ Thus p(0)=1 and P (w/3)=g . Then parameters of the
M, =p®)M4, ¢, =p(0)cq

2\a

2a +b (13)

Hardening and softening. Change of porosity at process of loadings and
unloadings is taken as additional measures of hardening. Thus volume porosity
of a ground is defined depending on octahedrical normal pressure [3, 5]

= e -dInc,

formula (7) can be defined so , and

A4, =pO)4; 44 =

M,

— o - . . 1
e=e’-p Inc, _ at active loadlng; € — at unloadmg, where e’ —

porosity in natural state; e? — porosity of a ground by the time of unloading; p
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and 0 — the experimental parameters. The volumetric strains, caused by change
of porosity, are defined so

g, = - ° "% 3de, = - de
1+e , 1+e (14)
Increment of a plastic part of the volumetric strains connected with change
p = = e e . .
of porosity, are equal dey = de, - dz, , Where o _ elastic strains,
3de? = M0
( T+e )G 0 (1 5)

From (15) it is possible to receive expression for a derivative, entering into
a equation (3).
OF _ 3(1+e) oF

ox K-8 do, (16)
OF

At softening the derivative 9% is defined from the stresses-strains
oF 1 oF o,

diagrams (fig. 1, b) o To T OV
Let's notice, that unloading is carried out under the nonlinear, logarithmic
1+e . 3K,(1-2v)
K, =—206,; G, =22
8 2(1+v)

law with modules , where v — coefficient of cross
deformations. Thus, as usual at the unloading, the second composed in (2) is
equal to zero.

If stresses lies above a limit straight line (fig. 1a), i.e. is in a sottening zone,
ratios lose meaning since Drukker's known postulate is thus broken. Nevertheless
this effect in real experiences is observed, process of deformation is carried out
on a falling branch of the diagram (fig. 1b). Therefore that to consider it,
expression (16) it is representate in a look

oF _10oFoy, 1. oF _1 GG 0oF

5_)(_;5% ﬁyg _To p%_;Go_Gar_o

, (17)

where G, — the plastic shear modulus. The tangent plastic shear modulus we
will define, having set analytical expression for a curve in fig. 1b, for example,
in a form

g-— M
1+(k—2)n+n2’ (18)
é = E—O 1" = ZO k = GO Z—O
where to . Yo ; o
Here '© and "© — top coordinates of the diagram. If differentiate (18) on

Yo  we will receive
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Model testing and examples. The model is included in computer program
«Concord» [2], realizing a finite elements method. Let's result a test problem
about action of a square rigid stamp on a ground and we will compare results of
calculations with experimental data [5].The sizes of a stamp are 40x40 sm. Steps
of loading are 40 xH/m?. For calculation volume isoparametrical eight-nodes
finite elements were used. The symmetric part of the sample was considered
only. Ground characteristics: E=2.5 MPa, ¢=18°, ¢=0.045 MPa, v=0.35. Results
of calculation of vertical displacements of a stamp are presented on fig. 3. Here
isolines of displacements (fig. 3, a) and stresses (fig. 3, b, ¢) are given at

q=680 kN/m>.

a). Vertical displacements, mm b). Stresses G, MPa

1353 268 ALT 85 0 04T 042 498 -0.33 028 923 018 613 009 005 @

). Stresses T, . MPa

Fig. 3. Rezults of test

Example 1. Laboratory Studied Sheet Piling Wall. Behavior of the model of
steel sheet piling wall was studied in laboratory conditions [6]. Also it was
calculated according to presented method. The scheme and layout of the wall as
well as soil parameters are presented on fig. 4. 2-D plane strain state is
considered. Some results of calculations (continuous lines) and experimental
data (dotted lines) are presented on fig. 5 — 8.
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Fig. 4. Laboratory steel sheet piling wall

42 30ipHIK HAYKOBHX TIpallh (TaTy3eBe MAMHOOY IyBaHHs, OyaiBHULITBO). Bur. 3(38). T1. - 2013.- [TortHTY




8=32mm

= p

7

20 2 4 6 8 Amm

MI—*F“—-F‘-'—H—‘—F—‘E% 4
£0 40 20 0 20 40 10 t'm

Fig. 5. The moment and active pressure in a wall with thickness 3.2 mm from weight of a soil
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Fig. 6. The moment and active pressure in a wall 3.2 mm from the distributed loading
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Fig. 7. The shear stresses in a wall 3.2 mm from the distributed loading
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Fig. 8. The moment, active pressure and shear stresses in a wall 8 mm from weight of soil
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Example 2. Reinforced Concrete Anchored Sheet Piling Wall. Behavior of
reinforced concrete anchored sheet piling wall was studied in Donetsk port
(Ukraine) according to the work [7]. Some results of calculations (continuous
lines) and measured on site values (dotted lines) are presented on fig. 9 — 10.
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Fig. 9. Reinforced concrete anchored sheet piling wall
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Fig. 10. Moment and active pressure in anchored sheet piling wall

Example 3. Limiting condition of a slope. Let's put an example of
calculation stress-strain state and limiting condition of a slope, on border which
one the stamp acts. The computational scheme is show on a fig. 11. The plane
elements by depth 100 cm will be used. The characteristics of a soil: modulus
E=5000 MPa, Poisson's ratio v=0.35, weight p=1.8 t/m?, angle of internal friction
¢=30°, coupling c=5 MPa.

s
TR e TR = s

7500

3000

Fig. 11. Slope
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Fig. 12. Areas of a unstable state
The load to stamp was applied sequentially by stages on 50 kN. The process
of loading was automatically intercepted at the moment of achievement of a
limiting unstable of a slope, comes of calculations are shown in a fig. 12—14.In a
fig. 12 the areas of a unstable state of a soil are submitted. The limit's area is a
slip line. The strained state of a slope at the moment of loss of stability is rotined
in a fig. 13. The vertical displacement of a stamp are shown in a fig. 14.
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Fig. 13. Vertical displacement
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Fig. 14. Vertical displacement of a stamp

Example 4. Ground bank. And in summary we shall demonstrate an
example of calculation of a ground bank under only weight. The bank is erected
layerwise from a soil with the following characteristics: modulus E=3000 MPa,
Poisson's ratio v=0.35, volume weight p=2.0 t/m?, angle of internal friction
¢=18°, coupling c=10 MPa. The computational scheme of a bank is adduced in a
fig. 15. The process of level-by-level escalating is modelled step-by-step change
of the computational scheme during step calculation. At each stage of calculation
the horizontal layer of elements is added. The external loading, except weights
of a soil, misses. In a fig. 16—18 the izolines of vertical displacement on some
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stages of loading are adduced. In a fig

. 17—19 the shearing stresses of calculation
are rotined.

_! : : =
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Fig. 15. Computational scheme of a bank

Step 5: Displacement along ¥ in mm

352 31T 282 24T 211 ATE A

Fig. 16. Vertical displacements at 5 step

Step 5. Shear stresses Txy in MPa

I I T
708 556 425 -283 142 O

142 283 425 866 VOB

Fig. 17. Shear stresses at 5 step

Step 10. Displacements along Y in mm

I L
2480 -2250 -2020 1790 1560 -1330 -1100 £70 540 410 -180

Fig. 18. Vertical displacements at 10 step

Step 10. Shear stresses Txy in MPa

475 140 05 T¢ 35 0 3 70 105 140 175

Fig. 19. Shear stresses at 10 step
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Conclusion. Comparison of know experimental data with calculated values
of main parameters of structure soil stresses-deformed state (some examples of
such analysis were presented above) demonstrated effectiveness of proposed
model and method of its realization.
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