І.Г. Пімонов, к.т.н., доцент
Г.Г. Пімонов, к.т.н., дочент

Харківський наиіональний автомобільно-дорожній університет

ОБГРУНТУВАННЯ ЕНЕРГОЗБЕРЕЖНОГО ТЕМПЕРАТУРНОГО РЕЖИМУ ГІДРОФІКОВАНИХ БУДІВЕЛЬНИХ МАШИН

Дослідженнями встановлено, що рачіональне, за критерієм найбільшої корисної потужності, значення температури (в’язкості) робочої рідини залежить від технічного стану насоса. Найбільшу корисну потужність досягнуто оптимізаиією співвідношення між втратами тиску, внутрішніми витоками в складових гідропривода і витратами потужності системи охолодження на забезпечення рачіональної температури робочої рідини. Застосування рачіонального температурного режиму дочільне та є невикористаним резервом енергозбереження i підвищення ефективності експлуатачії гідроприводів мобільних машин.

Ключові слова: будівельна машина, гідропривід, енергозбереження, корисна потужність, рачіональний температурний режим.

УДК 625.7.08.002.5; 616-07
И.Г. Пимонов, к.т.н., дочент
Г.Г. Пимонов, к.т.н., дочент

Харьковский наұиональный автомобильно-дорожный университет

ОБОСНОВАНИЕ ЭНЕРГОСБЕРЕГАЮЩЕГО ТЕМПЕРАТУРНОГО РЕЖИМА ГИДРОФИЦИРОВАННЫХ СТРОИТЕЛЬНЫХ МАШИН

Исследованиями установлено, что рачиональное, по критерию полезной наибольшей мощности, значение температуры (вязкости) рабочей жидкости зависит от технического состояния насоса. Наибольшая полезная мощность достигается оптимизачией соотношения между потерями давления, внутренними утечками в составляющих гидропривода и расходами мощности системы охлаждения на обеспечение рачиональной температуры рабочей жидкости. Применение рачионального температурного режима целесообразно и является неиспользованным резервом энергосбережения и повышения эффективности эксплуатачии гидроприводов мобильных машин.

Ключевье слова: строительная машина, гидропривод, энергосбережение, полезная мощность, рачиональный температурный режим.

UDC 625.7.08.002.5; 616-07

I.G. Pimonov, PhD, Associate Professor
G.G. Pimonov, PhD, Associate Professor
Kharkov National Automobile and Highway University

SUBSTANTIATION OF ENERGY-SAVING TEMPERATURE REGIME OF HYDRAULIC CONSTRUCTION MACHINES

The research proved that rational (by the criterion of useful maximum power) value of temperature (viscosity) of the working liquid depends on technical condition of the pump. The biggest useful power can be achieved by optimization of the ratio of pressure losses and
internal leakage in hydraulic drive components to the power consumption of the cooling system in order to provide rational temperature of the working liquid. Using rational temperature mode is a reasonable and unused reserve of energy saving and increasing efficiency of running hydraulic drives of mobile machines.

Keywords: construction machine, hydraulic drive, energy saving, useful power, rational temperature regime.

Постановка проблеми в загальному вигляді та їі зв'язок із важливими науковими чи практичними завданнями. Енергозбереження ϵ актуальною проблемою в усіх галузях виробництва, включаючи експлуатацію гідрофікованих будівельних машин. Ефективність і енергозбереження гідропривода будівельних машин забезпечуються чистотою робочої рідини (PP), режимами навантаження, застосуванням сучасної діагностики, а також раціональним температурним режимом його роботи.

Серед багатьох наукових праць, присвячених температурному режиму гідроприводів, недостатньо досліджено цей режим стосовно гідроагрегатів, що мають експлуатаційний знос [1, 2, 3].

Формулювання цілей статті (постановка завдання). Метою роботи ϵ підвищення ефективності будівельних машин шляхом визначення i використання раціонального температурного режиму, що забезпечує найбільшу корисну потужність гідропривода (на прикладі гідропривода екскаватора EO-4225 [4]).

Виклад основного матеріалу дослідження 3 повним обгрунтуванням отриманих наукових результатів. Корисна потужність гідроприводу визначається

$$
\begin{equation*}
N_{\text {кр }}=N_{\mathrm{T}}-N_{\text {вв.н }}-N_{\text {ГМ }}-N_{\text {ГП }}-N_{\mathrm{B}}, \tag{1}
\end{equation*}
$$

де $N_{\text {т }}$ - теоретична потужність насоса;
$N_{\text {вв.н }}$ - втрати потужності внаслідок внутрішніх перетоків у насосі;
$N_{\text {гм }}$ - гідромеханічні втрати потужності в насосі;
$N_{\text {гп }}$ - втрати потужності в магістралях і агрегатах гідропривода по колу «насос - бак - насос»;
$N_{\text {в }}$ - витрати потужності на забезпечення раціональної температури PP (на привод системи охолодження).

Теоретична потужність насоса визначається як потужність, еквівалентна при номінальному перепаді тиску в насосі p продуктивності насоса $Q_{\text {тH }}$ [1]:

$$
\begin{equation*}
N_{T}=n q_{o} p=Q_{\mathrm{TH}} p, \tag{2}
\end{equation*}
$$

де n - частота обертання вала насоса;
p - номінальний робочий тиск, створений насосом;
$Q_{\text {тн }}$ - теоретична подача насоса.

Втрати потужності внаслідок внутрішніх перетоків у насосі

$$
\begin{align*}
& N_{\text {вв.н }}=Q_{\text {вв.н }} \cdot[p, v(t), n, S] p=\left[\frac{\pi \cdot d_{\Pi} \cdot z_{\Pi} \cdot S_{\Pi}{ }^{3} \cdot g}{12 \cdot \gamma \cdot L \cdot v}-\frac{\pi \cdot d_{\Pi} \cdot z_{\Pi} \cdot w_{\text {П }} \cdot S_{\text {П }}}{2}+\right. \\
& \left.+\left[p \cdot \frac{\pi \cdot\left[A^{3} \cdot S_{\Pi}{ }^{3}\right] \cdot g}{6 \cdot \gamma \cdot v \cdot \ln \frac{r_{2}}{r_{1}}}-\frac{3 \cdot \gamma \cdot(2 \pi \cdot n)^{2}}{g \cdot 20} \cdot\left(r_{2}^{2}-r_{1}^{2}\right) \cdot \frac{\pi \cdot\left[A^{3} \cdot S_{\Pi}{ }^{3}\right] \cdot g}{6 \cdot \gamma \cdot v \cdot \ln \frac{r_{2}}{r_{1}}}\right]\right] p, \tag{3}
\end{align*}
$$

де $Q_{\text {вв.н }}$ - внутрішні витоки в насосі;
$v(T)$ - в’язкість робочої рідини залежно від температури;
S - параметри, що характеризують зазори в насосі;
$d_{\text {I }}$ - діаметр поршня насоса;
$z_{\text {п }}$ - кількість поршнів у насосі, що подають робочу рідину;
$S_{\text {п }}$ - зазор між гільзою і поршнем;
γ - об'ємна вага;
L - довжина ущільнювальної частини поршня насоса;
r_{2}, r_{1} - зовнішній і внутрішній радіуси віконець розподільника насоса;
$w_{\text {п }}$ - середня швидкість поршнів насоса;
A - коефіцієнт співвідношення поршневих зазорів і зазорів у розподільнику насоса.

Залежність в’язкості робочої рідини (МГЄ - 46B) від температури визначається (Ст)

$$
\begin{equation*}
v=\frac{e^{a+\frac{b}{T}+c \cdot \ln T}}{100}=\frac{e^{-277+\frac{17523}{T}+40 \cdot \ln T}}{100} \tag{4}
\end{equation*}
$$

де a, b, c - безрозмірні коефіцієнти залежності;
T - температура робочої рідини, ${ }^{\circ}$ К.
Гідромеханічні втрати потужності в насосі, при припущенні, що вони визначаються втратами тиску в його каналах, дорівнюють

$$
\begin{equation*}
N_{\mathrm{\Gamma M}}=Q_{\mathrm{H}}\left(T, S_{\mathrm{\Pi}}\right) p\left(1-\eta_{\mathrm{\Gamma M}}\right)\left(\frac{v_{\mathrm{T}}}{v_{0}}\right)^{n}\left(\frac{Q_{\mathrm{H}}}{Q_{\mathrm{Ht}}}\right)^{m}, \tag{5}
\end{equation*}
$$

де $Q_{\mathrm{H}}\left(T, S_{\text {п }}\right)$ - продуктивність насоса залежно від температури PP i його технічного стану;
$\eta_{\text {гм }}$ - гідромеханічний ККД;
v_{T}, v_{0} - співвідносно вязкості PP при температурі T і номінальній температурі;
$Q_{\mathrm{H}}, Q_{\mathrm{Ht}}$ - співвідносно продуктивності насоса при номінальній температурі та при температурі T робочої рідини;
n, m - показники ступеня, значення яких залежить від режиму течії в каналах насоса.

Нехтуючи внутрішніми витоками в розподільнику і гідроциліндрі й розбивши гідропривід на k ділянок, втрати потужності в магістралях i агрегатах гідропривода по колу «насос - бак - насос» можна визначити

$$
\begin{equation*}
N_{\text {гп }}=\sum_{i=1}^{k} Q_{\mathrm{H}}\left(T, S_{\Pi}\right) \cdot p_{k}\left(T, S_{\Pi}\right), \tag{6}
\end{equation*}
$$

де $p_{k}\left(T, S_{\text {п }}\right)$ - втрати тиску в кожній з k ділянок залежно від температури PP і технічного стану насоса.

Загальні втрати тиску в магістралях гідропривода визначалися як підсумок втрат тиску на окремих ділянках руху РР, включаючи: металеві трубопроводи, рукава високого тиску (РВТ), місцеві опори при поворотах трубопроводів, при переходах з металевого трубопроводу до РВТ, при входах у гідророзподільник, гідроциліндр, фільтр, маслоохолоджувач та в самих перелічених гідроагрегатах.

Усього було розглянуто 32 ділянки. При визначенні втрат тиску на окремих ділянках використовувалися залежності, наведені в роботах [1, 2, 3].

Витрати потужності на забезпечення раціональної температури PP приблизно можна визначити за залежністю

$$
\begin{equation*}
N_{\mathrm{B}}=\frac{N_{\text {нд }}}{N_{\Pi т}}=\frac{m_{\text {ГП }} \cdot c_{\text {ГП }} \cdot\left(T_{\mathrm{pp}}-T^{\text {рац }}\right)}{N_{\Pi Т}}, \tag{7}
\end{equation*}
$$

де $N_{\text {нд }}$ - надлишкова теплова потужність, що акумульована в гідроприводі й викликає підвищення температури РР понад раціональне значення;
$N_{\text {пт }}$ - середня, розсіяна кіловатом привода вентилятора системи охолодження теплова потужність, акумульована в РР [5];
$m_{\text {гп }}$ - приведена маса гідропривода;
$c_{\text {гп }}$ - приведена теплоємність гідропривода;
$T_{\mathrm{pp}}, T^{\text {рац }}$ - температура PP і її раціональне значення.

$$
\begin{equation*}
m_{\Gamma \Pi}=m_{\mathrm{\Gamma O}}+m_{\mathrm{PP}}, \tag{8}
\end{equation*}
$$

де $\mathrm{m}_{\text {го }} \mathrm{i} \mathrm{m}_{\mathrm{pp}}$ - маса основного i допоміжного гідрообладнання, гідравлічної апаратури, кондиціонерів і робочої рідини [3].

Середня питома теплоємність $c_{\text {гп }}$ матеріалів гідрообладнання i робочої рідини визначається за формулою [3]

$$
\begin{equation*}
c_{\text {гП }}=\frac{c_{\mathrm{pp}} \cdot m_{\mathrm{pp}}+c_{\text {го }} \cdot m_{\text {го }}}{m_{\mathrm{pp}}+m_{\text {го }}}, \tag{9}
\end{equation*}
$$

де c_{pp} - теплоємність робочої рідини;
$\mathrm{c}_{\text {го }}$ - середня питома теплоємність матеріалів гідрообладнання (сталі);
m_{pp} - маса рідини;
$\mathrm{m}_{\text {го }}$ - маса гідрообладнання.
Теоретичні дослідження на основі залежності (1) зв’язку потужності з температурою (в'язкістю) РР для насосів 3 різним технічним станом дозволили визначити, що найбільшу корисну потужність насоси з об'ємним ККД $\eta=0,96 . .0,9$ дають при в'язкості, що відповідає температурі PP близько $40 \ldots 50^{\circ} \mathrm{C} .3$ погіршенням технічного стану насоса i до досягнення межі допустимого зменшення об’ємного ККД за економічним критерієм до $\eta=0,7$ найбільшу потужність насоси дають при температурі робочої рідини $35 . . .42^{\circ} \mathrm{C}$.

У середньому кожний кіловат привода маслоохолоджувача відбирає від РР 5... 10 кВт теплової енергії [1, 4]. Тому забезпечення раціональної температури PP у діапазоні об'ємних ККД до $\eta=0,7$ збільшує необхідну потужність привода вентилятора на $30-50 \%$, тобто на $1,5 \ldots 2$ кВт. При цьому корисна потужність насоса збільшується на 5... 9 кВт.

При подальшому погіршенні технічного стану насоса і наближення його стану до межі роботоздатності, що відповідає об'ємному ККД $\eta=0,65 \ldots 0,6$, раціональна температура наближається до $30 \ldots 20^{\circ} \mathrm{C}$, забезпечення якої викликає підвищення витрати потужності в системі мослоожолодження і може бути недоцільною. Але і в цьому випадку зменшення температури РР дає підвищення корисної потужності насоса.

Висновки з даного дослідження і перспективи подальших розвідок у цьому напрямі:

1. Дослідженнями встановлено, що раціональне, за критерєм найбільшої корисної потужності, значення температури (в'язкості) робочої рідини не постійне і залежить від технічного стану насоса.
2. Найбільшу корисну потужність може бути досягнуто оптимізацією співвідношення між втратами тиску і внутрішніми витоками в складових гідропривода, які визначаються температурою робочої рідини, а також витратами потужності системи охолодження на забезпечення раціонального значення цієї температури.
3. Застосування раціонального температурного режиму доцільне і є невикористаним резервом енергозбереження та підвищення ефективності експлуатації гідроприводів мобільних машин.

Література

1. Башта Т. М. Машиностроительная гидравлика [Текст] : справочное пособие / Т.М. Башта. - М.: Машиностроение, 1971. - 672 с.
2. Васильченко В. А. Гидравлическое оборудование мобильных машин [Текст] : справочник / В. А. Васильченко. - М.: Машиностроение, 1983. - 301 с.
3. Каверзин С.В. Стабилизачия температуры рабочей жидкости гидроприводов строительных машин [Текст] / С.В. Каверзин, А.С. Каверзина, С.В. Подсосов // Красноярск: Изд-во Красноярского ун-та, 2001. - 249 с.
4. Техническое описание и инструкиия по эксплуатаиии ЭО-4125 [Текст] : каталог / ООО «Ковровский экскаваторный завод». - М. : Ковровеи, 1980. - 110 с.
5. Рожкин В. М. Калориферы для гидроприводов экскаваторов [Текст] / В.М. Рожкин // Строительные и дорожные машины. - 1977. - Вип. 5. - С. 4 - 5.

Надійшла до редакиії 03.04.2014
©І.Г. Пімонов, Г.Г. Пімонов

