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We give a brief overview of our results in the theory of variations for classes
of regular solutions to the degenerate Beltrami equation with constraints
of the set-theoretic and integral types for the coefficient. The variational
maximum principles and other necessary extremum conditions are formu-
lated and applications to one of the main equation of the mathematical
physics are obtained.

1. Introduction. Let D be a domain in the complex plane C. It is
well known that a K-quasiconformal mapping f : D → C, K ≥ 1, is an
orientation-preserving homeomorphic W 1,2

loc (D) solution to the Beltrami
differential equation

fz = µ(z) · fz (1.1)

when the measurable coefficient µ satisfies the uniform ellipticity condition
|µ(z)| ≤ (K−1)/(K+1) almost everywhere in D. That is why the Beltra-
mi equation turned out to be instrumental, in particular, in the study of
Riemann surfaces, Teichmüller spaces, Kleinian groups, meromorphic func-
tions, low dimensional topology, holomorphic motion, complex dynamics,
Clifford analysis and control theory.

A special place in the theory of quasiconformal mappings assigned to
the development and application of the variational method. The calculus
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of variations can be used to solve extremal problems for functionals over
given family of mappings and to determine the extremal functions or the
extremal value of the functional. Another main direction in the variation-
al theory concerns the problem of minimization of the dilatation. It is
intrinsically connected with the theory of Teichmüller spaces, measurable
foliations on surfaces, holomorphic motions, etc., see, for example, [29] and
the survey papers [27, 28]. The variational theory for quasiconformal maps
and univalent functions with quasiconformal extensions was substantial-
ly developed by Belinskii, Krushkal, Kühnau, Lavrent’ev, Lehto, Renelt,
Schiffer and Schober et al., see, e.g., [4, 5, 26, 30, 32, 37, 38, 46, 47] and
the references therein. On the other hand, one can apply the variational
theory to obtain existence and representation theorems for solutions of
some partial differential equations by constructing appropriate functionals
over a compact class of quasiconformal mappings. These equations arise
from variational procedure as a necessary condition for the extremum, see,
e.g., [45, 46] and [17, 18]. Other important approaches to the variational
theory belong to Kühnau. He developed powerful methods for solving the
variational problems in geometric function theory and its applications to
electrostatics, fluid mechanics etc., see, e.g., [27, 28, 30].

In this paper we replace the condition of uniform ellipticity |µ(z)| ≤
≤ (K−1)/(K+1) by a weaker condition |µ(z)| < 1 almost everywhere inD
and study more general classes of homeomorphic solutions to the Beltrami
equation than those of quasiconformal. The degeneracy of the ellipticity for
the Beltrami equations (1.1) will be controlled by the dilatation coefficient

Kµ(z) : =
1 + |µ(z)|
1 − |µ(z)|

∈ L1
loc . (1.2)

Recall that the problem on existence of homeomorphic solutions for
the equation (1.1) was resolved for the uniformly elliptic case long ago, see
e.g. [1, 33]. The existence problem for the degenerate Beltrami equations
(1.1) when Kµ /∈ L∞ is currently an active area of research, see e.g. the
monographs [3, 23, 36] and the surveys [22, 48], and further references
therein. A series of criteria on the existence of regular solutions for the
Beltrami equation (1.1) were given in the recent papers [6, 7]. There we
called a homeomorphism f ∈ W 1,1

loc (D) by a regular solution of (1.1) if f
satisfies (1.1) a.e. in D and the Jacobian Jf (z) = |fz|2 − |fz̄|2 ̸= 0 a.e.
in D. We see that every quasiconformal mapping is a regular solution to
the Beltrami equation. Throughout this paper we will deal with regular
solutions only.
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The main goal of this paper is to give a brief overview of our recent
results, devoted to the theory of variations for compact classes of regular
solutions to the degenerate Beltrami equation, see [14, 34, 35]. While con-
structing the variations, we follow the approach proposed in [10 — 13, 16,
19, 41]. The mentioned approach uses the convexity of the set of complex
dilatations which turns out to be the common property of compact classes
of regular solutions of the Beltrami equation. The compactness theory is
also a significant part of the variational method. The basic theorems of
existence and compactness for different classes of regular solutions to the
Betrami equation can be found in [6 — 8, 19, 22, 34 — 36, 39 — 41, 43],
see also the references therein.

This paper is organized as follows. After the introduction, we recall
the definition of the class FMO of functions with finite mean oscillation
that, in particular, contains the well-known class BMO of functions with
bounded mean oscillation introduced by John and Nirenberg [25]. New cri-
teria of compactness for some classes of regular solutions to the Beltrami
equation will be given in Section 5.1 just in terms of FMO functions. In
Section 3 we collect some facts from the theory of Sobolev spaces and the
composition operators that will be utilized for the construction of admis-
sible variations. The admissible variations for a class H of regular nor-
malized solutions f(z) to the Beltrami equation (1.1) are given in Section
4. The variational formula is applied to deduce the corresponding varia-
tional maximum principles for some compact classes of regular solutions
to the Beltrami equation with constraints on µ of the set-theoretic type,
see Section 5, as well as with constraints on µ of the integral type, see
Section 6. Some geometric properties of regular solutions to the Beltrami
equation are given in Section 7. We complete the paper with an applica-
tion of the variational method to the study of the generalized degenerate
Caushy–Riemann system.

2. Bounded and finite mean oscillation. Later on, D(z0, r) =
= {z ∈ C : |z − z0| < r}, D(r) = D(0, r), D = D(0, 1), dist (E, F ) =
= supx∈E, y∈F |x− y| is the Euclidean distance between the sets E and F
in C, mesE is the Lebesgue measure of the set E ⊂ C, dm(z) corresponds
to the Lebesgue measure in C, and dS(z) =

(
1 + |z|2

)−2
dm(z) stands for

the element of a spherical area in C.

Following [24], we say that a function φ : D → R has finite mean
oscillation at a point z0 ∈ D if
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lim
ε→0

1

|D(z0, ε)|

∫
D(z0,ε)

|φ(z) − φ̃ε(z0)| dm(z) < ∞ , (2.1)

where |D(z0, ε)| is the area of the disk D(z0, ε) and

φ̃ε(z0) =
1

|D(z0, ε)|

∫
D(z0,ε)

φ(z) dm(z) < ∞

is the mean value of the function φ(z) over the disk D(z0, ε). We say also
that a function φ : D → R is of finite mean oscillation in the domain D,
abbreviated as φ ∈ FMO(D) or simply φ ∈ FMO, if φ has a finite mean
oscillation at every point z0 ∈ D.

From the definition it follows that the well-known class BMO of func-
tions with bounded mean oscillation, introduced by John and Nirenberg
[25] is a subset of FMO. There exist examples showing that FMO is not
BMOloc, see e.g. [23]. Although FMO ⊂ L1

loc but FMO is not a subset of
Lploc for any p > 1 in comparison with BMOloc ⊂ Lploc for all p ∈ [1,∞).

The concept of finite mean oscillation can also be extended to infinity in
the standard way. Namely, given a domain D ⊆ C, ∞ ∈ D, and a function
φ : D → R. We say that φ has finite mean oscillation at ∞ if the function
φ∗(z) = φ (1/z) has finite mean oscillation at 0. Clearly, by the inverse
change of variables z → 1/z, the latter is equivalent to the condition∫

|z|≥R

|φ(z) − φ̃R|
dm(z)

|z|4
= O

(
1

R2

)
as R→ ∞ , (2.2)

where

φ̃R =
R2

π

∫
|z|≥R

φ(z)
dm(z)

|z|4
.

In terms of the spherical area, the condition (2.2) can be written in the
form

lim
r→0

1

S(Br)

∫
Br

|φ(z) − φ∗
r | dS(z) < ∞ ,

where Br is the circle with the center at ∞ and the radius r in the spherical
metric, S(Br) is the spherical area of the circle Br and

φ∗
r =

1

S(Br)

∫
Br

φ(z) dS(z) < ∞
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is the average of the function φ over the circle Br in the spherical area.
Recall also that a point z0 ∈ D ⊆ C is called a Lebesgue point of a

function φ : D → R if

lim
ε→0

1

|D(z0, ε)|

∫
D(z0,ε)

|φ(z) − φ(z0)| dm(z) = 0 . (2.3)

It is well-known that, for every locally integrable function φ : D → R, a.e.
point in D is its Lebesgue point. Similarly, a point z0 = ∞ ∈ D is called
a Lebesgue point of a function φ : D → R, D ⊆ C, if

lim
R→∞

∫
|z|≥R

|φ(z) − φ(∞)| dm(z)

|z|4
= O

(
1

R2

)
as R→ ∞ . (2.4)

In other words, the condition (2.4) is equivalent to the convergence
φ∗
r → φ(∞) as r → 0 of the averages in the spherical area.

3. Sobolev spaces and composition operators. Let D be a domain
in the n-dimensional Euclidean space Rn, n ≥ 2.We recall that the Sobolev
space L1

p(D), p ≥ 1, consists of locally integrable functions φ : D → R with
generalized derivatives and the seminorm

∥φ∥L1
p(D) = ∥ ▽ φ∥Lp(D) =

(∫
D

| ▽ φ|p dm

)1/p

<∞, (3.1)

where m is the Lebesgue measure in Rn, ▽φ is the generalized gradient
of the function φ, ▽φ =

(
∂φ
∂x1

, . . . , ∂φ∂xn

)
, x = (x1, . . . , xn), defined by the

conditions∫
D

φ
∂η

∂xi
dm = −

∫
D

∂φ

∂xi
η dm ∀ η ∈ C∞

0 (D), i = 1, 2, . . . , n. (3.2)

We denote by C∞
0 (D) the space of all infinitely smooth functions with a

compact support in D. Similarly, a vector-function is said to belong to
the Sobolev class L1

p(D) if its coordinate functions belong to L1
p(D). The

classes W 1,p(D) = L1
p(D) ∩ Lp(D) differ from the classes L1

p(D) only by
the norm ∥φ∥W 1,p(D) = ∥φ∥Lp(D) +∥▽φ∥Lp(D). The following proposition
holds (see [49, 50]).
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Lemma 3.1. Let f : D → D′, D′ ⊂ Rn, be a homeomorphism. Then
the following conditions are equivalent:

1) the composition f∗φ = φ ◦ f generates the bounded operator

f∗ : L1
p(D

′) → L1
q(D), 1 ≤ q ≤ p <∞, (3.3)

2) the mapping f belongs to the class W 1,1
loc (D), and the function

Kp(x, f) := inf
{
k(x) : ∥Df∥(x) ≤ k(x)|Jf (x)|

1
p

}
(3.4)

belongs to Lr(D), where r is determined from the equality 1
r = 1

q −
1
p .

There ∥Df∥(x) denotes the operator norm of the Jacobi matrix Df of
the mapping f at the point x, ∥Df∥(x) := sup

h∈Rn, |h|=1

Df · h.

Whence, in particular at n = 2, p = 2, and q = 1, we have

Proposition 3.1. Let f be an sense-preserving homeomorphism of the
class W 1,1

loc with Kµf
∈ L1

loc between domains D and D′ in C. Then g ◦f ∈
W 1,1

loc for any mapping g : D′ → C of the class W 1,2
loc .

As is well known, any quasiconformal mapping g in C belongs to the
class W 1,2

loc (see, e.g., Theorem IV.1.2 in [33]).

Corollary 3.1. For any sense-preserving homeomorphism f : D →
D′ of the class W 1,1

loc with Kµf
∈ L1

loc and a quasiconformal mapping
g : C→ C, the composition g ◦ f belongs to W 1,1

loc .

Quite similarly to Theorem 5.4.6 in [9], we obtain

Lemma 3.2. Let f be a homeomorphism between domains D and D′

in Rn, let the composition operator f∗ : L1
p(D

′) → L1
q(D), 1 ≤ q ≤ p <∞,

be bounded, and let f has the N−1-property. Then, for g ∈ L1
p(D

′) a.e.,

∂(g ◦ f)

∂xi
(x) =

n∑
k=1

∂g

∂yk
(f(x))

∂fk
∂xi

(x), i = 1, . . . , n. (3.5)

Combining Lemmas 3.1 and 3.2 similarly to IC(1) in [1], we have

Proposition 3.2. Let f be a regular homeomorphism between domains
D and D′ in C with Kµf

∈ L1
loc. Then, for g ∈W 1,2

loc , a.e.

(g◦f)z = (gw ◦f)fz+(gw ◦f)fz, (g◦f)z = (gw ◦f)fz+(gw ◦f)fz. (3.6)
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Corollary 3.2. In particular, formulas (3.6) hold for quasiconformal
mappings g.

4. Construction of variations. For the illustration of general varia-
tional procedure, we consider first a class H of regular solutions f : C→ C
of the Beltrami equation (1.1), normaized by f(0) = 0, f(1) = 1, f(∞) =
= ∞, when the Beltrami coefficients µ vary over a convex set M of mea-
surable functions with Kµ ∈ L1

loc . If f ∈ H, then the complex dilatation
µf (z) = fz̄(z)/fz(z) for the mapping f exists a.e. in C and this dilatation
coincides a.e. with the corresponding Beltrami coefficient µ(z).

Theorem 4.1. Let f ∈ H and have complex dilatation µ ∈ M. Then
for every ν ∈ M the mappings

fε(ζ) = f(ζ) − ε

π

∫
C

(ν(z) − µ(z))φ(f(z), f(ζ))
(
fz/fz

)
Jf (z) dm(z)+

+o(ε, ζ) ∈ H , (4.1)

for each ε ∈ [0, 1/2). Here

φ(w, w′) =
1

w − w′ ·
w′

w
· w

′ − 1

w − 1
, (4.2)

and o(ε, ζ)/ε→ 0 locally uniformly with respect to ζ ∈ C.

The proof of Theorem 4.1 is based on the theory of composition opera-
tors, given in Section 3, see in details [20] and [21], and the known theorem
on the differentiability of families of quasiconformal mappings with respect
to a parameter [1, Chapter 5].

Kernel (4.2) from the variational formula (4.1) is commonly called the
variational derivative in the class of homeomorphisms f : C→ C with the
normalizations f(0) = 0, f(1) = 1, f(∞) = ∞ (see [46]).

Remark 4.1. Variational derivatives for other normalizations can be
found, for example, in [4] and [26]. In particular, the normalization f(z) =
= z + o(1), where o(1) → 0 as z → ∞, implies variational derivative for
mappings whose characteristic is equal to zero in a neighborhood of the
infinity (see, e.g., [2]):

φ(w, w′) =
1

(w − w′)
. (4.3)
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5. On classes of mappings with constraints on µ of the set-
theoretic type. Recall that the function f : D → C is called absolutely
continuous on lines, which is written as f ∈ ACL, if, for any closed rectan-
gle R in D whose sides are parallel to the coordinate axes, f |R is absolutely
continuous on almost all linear segments in R, which are parallel to the
sides of R (see, e.g., [1]). Let Q : D → [1,∞] be a measurable function.
A sense-preserving homeomorphism f : D → C of the class ACL is called
Q(z)-quasiconformal (Q(z)-q.c.) if Kµf

(z) ≤ Q(z) a.e.
Andreian-Cazacu, Volkovyskii, Gutlyanskĭı, Ioffe, Krushkal, Kühnau,

Lehtinen, Renelt, Teichmüller, Schiffer, Schober, and others studied the
classes of Q(z)-q.c. mappings for which µ(z) ∈ ∆q(z) a.e. where

∆q(z) = {ν ∈ C : |ν| ≤ q(z)} , q(z) =
Q(z) − 1

Q(z) + 1
,

as well as the classes with additional constraints of the form F(µ(z), z) ≤ 0
a.e. where F(µ, z) : C× C→ R satisfies the Caratheodory conditions, i.e.
F(µ, ·) is measurable on C for all t ∈ [1, Q] and F(·, z) is continuous on
[1, Q] for a.e. z. Finally, one of the Schiffer–Schober statements [46] led
to the consideration of classes with constraints of the general set-theoretic
form:

µ(z) ∈M(z) ⊆ ∆q(z) a.e. (5.1)

However, this development occurred for a long time in the frame of Q-q.c.
mappings, since it was assumed that Q ∈ L∞.

Denote by MM the class of all measurable functions µ(z) satisfying
(5.1) where we do not assume that Q ∈ L∞. We also denote by H∗

M the
class of all regular solutions f : C → C of the Beltrami equation with
coefficients µ in MM , normalized by f(0) = 0, f(1) = 1, f(∞) = ∞.

A measurable function Q : C → [1,∞] is said to be exponentially
bounded in measure if there exist constants T ≥ 1, γ > 0, c > 0 such that
for all t ≥ T

mes{z ∈ C : Q(z) > t} ≤ ce−γt . (5.2)

It is known that if Q is exponentially bounded in measure, then the
corresponding class H∗

M is compact with respect to the topology of the
locally uniform convergence, see e.g. [19], Theorem 12.2.

Recall that a family of compact sets M(z) ⊆ D, z ∈ C, is called mea-
surable in the parameter z if the set E0 = {z ∈ C : M(z) ⊆ M0} is
measurable by Lebesgue for any closed set M0 ⊆ C. In the sequel we will
use the following notations
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QM (z) :=
1 + qM (z)

1 − qM (z)
, qM (z) := max

ν∈M(z)
|ν| . (5.3)

5.1. Compactness criteria for the class H∗
M . Let G be the group of

Möbius transformations of D onto itself. A set M in D is called invariant–
convex if all sets g(M), g ∈ G, are convex. In particular, such sets are
convex.

The following compactness theorems for the class H∗
M have been proven

in [35].
Theorem 5.1. Let M(z), z ∈ C, be a family of invariant–convex com-

pact sets in D measurable in the parameter z. If QM ∈ FMO(C), then the
class H∗

M is compact.
Corollary 5.1. Let M(z), z ∈ C, be a family of invariant–convex com-

pact sets in D measurable in z. If every point z0 ∈ C is a Lebesgue point
of QM , then the class H∗

M is compact.
Corollary 5.2. Let M(z), z ∈ C, be a family of invariant–convex com-

pact sets in D measurable in the parameter. If

lim
ε→0

1

|D(z0, ε)|

∫
D(z0,ε)

QM (z) dm(z) < ∞ ∀ z0 ∈ C

and
lim
r→0

1

S(Br)

∫
Br

QM (z) dS(z) <∞ at z0 = ∞ ,

then the class H∗
M is compact.

Theorem 5.2. Let M(z), z ∈ C, be a family of invariant-convex com-
pact sets in D measurable in the parameter. If

ε∫
0

dr

rqz0(r)
= ∞ ∀ z0 ∈ C , (5.4)

where ε > 0, qz0(r) is the average of the function QM (z) over the circle
|z − z0| = r, and

∞∫
δ

dR

Rq∞(R)
= ∞ at z0 = ∞ , (5.5)

where δ > 0, q∞(R) is the average of the function QM (z) over the circle
|z| = R. Then the class H∗

M is compact.
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Corollary 5.3. Let M(z), z ∈ C, be a family of invariant-convex com-
pact sets in D measurable in the parameter. If

qz0(r) = O

(
log

1

r

)
as r → 0 (5.6)

at every point z0 ∈ C and

qz0(R) = O (logR) as R→ ∞ (5.7)

at the point z0 = ∞. Then the class H∗
M is compact.

For every nondecreasing function Φ : R+ → R+, the inverse function
Φ−1 : R+ → R+ can be well defined by setting

Φ−1(τ) = inf
Φ(t)≥τ

t .

Here, inf is equal to ∞ if the set of t ∈ [0, ∞] such that Φ(t) ≥ τ is empty.

Theorem 5.3. Let M(z), z ∈ C, be a family of invariant-convex com-
pact sets in D measurable in the parameter. If∫

C

Φ (QM (z)) dS(z) <∞ , (5.8)

where Φ : [0,∞] → [0,∞] is a nondecreasing convex function such that

∞∫
δ

dτ

τ [Φ−1(τ)]
= ∞ (5.9)

for some δ > Φ(0), then the class H∗
M is compact.

Note that the condition (5.9) is not only sufficient but also necessary
for the compactness of the class H∗

M with restrictions of integral type (5.8),
see Theorem 5.1 in [42].

5.2. A variational maximum principle. The functional Ω : H → R
is called Gâteaux differentiable if

Ω(fε) = Ω(f) + εRe

∫
C

g dκ + o(ε) (5.10)



A variational method for solutions to the Beltrami equation 143

for every variation fε = f + εg + o(ε) in the class H where κ = κf is a
finite complex Borel measure (Radon measure) with a compact support
and o(ε)/ε→ 0 as ε→ 0 locally uniformly in C (see [47]). In other words,
there exists the functional L(g; f) that is continuous and linear in the first
variable and such that

Ω(fε) = Ω(f) + εReL(g; f) + o(ε) . (5.11)

We say that Ω is Gâteaux differentiable without degeneration on the
class H, if the kernel φ(w, f(ζ)) is locally integrable for any f ∈ H with
respect to the product of measures dm(w) ⊗ dκ(ζ) and

A(w) :=
1

π

∫
C

φ(w, f(ζ)) dκ(ζ) ̸= 0 for a.e. w ∈ C. (5.12)

In what follows we will assume that the functional Ω possesses the above
property. We also say that the function f ∈ H∗

M is extremal if

max
φ∈H∗

M

Ω(φ) = Ω(f).

Theorem 4.1 allows us to prove a maximum principle which states,
that under the above conditions, the complex dilatation µ of an extreme
mapping f belongs to the set of the extreme points of the convex set M .
For the illustration of this principle we specify the set M and start with
the case when M are subordinated to some set-theoretic constrains.

Theorem 5.4. Let M(z), z ∈ C, be the family of compact convex
sets in D measurable in the parameter z and such that QM ∈ L1

loc. If
f ∈ H∗

M is extremal, then its complex characteristic satisfies the inclusion
µ(z) ∈ ∂M(z) for almost all z ∈ C.

5.3. Other necessary conditions of the extremum. Given µ ∈
∈ MM , we denote by ωµ(z) a cone of admissible directions for the set
M(z) at the point µ(z), i.e., the set of all ω ∈ C, ω ̸= 0, such that
µ(z) + εω ∈M(z) for all ε ∈ [0, ε0] and some ε0 > 0 (see, e.g., [31]).

Theorem 5.5. Under the conditions of Theorem 5.4, the extremal func-
tion f satisfies the inequalities Reω B(z) ≥ 0 for a.e. z ∈ C at all ω in the
cone of admissible directions ωµ(z) where B(z) = A(f(z)) f2z and A(w) is
defined by relation (5.12).
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Corollary 5.4. If additionally there exists the tangent at every point
of ∂M(z) for a.e. z ∈ C, then n(z)B(z) ≥ 0 a.e. Here n(z) stands for the
unit vector of the internal normal to ∂M(z) at the point µ(z).

Let us consider the important partial case, when

M(z) = {κ ∈ C : |κ − c(z)| ≤ k(z)} ⊆ D

where the functions c(z) and k(z) are measurable. By the variational
maximum principle, n(z) = (c(z) − µ(z))/k(z). Moreover, the relation
from Corollary 5.4 is equivalent a.e. to the equality (c(z) − µ(z))/k(z) =
B(z)/|B(z)|, i.e., µ(z) = c(z) − k(z)B(z)/|B(z)|. Thus, we arrive at the
following statement.

Corollary 5.5. Let M(z), z ∈ C, be the family of disks given above. If

Q(z) :=
1 + k(z) + |c(z)|
1 − k(z) − |c(z)|

∈ L1
loc ,

then the extremal function f ∈ H∗
M satisfies the equation

fz = c(z)fz − k(z)
A(f(z))

|A(f(z))|
fz . (5.13)

If Q(z) ∈ L∞, we recognize the well-known necessary conditions of the
extremum for quasiconformal mappings.

6. On the classes of mappings with constraints of the integral
type. Here we consider mappings of the Sobolev class W 1, 1

loc with con-
straints of the integral type on the dilatation coefficient. Let us remark
that similar classes of quasiconformal mappings in the mean were studied
by Ahlfors, Biluta, Boyarskii, Gol’berg, Gutlyanskĭı, Kruglikov, Krushkal,
Kud’yavin, Kühnau, Perovich, Pesin, Ryazanov and others (see, e.g., ref-
erences to [36, Chapt. 12] and [19, Chapt. 21]).

Let Φ : [0,∞] → [0,∞] be a nondecreasing convex function. Then we
denote by FΦ the class of all regular solutions f : C → C of the Beltrami
equation normalized by f(0) = 0, f(1) = 1, f(∞) = ∞, with coefficients
µ such that ∫

C

Φ (Kµ(z)) dS(z) ≤ 1 . (6.1)

We also denote by MΦ the corresponding class of complex dilatations.
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Note that, under the given conditions on Φ, the function

D(τ) := Φ

(
1 + τ

1 − τ

)
, τ ∈ [0, 1], (6.2)

is convex. Therefore, the class of complex dilatations MΦ is also convex.
Finally, recall that the function Φ : [0,∞] → [0,∞] is called strictly

convex, if it is convex, nondecreasing, and lim
t→∞

Φ(t)/t = ∞.

6.1. The compactness theorem for classes FΦ. The following com-
pactness theorem for classes FΦ was obtained in [34].

Theorem 6.1. Let Φ : [0,∞] → [0,∞] be a continuous strictly convex
function such that ∞∫

δ

dτ

τΦ−1(τ)
= ∞ (6.3)

for some δ > Φ(0). Then the class FΦ is compact.
Note that the condition (6.3) is not only sufficient but also necessary

for the compactness of class FΦ with restrictions of integral type (6.1), see
Theorem 5.1 in [42].

6.2. A variational maximum principle.
Theorem 6.2. Let Φ : [0,∞] → [0,∞] be a nondecreasing convex

function with Φ(Q) ̸= 0 where Q = supΦ(t)<∞ t and let the functional
Ω : FΦ → R be Gâteaux differentiable without degeneration. Suppose that
max Ω over the class FΦ is attained for a mapping f ∈ FΦ. Then the
dilatation coefficient Kµ, µ = µf , satisfies the equality∫

C

Φ(Kµ(z)) dS(z) = 1. (6.4)

6.3. Other necessary conditions of the extremum.
Theorem 6.3. Under conditions of Theorem 6.2,

fz = −k(z)
A(f(z))

|A(f(z))|
fz (6.5)

where k(z) = (Kµ(z) − 1)/(Kµ(z) + 1) and∫
C

D(k(z)) dS(z) = 1 . (6.6)

Here A and D are given above by relations (5.12) and (6.2), respectively.
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7. On Belinskii’s conformality. Recall that a mapping f is called
conformal at a point z0 if f is differentiable at the point z0 by Darboux–
Stolz, i.e.,

f(z) − f(z0) = fz(z0)(z − z0) + fz(z0)(z − z0) + o(|z − z0|) , (7.1)

and if fz(z0) = 0, whereas fz(z0) ̸= 0, where o(|z − z0|)/|z − z0| → 0 as
z → z0.

The example w = z(1 − ln |z|) by Shabat (see [4]) shows that, for a
continuous complex dilatation µ(z), the mapping w = f(z) can be nondif-
ferentiable in the sense of Darboux–Stolz.

If the complex dilatation µ(z) is continuous at a point z0, then, as was
first established by Belinskii (see [4]), the mapping w = f(z) is differen-
tiable at z0 in the following meaning:

∆w = A(ρ)
[
∆z + µ0∆z + o(ρ)

]
, (7.2)

where µ0 = µ(z0), ρ = |∆z + µ0∆z|, A(ρ) depends only on ρ and
o(ρ)/ρ→ 0 as ρ→ 0. Here A(ρ) can have no limit as ρ→ 0. However,

lim
ρ→0

A(tρ)

A(ρ)
= 1 ∀ t > 0. (7.3)

A mapping f is said to be differentiable by Belinskii at a point z0 if
conditions (7.2)–(7.3) are satisfied with some µ0 ∈ D. In this definition,
for a discontinuous µ(z), the equality µ0 = µ(z0) in relation (7.2) does not
obligatorily hold. If µ0 = 0, one says that f is conformal by Belinskii at
the point z0 (see [15]).

The function µ(z) is called approximately continuous at a point z0 ∈ C,
if there exists a measurable set E on which µ(z) → µ(z0) as z → z0, and
z0 is a density point of E, i.e.,

lim
ε→0

mes{E ∩D(z0, ε)}
mes{D(z0, ε)}

= 1.

It will be shown below that the approximate continuity of µ remains
the sufficient condition for the differentiability of f by Belinskii with
µ0 = µ(z0).

An analog of the following theorem for quasiconformal mappings can
be found in [15].
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Theorem 7.1. Let D be a domain in C, 0 ∈ D, and let f : D → C be
a regular solution of the Beltrami equation (1.1), f(0) = 0, and let

lim sup
r→0

1

|D(r)|

∫
D(r)

Φ (Kµ(z)) dm(z) <∞ (7.4)

for a nondecreasing convex function Φ : [0,∞] → [0,∞] such that

∞∫
δ

dτ

τΦ−1(τ)
= ∞ (7.5)

for some δ > Φ(0). Then the following assertions are equivalent:

1) f is conformal by Belinskii at zero;

2) for any ζ ∈ D

lim
τ→0,
τ>0

f(τζ)

f(τ)
= ζ; (7.6)

3) for any δ ∈ (0, 1) at |z′| < δ|z| and z ∈ C∗ = C \ {0},

lim
z→0

{
f(z′)

f(z)
− z′

z

}
= 0; (7.7)

4) for any ζ ∈ D

lim
z→0,
z∈C∗

f(zζ)

f(z)
= ζ. (7.8)

In this case, the limit in (7.8) is locally uniform in ζ in D.

Corollary 7.1. In particular, the conclusions of the lemma are proper,
if ∫

D

Φ (Kµn(z)) dS(z) ≤M <∞ (7.9)

for some strictly convex function Φ : R+ → R+ with condition (7.5).

We now give the most interesting consequence of Theorem 7.1.
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Theorem 7.2. Let D be a domain in C, z0 ∈ D, f : D → C be a
regular solution of the Beltrami equation (1.1) and

lim sup
r→0

1

|D(z0, r)|

∫
D(z0, r)

Φ (Kµ(z)) dm(z) <∞ (7.10)

for a strictly convex function Φ : R+ → R+ with condition (7.5). If µ(z)
is approximately continuous at the point z0, then the mapping f is differ-
entiable by Belinskii at this point with µ0 = µ(z0).

Equality (7.7) and the triangle inequality yield

Corollary 7.2. Under the hypothesis and one of conditions 1)–4) of
Theorem 7.1 at |z′| ≤ δ|z| for any δ > 0, there exists

lim
z→0
z ∈ C∗

{
|f(z′)|
|f(z)|

− |z′|
|z|

}
= 0. (7.11)

Using this result and the Stolz theorem, we have proved the following

Theorem 7.3. Under the hypothesis and condition 1) of Theorem 7.1,

lim
z→0

ln |f(z)|
ln |z|

= 1. (7.12)

Theorems 7.2 and 7.3 yield immediately

Corollary 7.3. Under hypothesis of Theorem 7.2 with µ(z0) = 0,

lim
z→z0

ln |f(z) − f(z0)|
ln |z − z0|

= 1. (7.13)

8. On some applications. The theory of the Belinskii conformality
and differentiability developed in the last section makes possible to apply
our theory of variational method to one of the main equations of mathe-
matical physics, see [14].

Namely, let us consider in a domain D ⊂ C the equation

div(K gradu) = 0 (8.1)

which is the basic equation in the theory of stationary flows, hydrody-
namics, and magneto- and electrostatics of inhomogeneous media. It is
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convenient to interpret the coefficient K as a function of the complex
variable z = x + iy. In this case, we assume that the coefficient K is
positive and is uniformly separated from 0 that is natural from the physical
viewpoint. In addition, we can always attain that essinfK(z) ≥ 1 by an
additional normalization.

Here, we do not suppose that the coefficient K is differentiable or at
least continuous or bounded. In this case, as a (weak) solution of Eq. (8.1),
we understand a function U that possesses a locally conjugate function V
such that the couple (U, V ) has the first generalized derivatives, except
isolated singularities, and satisfies a.e. the generalized Cauchy–Riemann
system

Vx = −KUy, Vy = KUx (8.2)

in a relevant neighborhood of every point of the domain D.
It is easy to see that the system of equations (8.2) is equivalent to a

single complex Beltrami equation of the second kind

Fz = −k(z)Fz , (8.3)

where F = U + iV, z = x+ iy and

k(z) =
K(z) − 1

K(z) + 1
. (8.4)

The analog of the below presented theorem was first announced for
K ∈ L∞ under the Belinskii–Wittich–Teichmüller conditions in [16], and
then it was proved under the weaker conditions of approximate continuity
in the dissertation [41], see also the monograph [19].

Theorem 8.1. Let D be a domain in C, and let K : D → [1, ∞] be a
measurable function such that∫

D

Φ (K(z)) dS(z) <∞ (8.5)

for the strictly convex function Φ : [1, ∞] → [0, ∞] with condition (7.5).
Then, for any z0 ∈ D\{∞}, there exists a solution of Eq. (8.1) that is
representable in the form

U(z, z0) = ln |f(z) − f(z0)|−1 , (8.6)

where f is a regular solution of the equation
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fz = −k(z)
f(z) − f(z0)

f(z) − f(z0)
fz (8.7)

in C with the normalizations f(0) = 0, f(1) = 1, f(∞) = ∞. Here k(z)
is given by (8.4) in D, k(z) ≡ 0 outside of D. In this case, the solution
U(z, z0) itself is extended by continuity in C and is a harmonic function
in the additional domain C \D where we set K(z) ≡ 1.

In addition, if the function K(z) is approximately continuous at the
point z0 and satisfies the condition

lim sup
r→0

1

|D(z0, r)|

∫
D(z0, r)

Φ (K(z)) dm(z) <∞ , (8.8)

then
lim
z→z0

U(z, z0)

ln |z − z0|−1
=

1

K(z0)
. (8.9)

Remark 8.1. Analogously, if K(1/z) is approximately continuous at
0 and satisfies (8.8) there, then

lim
z→∞

U(z, ∞)

ln |z|
=

1

K(∞)
. (8.10)

Remark 8.2. We note that, by the Lebesgue theorem, condition (8.5)
yields condition (8.8) for almost all z0 ∈ D (see, e.g., Theorem IV(5.4)
in [44]). Moreover, by the Denjoy theorem, any almost everywhere finite
measurable function is almost everywhere approximately continuous (see,
e.g., Theorem IV(10.6) in [44]).

Corollary 8.1. Under condition (8.5), the solution of (8.1) with the
property (8.9) exists for almost all z0 ∈ D.

On the history of the problem for quasiconformal mappings with re-
strictions of the integral type on the Lavrent’ev characteristic, see the
papers [20, 21].
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