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In the paper the possible approaches to the rigorous derivation of the
Boltzmann kinetic equation with hard sphere collisions from underlying
dynamics are considered. In particular, a formalism for the description
of the evolution of infinitely many hard spheres within the framework of
marginal observables in the Boltzmann–Grad scaling limit is developed.
Moreover, we develop one more approach to the description of the
kinetic evolution of hard spheres within the framework of a one-particle
distribution function governed by the generalized Enskog equation and we
establish its scaling asymptotic behavior.

В роботi розглянуто можливi пiдходи до строгого виведення кiнетич-
ного рiвняння Больцмана з динамiки твердих куль iз пружним роз-
сiянням. Зокрема розвинуто формалiзм опису еволюцiї нескiнченної
кiлькостi твердих куль в рамках маргiнальних спостережуваних в скей-
лiнґовiй границi Больцмана–Ґреда. Крiм того розвинуто ще один пiд-
хiд до опису кiнетичної еволюцiї твердих куль в термiнах одночастин-
кової функцiї розподiлу, яка визначається узагальненим рiвнянням Ен-
скоґа, i встановлено її скейлiнґову асимптотику.

1 Introduction
As is known the collective behavior of many-particle systems can be
effectively described within the framework of a one-particle marginal
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distribution function governed by the kinetic equation in a suitable scaling
limit of underlying dynamics [1]-[3]. At present the considerable advance
in the rigorous derivation of the Boltzmann kinetic equation of a system
of hard spheres in the scaling Boltzmann–Grad limit [4] is observed [5]-
[12]. Nowadays this result was extended on many-particle systems with
short-range interaction potentials [13],[14].

Another approach to the description of the many-particle evolution
is given within the framework of marginal observables governed by the
dual BBGKY hierarchy [15]. The main goal of this paper consists in the
description of the kinetic evolution of many hard spheres in terms of the
evolution of observables, i.e. the Heisenberg picture of the evolution.

We note that in case of quantum many-particle systems the possible
approaches to the derivation of quantum kinetic equations from underlying
dynamics were considered in reviews [16],[17].

We briefly outline the structure of the paper and the main results.
In section 2 we formulate necessary preliminary facts about evolution
equations of a hard sphere system and review recent rigorous results on the
derivation of the Boltzmann kinetic equation from underlying dynamics. In
section 3 we develop an approach to the description of the kinetic evolution
of infinitely many hard spheres within the framework of the evolution
of marginal observables. For this purpose we establish the Boltzmann–
Grad asymptotic behavior of a solution of the Cauchy problem of the
dual BBGKY hierarchy for marginal observables of hard spheres. The
constructed scaling limit is governed by the set of recurrence evolution
equations, namely by the dual Boltzmann hierarchy. Moreover, the links
of the dual Boltzmann hierarchy for the limit marginal observables with
the Boltzmann kinetic equation is established in this section. In section 4
we develop one more approach to the description of the kinetic evolution of
hard spheres. We prove that the Boltzmann–Grad scaling limit of a solution
of the Cauchy problem of the generalized Enskog kinetic equation is
governed by the Boltzmann equation and the property on the propagation
of a chaos is established. Finally, in section 5 we conclude with some
observations and perspectives for future research.

2 Evolution equations of many hard spheres

It is well known that a description of many-particle systems is formulated
in terms of two sets of objects: observables and states. The functional



On the derivation of the Boltzmann equation 73

of the mean value of observables defines a duality between observables
and states and as a consequence there exist two approaches to the
description of the evolution. Usually the evolution of many-particle systems
is described within the framework of the evolution of states by the BBGKY
hierarchy for marginal distribution functions. An equivalent approach to
the description of the evolution of many-particle systems is given in terms
of marginal observables governed by the dual BBGKY hierarchy.

2.1 The BBGKY hierarchy for hard spheres
We consider a system of identical particles of a unit mass with the diameter
σ > 0, interacting as hard spheres with elastic collisions. Every particle is
characterized by the phase coordinates: (qi, pi) ≡ xi ∈ R3 × R3, i ≥ 1.

Let L1
α = ⊕∞n=0α

nL1
n be the space of sequences f = (f0, f1, . . . , fn, . . .)

of integrable functions fn(x1, . . . , xn) defined on the phase space of n hard
spheres, that are symmetric with respect to permutations of the arguments
x1, . . . , xn, equal to zero on the set of the forbidden configurations:
Wn ≡ {(q1, . . . , qn) ∈ R3n

∣∣|qi − qj | < σ for at least one pair (i, j) : i 6=
j ∈ (1, . . . , n)} and equipped with the norm: ‖f‖L1

α
=
∑∞
n=0 α

n‖fn‖L1
n
=∑∞

n=0 α
n
∫
dx1 . . . dxn|fn(x1, . . . , xn)|, where α > 1 is a real number. We

denote by L1
0 ⊂ L1

α the everywhere dense set in L1
α of finite sequences of

continuously differentiable functions with compact supports.
The evolution of all possible states of a system of a non-fixed, i.e.

arbitrary but finite, number of hard spheres is described by the sequence
F (t) = (1, F1(t, x1), . . . , Fs(t, x1, . . . , xs), . . .) ∈ L1

α of the marginal (s-
particle) distribution functions Fs(t, x1, . . . , xs), s ≥ 1, governed by the
Cauchy problem of the BBGKY hierarchy [1]:

∂

∂t
Fs(t) =

( s∑
j=1

L∗(j) + ε2
s∑

j1<j2=1

L∗int(j1, j2)
)
Fs(t) + (1)

+ε2
s∑
i=1

∫
R3×R3

dxs+1L∗int(i, s+ 1)Fs+1(t),

Fs(t)|t=0 = F 0,ε
s , s ≥ 1. (2)

In the hierarchy of evolution equations (1) represented in a dimensionless
form the coefficient ε > 0 is a scaling parameter (the ratio of the diameter
σ > 0 to the mean free path of hard spheres) and, if t ≥ 0, the operators
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L∗(j) and L∗int(j1, j2) are defined on the subspace L1
n,0 ⊂ L1

n by the
formulas:

L∗(j)fn
.
= −〈pj ,

∂

∂qj
〉fn, (3)

L∗int(j1, j2)fn
.
=

∫
S2+

dη〈η, (pj1 − pj2)〉
(
fn(x1, . . . , qj1 , p

∗
j1 , . . . , (4)

qj2 , p
∗
j2 , . . . , xn)δ(qj1 − qj2 + εη)− fn(x1, . . . , xn)δ(qj1 − qj2 − εη)

)
,

where the following notations are used: the symbol 〈·, ·〉 means a scalar
product, δ is the Dirac measure, S2+

.
= {η ∈ R3

∣∣ |η| = 1, 〈η, (pj1−pj2)〉 ≥ 0}
and the momenta p∗j1 , p

∗
j2

are determined by the expressions:

p∗j1 = pj1 − η 〈η, (pj1 − pj)〉 , (5)
p∗j2 = pj2 + η 〈η, (pj1 − pj2)〉 .

The adjoint Liouville operator L∗s =
∑s
i=1 L∗(i) + ε2

∑s
i<j=1 L∗int(i, j)

is an infinitesimal generator of the group of operators of s hard spheres:
S∗s (t) ≡ S∗s (t, 1, . . . , s), which is adjoint to the group of operators Ss(t)
defined almost everywhere on the phase space R3s×(R3s \Ws) as the shift
operator of phase space coordinates along the phase space trajectories of
s hard spheres [1]. The adjoint group of operators S∗s (t) coincides with the
group of operators of hard spheres Ss(−t) [1].

In case of t ≤ 0 a generator of the BBGKY hierarchy with hard sphere
collisions is determined by the corresponding operator [1].

If F (0) = (1, F 0,ε
1 , . . . , F 0,ε

n , . . .) ∈ L1
α and α > e, then for t ∈ R a

unique non-perturbative solution of the Cauchy problem of the BBGKY
hierarchy with hard sphere collisions (1),(2) exists and it is represented by
the sequence [18]:

Fs(t, x1, . . . , xs) = (6)

=

∞∑
n=0

1

n!

∫
(R3×R3)n

dxs+1 . . . dxs+nA1+n(−t, {Y }, X \ Y )F 0,ε
s+n,

s ≥ 1,

where the generating operator of the n term of series (6) is the (n+ 1)th-
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order cumulant of adjoint groups of operators of hard spheres:

A1+n(−t, {Y }, X \ Y ) = (7)

=
∑

P: ({Y },X\Y )=
⋃
iXi

(−1)|P|−1(|P| − 1)!
∏
Xi⊂P

S|θ(Xi)|(−t, θ(Xi)),

and the following notations are used: {Y } is a set consisting of one element
Y ≡ (1, . . . , s), i.e. |{Y }| = 1,

∑
P is a sum over all possible partitions P of

the set ({Y }, X \ Y ) ≡ ({Y }, s+ 1, . . . , s+ n) into |P| nonempty mutually
disjoint subsets Xi ∈ ({Y }, X \ Y ), the mapping θ is the declusterization
mapping defined by the formula: θ({Y }, X \ Y ) = X.

For initial data F (0) ∈ L1
α,0 ⊂ L1

α sequence (6) is a strong solution of
the Cauchy problem (1),(2) and for arbitrary initial data from the space
L1
α it is a weak solution.
We remark, as a result of the application to cumulants (7) of analogs of

the Duhamel equations, solution series (6) reduces to the iteration series
of the BBGKY hierarchy (1).

In order to describe the evolution of infinitely many particles we must
construct the solutions for initial data from more general Banach spaces.
In the capacity of such Banach space in [1]-[3],[6] it was used the space L∞ξ
of sequences of continuous functions defined on the phase space of hard
spheres with the norm:

‖f‖L∞ξ = sup
n≥0

ξ−n sup
x1,...,xn

|fn(x1, . . . , xn)| exp(
β

2

n∑
i=1

p2i ),

where β > 0 and ξ > 0 are some parameters.
If F (0) ∈ L∞ξ , every term of series (6) exists and this series converges

uniformly on each compact almost everywhere for finite time interval.
Sequence (6) is a weak unique solution of the Cauchy problem of the
BBGKY hierarchy (1),(2).

2.2 On the Boltzmann–Grad asymptotic behavior

To consider the conventional approach to the derivation of the Boltzmann
kinetic equation with hard sphere collisions from underlying dynamics [7]
(see also [1] and references cited therein) we represent a solution of the
Cauchy problem of the BBGKY hierarchy for hard spheres in the form of
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the perturbation (iteration) series:

Fs(t, x1, . . . , xs) = (8)

=

∞∑
n=0

ε2n
t∫

0

dt1 . . .

tn−1∫
0

dtn

∫
(R3×R3)n

dxs+1 . . . dxs+n Ss(−t+ t1)

×
s∑

i1=1

L∗int(i1, s+ 1)Ss+1(−t1 + t2) . . .

×Ss+n−1(−tn + tn)

s+n−1∑
in=1

L∗int(in, s+ n)Ss+n(−tn)F 0,ε
s+n, s ≥ 1,

where the notations from formulas (3) are used.
If F (0) ∈ L∞ξ , every term of series (8) exists and the iteration series

converges uniformly on each compact almost everywhere for t < t0(β, ξ).
Sequence (8) is a unique weak solution of the Cauchy problem of the
BBGKY hierarchy (1) [19].

The Boltzmann–Grad asymptotic behavior of perturbative solution (8)
is described by the following statement [7]:

Theorem 1 If for initial data F (0) = (1, F 0,ε
1 , . . . , F 0,ε

n , . . .) ∈ L∞ξ
uniformly on every compact set in the phase space R3n×(R3n\Wn) it holds:
limε→0 |ε2nF 0,ε

n (x1, . . . , xn)− f0n(x1, . . . , xn)| = 0, then for any finite time
interval the function ε2sFs(t, x1, . . . , xs) defined by series (8) converges in
the Boltzmann–Grad limit uniformly with respect to configuration variables
from any compact set and in a weak sense with respect to momentum
variables to the limit marginal distribution function fs(t, x1, . . . , xs) given
by the series:

fs(t, x1, . . . , xs) = (9)

=

∞∑
n=0

t∫
0

dt1 . . .

tn−1∫
0

dtn

∫
(R3×R3)n

dxs+1 . . . dxs+n

s∏
i1=1

S1(−t+ t1, i1)

×
s∑

k1=1

L0,∗
int (k1, s+ 1)

s+1∏
j1=1

S1(−t1 + t2, j1) . . .

×
s+n−1∏
in=1

S1(−tn + tn, in)

s+n−1∑
kn=1

L0,∗
int (kn, s+ n)

s+n∏
jn=1

S1(−tn, jn)f0s+n.
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In series (9) it was introduced the operator:

(L0,∗
int (j1, j2)fn)(x1, . . . , xn)

.
=

∫
S2+

dη〈η, (pj1 − pj2)〉
(
fn(x1, . . . (10)

qj1 , p
∗
j1 , . . . qj2 , p

∗
j2 , . . . , xn)− fn(x1, . . . , xn)

)
δ(qj1 − qj2),

and the momenta p∗j1 , p
∗
j2

are determined by expressions (5).
If f(0) = (f0, f

0
1 , . . . , f

0
n, . . .) ∈ L∞ξ , every term of series (9) exists and

this series converges uniformly on each compact almost everywhere for
t < t0(β, ξ).

We note that for t ≥ 0 sequence (9) is a weak solution of the Cauchy
problem of the limit BBGKY hierarchy known as the Boltzmann hierarchy
with hard sphere collisions:

∂

∂t
fs(t) =

n∑
j=1

L∗(j)fs(t) +
s∑
i=1

∫
R3×R3

dxs+1L0,∗
int (i, s+ 1)fs+1(t), (11)

fs(t)|t=0 = f0s , s ≥ 1, (12)

where the operator L0,∗
int (i, s+ 1) is defined by formula (10).

We remark that the same statement takes place concerning the
Boltzmann–Grad behavior of non-perturbative solution (6) of the Cauchy
problem of the BBGKY hierarchy for hard spheres.

To derive the Boltzmann kinetic equation [12] we will consider initial
data (2) satisfying the chaos condition [1], which means the absence of
correlations at initial time (statistically independent hard spheres)

F 0,ε
s (x1, . . . , xs) =

s∏
i=1

F 0,ε
1 (xi)XR3s\Ws

, s ≥ 1, (13)

where XR3s\Ws
is a characteristic function of the set R3s \Ws of allowed

configurations. Such assumption about initial data is intrinsic for the
kinetic description of a gas, because in this case all possible states are
characterized only by a one-particle marginal distribution function.

Since the initial limit marginal distribution functions satisfy a chaos
property too

f0s (x1, . . . , xs) =

s∏
i=1

f01 (xi), s ≥ 2, (14)
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perturbative solution (9) of the Cauchy problem of the Botzmann hierarchy
(11),(12) has the following property (the propagation of initial chaos):

fs(t, x1, . . . , xs) =

s∏
i=1

f1(t, xi), s ≥ 2,

where for t ≥ 0 the limit one-particle distribution function is defined by
series (9) in case of s = 1 and initial data (14). This limit one-particle
distribution function is governed by the Boltzmann kinetic equation with
hard sphere collisions [1]:

∂

∂t
f1(t, x1) = −〈p1,

∂

∂q1
〉f1(t, x1) +

∫
R3×S2+

dp2 dη 〈η, (p1 − p2)〉

×
(
f1(t, q1, p

∗
1)f1(t, q1, p

∗
2)− f1(t, x1)f1(t, q1, p2)

)
,

where the momenta p∗1 and p∗2 are defined by expressions (5).

2.3 The dual BBGKY hierarchy for hard spheres
Let Cγ be the space of sequences b = (b0, b1, . . . , bn, . . .) of continuous
functions bn ∈ Cn equipped with the norm: ‖b‖Cγ = maxn≥0

γn

n! ‖bn‖Cn =

maxn≥0
γn

n! supx1,...,xn |bn(x1, . . . , xn)|, and C0
γ ⊂ Cγ is the subspace

of finite sequences of infinitely differentiable functions with compact
supports.

If t ≥ 0, the evolution of marginal observables of a system of a non-fixed
number of hard spheres is described by the Cauchy problem of the dual
BBGKY hierarchy [15]:

∂

∂t
Bs(t) =

( s∑
j=1

L(j) + ε2
s∑

j1<j2=1

Lint(j1, j2)
)
Bs(t) + (15)

+ε2
s∑

j1 6=j2=1

Lint(j1, j2)Bs−1(t, x1, . . . , xj1−1, xj1+1, . . . , xs),

Bs(t, x1, . . . , xs) |t=0= Bε,0s (x1, . . . , xs), s ≥ 1. (16)

In recurrence evolution equations (15), as above, the coefficient ε > 0 is a
scaling parameter (the ratio of the diameter σ > 0 to the mean free path
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of hard spheres) and the dimensionless operators L(j) and Lint(j1, j2) are
defined on the subspace C0

s by the formulas:

L(j)bn
.
= 〈pj ,

∂

∂qj
〉bn, (17)

Lint(j1, j2)bn
.
=

∫
S2+

dη〈η, (pj1 − pj2)〉
(
bn(x1, . . . , qj1 , p

∗
j1 , . . . (18)

qj2 , p
∗
j2 , . . . , xn)− bn(x1, . . . , xn)

)
δ(qj1 − qj2 + εη),

where the momenta p∗j1 , p
∗
j2

are determined by expressions (5) and S2+
.
=

{η ∈ R3
∣∣ |η| = 1, 〈η, (pj2 − pj2)〉 ≥ 0}. Operators (3) and (4) are adjoint

operators to operators (17) and (18), respectively. If t ≤ 0, a generator of
the dual BBGKY hierarchy is determined by corresponding operator [15].

Let Y ≡ (1, . . . , s), Z ≡ (j1, . . . , jn) ⊂ Y and {Y \ Z} is the set
consisting from one element Y \Z = (1, . . . , j1 − 1, j1 + 1, . . . , jn − 1, jn +
1, . . . , s).

The solution B(t) = (B0, B1(t, x1), . . . , Bs(t, x1, . . . , xs), . . .) of the
Cauchy problem (15),(16) is determined by the sequence:

Bs(t, x1, . . . , xs) =

s∑
n=0

1

n!

s∑
j1 6=...6=jn=1

A1+n

(
t, {Y \ Z}, Z

)
Bε,0s−n(x1, (19)

. . . xj1−1, xj1+1, . . . , xjn−1, xjn+1, . . . , xs), s ≥ 1,

where the generating operator of n term of this expansion is the (1+n)th-
order cumulant of the groups of operators of hard spheres defined by the
formula:

A1+n(t, {Y \ Z}, Z)
.
= (20)

.
=

∑
P: ({Y \Z},Z)=

⋃
iXi

(−1)|P|−1(|P| − 1)!
∏
Xi⊂P

S|θ(Xi)|(t, θ(Xi)),

and notations accepted in (7) are used.
If γ < e−1, then for B(0) = (B0, B

ε,0
1 , . . . , Bε,0s , . . .) ∈ C0

γ ⊂ Cγ of finite
sequences of infinitely differentiable functions with compact supports it is a
classical solution and for arbitrary initial data B(0) ∈ Cγ it is a generalized
solution.

We remark that expansion (19) can be also represented in the form of
the perturbation (iteration) series of the dual BBGKY hierarchy (15) [15]
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as a result of applying of analogs of the Duhamel equations to cumulants
of the groups of operators of hard spheres (20).

The one component sequences of marginal observables correspond to
observables of certain structure, namely the marginal observable b(1) =

(0, b
(1)
1 (x1), 0, . . .) corresponds to the additive-type observable, and the

marginal observable b(k) = (0, . . . , 0, b
(k)
k (x1, . . . , xk), 0, . . .) corresponds

to the k-ary-type observable [15]. If in capacity of initial data (16) we
consider the additive-type marginal observable, then the structure of
solution expansion (19) is simplified and attains the form

B(1)
s (t, x1, . . . , xs) = As(t, 1, . . . , s)

s∑
j=1

B
(1),ε
1 (0, xj), s ≥ 1. (21)

We note that the mean value of the marginal observable B(t) ∈ Cγ at
t ∈ R in the initial marginal state F (0) = (1, F ε,01 , . . . , F ε,0n , . . .) ∈ L1 =⊕∞

n=0 L
1
n is defined by the following functional:〈
B(t)

∣∣F (0)〉 = (22)

=

∞∑
s=0

1

s!

∫
(R3×R3)s

dx1 . . . dxsBs(t, x1, . . . , xs)F
ε,0
s (x1, . . . , xs).

Owing to the estimate: ‖B(t)‖Cγ ≤ e2(1−γe)−1‖B(0)‖Cγ , functional (22)
exists under the condition that: γ < e−1. In case of F (0) ∈ L∞ξ the
existence of mean value functional (22) is proved in the one-dimensional
space in paper [20].

In particular, functional (22) of mean values of the additive-type
marginal observables B(1)(0) = (0, B

(1),ε
1 (0, x1), 0, . . .) takes the form:〈

B(1)(t)
∣∣F (0)〉 = 〈B(1)(0)

∣∣F (t)〉 =
=

∫
R3×R3

dx1B
(1),ε
1 (0, x1)F1(t, x1),

In the general case for mean values of marginal observables the following
equality is true: 〈

B(t)
∣∣F (0)〉 = 〈B(0)

∣∣F (t)〉, (23)



On the derivation of the Boltzmann equation 81

where the sequence F (t) is given by formula (6). This equality signify
the equivalence of two pictures of the description of the evolution of hard
spheres by means of the BBGKY hierarchy (1) and the dual BBGKY
hierarchy (15).

2.4 The generalized Enskog kinetic equation
In paper [21] it was established that, if initial state of a hard sphere
system is specified by a one-particle distribution function on allowed
configurations, then at arbitrary moment of time the evolution of states
governed by the BBGKY hierarchy can be completely described within
the framework of the one-particle marginal distribution function F1(t)
governed by the generalized Enskog kinetic equation. In this case the all
possible correlations, creating by hard sphere dynamics, are described in
terms of the marginal functionals of the state Fs

(
t | F1(t)

)
, s ≥ 2.

In case of t ≥ 0 the one-particle distribution function is governed by
the Cauchy problem of the following generalized Enskog equation [21]:

∂

∂t
F1(t, x1) = −〈p1,

∂

∂q1
〉F1(t, x1) + (24)

+ε2
∫

R3×S2+

dp2dη 〈η, (p1 − p2)〉

×
(
F2(t, q1, p

∗
1, q1 − εη, p∗2 | F1(t))− F2(t, x1, q1 + εη, p2 | F1(t))

)
,

F1(t, x1)|t=0 = F ε,01 (x1), (25)

where ε > 0 is a scaling parameter, the momenta p∗1, p∗2 are determined by
expressions (5), S2+

.
= {η ∈ R3

∣∣ |η| = 1, 〈η, (p1−p2)〉 ≥ 0} and the collision
integral in kinetic equation (24) is represented in terms of the marginal
functionals of the state Fs(t, x1, . . . , xs | F1(t)), s ≥ 2, in case of s = 2:

Fs(t, x1, . . . , xs | F1(t))
.
= (26)

∞∑
n=0

1

n!

∫
(R3×R3)n

dxs+1 . . . dxs+nV1+n(t, {Y }, X \ Y )

s+n∏
i=1

F1(t, xi).

In series expansion (26) the following notations are used: Y ≡
(1, . . . , s), X ≡ (1, . . . , s+n), and the (n+1)th-order generating evolution
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operator V1+n(t), n ≥ 0, is defined by the expansion:

V1+n(t, {Y }, X \ Y )
.
= (27)

.
=

n∑
k=0

(−1)k
n∑

m1=1

. . .

n−m1−...−mk−1∑
mk=1

n!

(n−m1 − . . .−mk)!

×Â1+n−m1−...−mk(t)

k∏
j=1

mj∑
kj2=0

. . .

kjn−m1−...−mj+s−1∑
kjn−m1−...−mj+s

=0

s+n−m1−...−mj∏
ij=1

1

(kjn−m1−...−mj+s+1−ij − k
j
n−m1−...−mj+s+2−ij )!

×Â1+kjn−m1−...−mj+s+1−ij
−kjn−m1−...−mj+s+2−ij

(t, ij ,

s+ n−m1 − . . .−mj + 1 + kjs+n−m1−...−mj+2−ij , . . . ,

s+ n−m1 − . . .−mj + kjs+n−m1−...−mj+1−ij ),

where it means that: kj1 ≡ mj and kjn−m1−...−mj+s+1 ≡ 0. In
expression (27) we denote by the evolution operator Â1+n−m1−...−mk(t) ≡
Â1+n−m1−...−mk(t, {Y }, s + 1, . . . , s + n −m1 − . . . −mk) the (n −m1 −
. . .−mk)th-order scattering cumulant, namely

Â1+n(t, {Y }, X \ Y )
.
=

.
= A1+n(−t, {Y }, X \ Y )XR3(s+n)\Ws+n

s+n∏
i=1

A1(t, i), n ≥ 1,

where the operator A1+n(−t) is (1+n)th-order cumulant (7) of the adjoint
groups of operators of hard spheres. We give several simplest examples of
generating evolution operators (27):

V1(t, {Y }) = Â1(t, {Y })
.
= Ss(−t, 1, . . . , s)Is(Y )

s∏
i=1

S1(t, i),

V2(t, {Y }, s+ 1) = Â2(t, {Y }, s+ 1)− Â1(t, {Y })
s∑

i1=1

Â2(t, i1, s+ 1).

If ‖F1(t)‖L1(R3×R3) < e−(3s+2), series of marginal functional of the state
(26) converges in the norm of the space L1

s for arbitrary t ∈ R, and thus,
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the collision integral series in kinetic equation (24) converges under the
condition that: ‖F1(t)‖L1(R×R) < e−8 [21].

A solution of the Cauchy problem (24),(25) is represented by the series:

F1(t, x1) = (28)

=

∞∑
n=0

1

n!

∫
(R3×R3)n

dx2 . . . dxn+1 A1+n(−t)
n+1∏
i=1

F ε,01 (xi)XR3(n+1)\Wn+1
,

where the generating operator A1+n(−t) ≡ A1+n(−t, 1, . . . , n + 1) is
the (1 + n)th-order cumulant (7) of adjoint groups of operators of hard
spheres. If initial one-particle distribution function F ε,01 is a continuously
differentiable integrable function with compact support, then function (28)
is a strong solution of initial-value problem (24),(25) and for the arbitrary
integrable function F ε,01 it is a weak solution [21].

If initial one-particle marginal distribution function satisfies the
following condition:

|F ε,01 (x1)| ≤ ce−
β
2 p

2
1 , (29)

where β > 0 is a parameter, c < ∞ is some constant, then every term of
series (28) exists, series (28) converges uniformly on each compact almost
everywhere with respect to x1 for finite time interval and function (28) is
a unique weak solution of the generalized Enskog kinetic equation (24).

The proof of the last statement is based on analogs of the Duhamel
equations for cumulants of groups of operators (7) and estimates
established for the iteration series of the BBGKY hierarchy for hard
spheres [1].

We point out the relationship of the description of the evolution of
many hard spheres in terms of the marginal observables and by the one-
particle marginal distribution function governed by the generalized Enskog
equation (24).

For mean value functional (22) the following equality holds:〈
B(t)

∣∣F c(0)〉 = 〈B(0)
∣∣F (t | F1(t))

〉
, (30)

where F c(0) =
(
1, F 0,ε

1 (x1), . . . ,
∏n
i=1 F

0,ε
1 (xi)XR3n\Wn

)
is a sequence of

initial marginal distribution functions and F (t | F1(t)) =
(
1, F1(t), F2(t |

F1(t)), . . . , Fs(t | F1(t))
)
is the sequence which consists from solution

expansion (28) and marginal functionals of the state (26).
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In particular case of the s-ary initial marginal observable B(s)(0) =

(0, . . . , 0, B
(s),ε
s (0, x1, . . . , xs), 0, . . .), s ≥ 2, established equality (30) takes

the form〈
B(s)(t)

∣∣F c(0)〉 = 〈B(s)(0)
∣∣F (t | F1(t))

〉
=

=
1

s!

∫
(R3×R3)s

dx1 . . . dxsB
(s),ε
s (0, x1, . . . , xs)Fs(t, x1, . . . , xs | F1(t)),

where the marginal functionals of the state Fs(t | F1(t)) are determined
by series (26).

Correspondingly, in case of the additive-type marginal observables
B(1)(0) = (0, B

(1),ε
1 (0, x1), 0, . . .) equality (30) takes the form〈
B(1)(t)

∣∣F c(0)〉 = 〈B(1)(0)
∣∣F (t | F1(t))

〉
=

=

∫
R3×R3

dx1B
(1),ε
1 (0, x1)F1(t, x1),

where the one-particle marginal distribution function F1(t) is determined
by series (28). Therefore for the additive-type marginal observables the
generalized Enskog kinetic equation (24) is dual to the dual BBGKY
hierarchy for hard spheres (15) with respect to bilinear form (22).

Thus, if the initial state is completely specified by the one-particle
distribution function on allowed configurations, then the evolution of
hard spheres governed by the dual BBGKY hierarchy (15) for marginal
observables of hard spheres can be completely described in terms of the
generalized Enskog kinetic equation (24) and by the sequence of marginal
functionals of the state (26).

3 The kinetic evolution within the framework
of marginal observables

In this section we consider the problem of the rigorous description of
the kinetic evolution within the framework of many-particle dynamics
of observables by giving an example of the Boltzmann–Grad asymptotic
behavior of a solution of the dual BBGKY hierarchy with hard sphere
collisions. Moreover, we establish the links of the dual Boltzmann hierarchy
for the limit marginal observables with the Boltzmann kinetic equation.
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3.1 The Boltzmann–Grad asymptotic behavior of the
dual BBGKY hierarchy

The Boltzmann–Grad scaling limit of non-perturbative solution (19) of the
Cauchy problem of the dual BBGKY hierarchy (15),(16) is described by
the following statement.

Theorem 2 Let for Bε,0n ∈ Cn, n ≥ 1, it holds: w∗− limε→0(ε
−2nBε,0n −

b0n) = 0, then for arbitrary finite time interval there exists the Boltzmann–
Grad limit of solution (19) of the Cauchy problem of the dual BBGKY
hierarchy (15),(16) in the sense of the ∗-weak convergence on the space Cs

w∗− lim
ε→0

(
ε−2sBεs(t)− bs(t)

)
= 0, (31)

which is determined by the following expansion:

bs(t) =

s−1∑
n=0

t∫
0

dt1 . . .

tn−1∫
0

dtnS
0
s (t− t1)

s∑
i1 6=j1=1

L0
int(i1, j1) (32)

×S0
s−1(t1 − t2) . . . S0

s−n+1(tn−1 − tn)
s∑

in 6= jn = 1,
in, jn 6= (j1, . . . , jn−1)

L0
int(in, jn)

×S0
s−n(tn)b

0
s−n((x1, . . . , xs) \ (xj1 , . . . , xjn)), s ≥ 1.

In expansion (32) for groups of operators of noninteracting particles the
following notations are used:

S0
s−n+1(tn−1 − tn) ≡ S0

s−n+1(tn−1 − tn, Y \ (j1, . . . , jn−1)) =

=
∏

j∈Y \(j1,...,jn−1)

S1(tn−1 − tn, j),

and we denote by L0
int(j1, j2) the operator:

(L0
int(j1, j2)bn)(x1, . . . , xn)

.
=

∫
S2+

dη〈η, (pj1 − pj2)〉
(
bn(x1, . . . (33)

qj1 , p
∗
j1 , . . . qj2 , p

∗
j2 , . . . , xn)− bn(x1, . . . , xn)

)
δ(qj1 − qj2),

where S2+
.
= {η ∈ R3

∣∣ |η| = 1, 〈η, (pj1−pj2)〉 ≥ 0} and the momenta p∗j1 , p
∗
j2

are determined by expressions (5).
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Before to consider the proof scheme of the theorem we give some
comments.

If b0 ∈ Cγ , then the sequence b(t) = (b0, b1(t), . . . , bs(t), . . .) of limit
marginal observables (32) is a generalized global solution of the Cauchy
problem of the dual Boltzmann hierarchy with hard sphere collisions

d

dt
bs(t, x1, . . . , xs) =

s∑
j=1

L(j) bs(t, x1, . . . , xs) + (34)

+

s∑
j1 6=j2=1

L0
int(j1, j2)bs−1(t, x1, . . . , xj1−1, xj1+1, . . . , xs),

bs(t, x1, . . . , xs) |t=0= b0s(x1, . . . , xs), s ≥ 1. (35)

It should be noted that equations set (34) has the structure of recurrence
evolution equations. We give several examples of the evolution equations
of the dual Boltzmann hierarchy (34)

∂

∂t
b1(t, x1) = 〈p1,

∂

∂q1
〉 b1(t, x1),

∂

∂t
b2(t, x1, x2) =

2∑
j=1

〈pj ,
∂

∂qj
〉 b2(t, x1, x2) +

∫
S2+

dη〈η, (p1 − p2)〉 ×

(
b1(t, q1, p

∗
1)− b1(t, x1) + b1(t, q2, p

∗
2)− b1(t, x2)

)
δ(q1 − q2).

The proof of the limit theorem for the dual BBGKY hierarchy is based
on formulas for cumulants of asymptotically perturbed groups of operators
of hard spheres.

For arbitrary finite time interval the asymptotically perturbed group
of operators of hard spheres has the following scaling limit in the sense of
the ∗-weak convergence on the space Cs:

w∗− lim
ε→0

(
Ss(t)bs −

s∏
j=1

S1(t, j)bs
)
= 0. (36)

Taking into account analogs of the Duhamel equations for cumulants of
asymptotically perturbed groups of operators, in view of formula (36) we
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have

w∗− lim
ε→0

(
ε−2n

1

n!
A1+n

(
t, {Y \X}, j1, . . . , jn

)
bs−n −

−
t∫

0

dt1 . . .

tn−1∫
0

dtn S
0
s (t− t1)

s∑
i1 = 1,
i1 6= j1

L0
int(i1, j1)Ss−1(t1 − t2) . . .

S0
s−n+1(tn−1 − tn)

s∑
in = 1,

in 6= (j1, . . . , jn)

L0
int(in, jn)S

0
s−n(tn) bs−n

)
= 0,

where we used notations accepted in formula (32) and bs−n ≡
bs−n((x1, . . . , xs) \ (xj1 , . . . , xjn)). As a result of this equality we establish
the validity of statement (31) for solution expansion (19) of the dual
BBGKY hierarchy with hard sphere collisions (15).

We consider the Boltzmann–Grad limit of a particular case of marginal
observables, namely the additive-type marginal observables. As it was
noted above in this case solution (19) of the dual BBGKY hierarchy (15)
is represented by formula (21).

If for the additive-type marginal observable B
(1),ε
1 (0) the following

condition is satisfied:

w∗− lim
ε→0

(
ε−2B

(1),ε
1 (0)− b(1)1 (0)

)
= 0,

then, according to statement (31), for additive-type marginal observable
(21) we have

w∗− lim
ε→0

(
ε−2sB(1),ε

s (t)− b(1)s (t)
)
= 0,

where the limit marginal observable b(1)s (t) is determined as a special case
of expansion (32):

b(1)s (t, x1, . . . , xs) =

t∫
0

dt1 . . .

ts−2∫
0

dts−1S
0
s (t− t1)

s∑
i1 6=j1=1

L0
int(i1, j1) (37)

×S0
s−1(t1 − t2) . . . S0

2(ts−2 − ts−1)
s∑

is−1 6= js−1 = 1,
is−1, js−1 6= (j1, . . . , js−2)

L0
int(is−1, js−1)

×S0
1(ts−1) b

(1)
1 (0, (x1, . . . , xs) \ (xj1 , . . . , xjs−1

)), s ≥ 1.
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We make several examples of the limit additive-type marginal observable
expansions (37):

b
(1)
1 (t, x1) = S1(t, 1) b

(1)
1 (0, x1),

b
(1)
2 (t, x1, x2) =

t∫
0

dt1

2∏
i=1

S1(t− t1, i)L0
int(1, 2)

2∑
j=1

S1(t1, j) b
(1)
1 (0, xj).

Thus, in the Boltzmann–Grad scaling limit the kinetic evolution of hard
spheres is described in terms of limit marginal observables (32) governed
by the dual Boltzmann hierarchy (34). Similar approach to the description
of the mean field asymptotic behavior of quantum many-particle systems
was developed in [22].

3.2 The derivation of the Boltzmann kinetic equation

We consider links of the constructed Boltzmann–Grad asymptotic
behavior of marginal observables with the nonlinear Boltzmann equation.
Furthermore, the relations between the evolution of observables and the
description of the kinetic evolution of states in terms of a one-particle
marginal distribution function are discussed.

For the additive-type marginal observables the Boltzmann–Grad
scaling limit gives an equivalent approach to the description of the kinetic
evolution of hard spheres in terms of the Cauchy problem of the Boltzmann
equation with respect to the Cauchy problem of the dual Boltzmann
hierarchy (34),(35). In case of the k-ary marginal observable a solution
of the dual Boltzmann hierarchy (34) is equivalent to the property of
the propagation of initial chaos for the k-particle marginal distribution
function in the sense of equality (23).

If b(t) ∈ Cγ and f01 ∈ L1(R3 × R3), then under the condition that:
‖f01 ‖L1(R3×R3) < γ, there exists the Boltzmann–Grad limit of mean value
functional (22) which is determined by the series

〈
b(t)
∣∣f (c)〉 = ∞∑

s=0

1

s!

∫
(R3×R3)s

dx1 . . . dxs bs(t, x1, . . . , xs)

s∏
i=1

f01 (xi).

Consequently for the limit additive-type marginal observables (37) the
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following equality is true:〈
b(1)(t)

∣∣f (c)〉 =
=

∞∑
s=0

1

s!

∫
(R3×R3)s

dx1 . . . dxs b
(1)
s (t, x1, . . . , xs)

s∏
i=1

f01 (xi) =

=

∫
R3×R3

dx1 b
(1)
1 (0, x1)f1(t, x1),

where the function b(1)s (t) is given by expansion (37) and the limit marginal
distribution function f1(t, x1) is represented by the series:

f1(t, x1) = (38)

=

∞∑
n=0

t∫
0

dt1 . . .

tn−1∫
0

dtn

∫
(R3×R3)n

dx2 . . . dxn+1S1(−t+ t1, 1)

×L0,∗
int (1, 2)

2∏
j1=1

S1(−t1 + t2, j1) . . .

n∏
in=1

S1(−tn + tn, in)

×
n∑

kn=1

L0,∗
int (kn, n+ 1)

n+1∏
jn=1

S1(−tn, jn)
n+1∏
i=1

f01 (xi).

In series (38) the operator (10) adjoint to operator (33) in the sense of
functional (22) is used.

If the function f01 is continuous, every term of series (38) exists and this
series converges uniformly on each compact almost everywhere for finite
time interval.

For t ≥ 0 limit marginal distribution function (38) is a weak solution of
the Cauchy problem of the Boltzmann kinetic equation with hard sphere
collisions:

∂

∂t
f1(t, x1) = −〈p1,

∂

∂q1
〉f1(t, x1) +

∫
R3×S2+

dp2 dη 〈η, (p1 − p2)〉 (39)

×
(
f1(t, q1, p

∗
1)f1(t, q1, p

∗
2)− f1(t, x1)f1(t, q1, p2)

)
,

f1(t, x1)|t=0 = f01 (x1), (40)
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where the momenta p∗1 and p∗2 are determined by expressions (5).
Thus, we establish that the dual Boltzmann hierarchy with hard sphere

collisions (34) for additive-type marginal observables and initial states
specified by one-particle marginal distribution function (14) describes the
evolution of a hard sphere system just as the Boltzmann kinetic equation
with hard sphere collisions (39).

3.3 On the propagation of initial chaos
We prove that within the framework of the Heisenberg picture of the
evolution of a hard sphere system a chaos property of states is fulfilled.

The property of the propagation of initial chaos is a consequence of
the validity of the following equality for the mean value functionals of the
limit k-ary marginal observables in case of k ≥ 2:〈

b(k)(t)
∣∣f (c)〉 = (41)

=

∞∑
s=0

1

s!

∫
(R3×R3)s

dx1 . . . dxs b
(k)
s (t, x1, . . . , xs)

s∏
i=1

f01 (xi)

=
1

k!

∫
(R3×R3)k

dx1 . . . dxk b
(k)
k (0, x1, . . . , xk)

k∏
i=1

f1(t, xi),

k ≥ 2,

where the limit one-particle marginal distribution function f1(t, xi) is
defined by series (38) and therefore it is governed by the Cauchy problem
of the Boltzmann kinetic equation with hard sphere collisions (39),(40).

Thus, in the Boltzmann–Grad scaling limit an equivalent approach
to the description of the kinetic evolution of hard spheres in terms of
the Cauchy problem of the Boltzmann kinetic equation (39),(40) is given
by the Cauchy problem of the dual Boltzmann hierarchy (34),(35) for
the additive-type marginal observables. In case of the k-ary marginal
observables a solution of the dual Boltzmann hierarchy (34) is equivalent
to a chaos property for the k-particle marginal distribution function in
the sense of equality (41) or in other words the Boltzmann–Grad scaling
dynamics does not create correlations.

In case of quantum many-particle systems the relationship of the
evolution of marginal observables and quantum kinetic equations was
considered in paper [22].
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4 The Boltzmann–Grad asymptotic behavior
of the generalized Enskog equation

In this section we consider an approach to the rigorous derivation of
the Boltzmann equation with hard sphere collisions from the generalized
Enskog kinetic equation.

4.1 The Boltzmann–Grad limit theorem

For a solution of the generalized Enskog kinetic equation (24) the following
Boltzmann–Grad scaling limit theorem is true [23].

Theorem 3 If the initial one-particle marginal distribution function F ε,01

is satisfied condition (29) and there exists the limit in the sense of a
weak convergence: w− limε→0(ε

2F ε,01 (x1) − f01 (x1)) = 0, then for finite
time interval there exists the Boltzmann–Grad limit of solution (28) of the
Cauchy problem of the generalized Enskog equation in the same sense:

w− lim
ε→0

(
ε2F1(t, x1)− f1(t, x1)

)
= 0, (42)

where the limit one-particle marginal distribution function is defined by
uniformly convergent on arbitrary compact set series (38).

If f01 satisfies condition (29), then for t ≥ 0 the limit one-particle
distribution function represented by series (38) is a weak solution of
the Cauchy problem of the Boltzmann kinetic equation with hard sphere
collisions (39),(40).

The proof of this theorem is based on formulas of an asymptotically
perturbed cumulants of groups of operators (7). Namely, in the sense of a
weak convergence the equality holds:

w− lim
ε→0

(
ε−2n

1

n!
A1+n(−t, 1, . . . , n+ 1)f1+n −

−
t∫

0

dt1 . . .

tn−1∫
0

dtnS1(−t+ t1, 1)L0,∗
int (1, 2)

2∏
j1=1

S1(−t1 + t2, j1) . . .

n∏
in=1

S1(−tn−1 + tn, in)

n∑
kn=1

L0,∗
int (kn, n+ 1)

n+1∏
jn=1

S1(−tn, jn)f1+n
)
= 0,
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where notations accepted in formula (38) are used.
Thus, the Boltzmann–Grad scaling limit of solution (28) of the

generalized Enskog equation is governed by the Boltzmann kinetic equation
with hard sphere collisions (39).

We note that one of the advantage of the developed approach to the
derivation of the Boltzmann equation is the possibility to construct of
the higher-order corrections to the Boltzmann–Grad evolution of many-
particle systems with hard sphere collisions.

4.2 A scaling limit of marginal functionals of the state
As we note above the all possible correlations of a hard sphere system are
described by marginal functionals of the state (26).

Taking into consideration that there exists limit (42) of a solution of
the generalized Enskog kinetic equation (24), for marginal functionals of
the state (26) the following statement holds.

Theorem 4 Under the conditions of the limit theorem for the generalized
Enskog kinetic equation for finite time interval there exists the following
Boltzmann–Grad limit of marginal functionals of the state (26) in the sense
of a weak convergence on the space of bounded functions:

w− lim
ε→0

(
ε2sFs

(
t, x1, . . . , xs | F1(t)

)
−

s∏
j=1

f1(t, xj)
)
= 0,

where the limit one-particle distribution function f1(t) is determined by
series (38).

The proof of this limit theorem is based on the formulas for
asymptotically perturbed generating evolution operators (27) of marginal
functionals of the state (26):

w− lim
ε→0

(
V1(t, {Y })fs − Ifs

)
= 0,

w− lim
ε→0

ε−2nV1+n(t, {Y }, X \ Y )fs+n = 0, n ≥ 1,

where the limits exist in the sense of a weak convergence.
Thus, the Boltzmann–Grad scaling limit of marginal functionals of the

state (26) are products of solution (38) of the Boltzmann equation with
hard sphere collisions (39) that means the propagation of initial chaos.
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4.3 Remark: a one-dimensional hard sphere system
We consider the Boltzmann–Grad asymptotic behavior of a solution of the
generalized Enskog equation in the one-dimensional space. In this case the
dimensionless collision integral IGEE has the form [24]:

IGEE =

∫ ∞
0

dP P
(
F2(t, q1, p1 − P, q1 − ε, p1 | F1(t))

−F2(t, q1, p1, q1 − ε, p1 + P | F1(t) + F2(t, q1, p1 + P, q1 + ε, p1 | F1(t))

−F2(t, q1, p1, q1 + ε, p1 − P | F1(t))
)
,

where ε > 0 is a scaling parameter (the ratio of a hard rod length σ > 0
to its mean free path).

As we can see in the Boltzmann–Grad limit the collision integral of the
generalized Enskog equation in the one-dimensional space vanishes, i.e. in
other words dynamics of a one-dimensional system of elastically interacting
hard spheres is trivial (a free molecular motion or the Knudsen flow).

We remark that in paper [25] it was established that in contrast to a
one-dimensional hard rod system with elastic collisions the Boltzmann–
Grad asymptotic behavior of inelastically interacting hard rods is not
trivial and it is governed by the Boltzmann equation for granular gases.

5 Conclusion
In the paper two new approaches to the description of the kinetic evolution
of many-particle systems with hard sphere collisions were developed. In
particular, a formalism for the description of the evolution of infinitely
many hard spheres within the framework of marginal observables in
the Boltzmann–Grad scaling limit is developed. Another approach to
the description of the kinetic evolution of hard spheres is based on the
generalized Enskog kinetic equation.

One of the advantage of such approaches is the possibility to construct
the kinetic equations in scaling limits, involving correlations at initial time
which can characterize the condensed states of a hard sphere system.

We emphasize that the approach to the derivation of the Boltzmann
equation from underlying dynamics governed by the generalized Enskog
kinetic equation enables to construct the higher-order corrections to the
Boltzmann–Grad evolution of many-particle systems with hard sphere
collisions.
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