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Applying the theory of Mellin pseudodifferential operators with non-regular
symbols we establish Fredholm criteria and index formulas for singular
integral operators with piecewise slowly oscillating coefficients and finite
non-cyclic groups of Lipschitz shifts whose derivatives admit slowly oscil-
lating discontinuities. Such operators studied on the Lebesgue spaces are
related to boundary value problems with finite groups of shifts.

1. Introduction. Let B(X) be the Banach algebra of all bounded
linear operators acting a Banach space X, and let K(X) be the closed two-
sided ideal of all compact operators in B(X). An operator A ∈ B(X) is said
to be Fredholm, if its image is closed and the spaces kerA and kerA∗ are
finite-dimensional. In that case the number IndA = dim kerA−dim kerA∗

is referred to as the index of A (see, e.g., [1, p. 9]).
Let T = {z ∈ C : |z| = 1} be the unit circle with counter-clockwise

orientation and let G be a finite group of Lipschitz homeomorphisms of T
onto itself that have slowly oscillating (see Section 2) derivatives. By [2],
G has one of the two following forms:

G = {e, α, . . . , αn−1}, G = {e, α, . . . , αn−1, β, αβ, . . . , αn−1β}, (1)

where n ∈ N, e is the unit of G, the shift α preserves the orientation on T,
αn = e and αk ̸= e if k = 1, 2, . . . , n−1, the shift β reverses the orientation
on T and β2 = e,

αkβ = βαn−k for all k = 1, 2, . . . , n, (2)
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and (g1g2)(t) = g2[g1(t)] for all t ∈ T and all g1, g2 ∈ G.
Let 1 < p < ∞. Then the Cauchy singular integral operator ST given

for f ∈ L1(T) and almost all t ∈ Γ by

(STf)(t) := lim
ε→0

1

πi

∫
T\T(t,ε)

f(τ)

τ − t
dτ, (3)

where T(t, ε) :=
{
τ ∈ T : |τ − t| < ε

}
, is bounded on the Lebesgue space

Lp(T), where ∥f∥Lp(T) :=
( ∫

T
|f(τ)|p|dτ |

)1/p
(see, e.g., [1, Section 1.42]).

Our goal is the Fredholm study of the next boundary value problem:
Find a function Φ analytic in C \ T, represented by the Cauchy type
integral over T with a density φ ∈ Lp(T) and satisfying the boundary
condition∑

g∈G

a+g (t)Φ+[g(t)] =
∑
g∈G

a−g (t)Φ−[g(t)] + f(t) for t ∈ T, (4)

where Φ±(t) are angular boundary values of Φ on T, a±g are piecewise
slowly oscillating (see Section 2) functions in L∞(T), and f ∈ Lp(T).
By the Sokhotski–Plemelj formulas Φ± = ±P±

Tφ, with boundary value
problem (4) we can associate the equivalent singular integral operator with
shifts

B =
∑
g∈G

(a+g VgP
+
T + a−g VgP

−
T ) ∈ B(Lp(T)), (5)

where Vg are the shift operators given by Vgf = f ◦ g, P±
T = 2−1(I ± ST),

I is the identity operator and ST is the Cauchy singular integral operator
given by (3).

The Fredholm theory for the operator (5) with continuous coeffi-
cients and cyclic groups of shifts was constructed by G. S. Litvinchuk (see
[3]). The case of piecewise continuous coefficients and cyclic groups of
shifts preserving or changing orientation was studied by I. Gohberg and
N.Ya. Krupnik, N. K. Karapetiants and S.G. Samko, N. L. Vasilevski and
M.V. Shapiro (see [3, 4] and the references therein).

In the case of continuous coefficients a±g and finite non-cyclic groups
(1) of shifts, a Fredholm criterion and an index formula for the operator
(5) on the spaces Lp(Γ) with p ∈ (1,∞) and a closed Liapunov curve Γ
were obtained in [2]. The Fredholm theory for the Banach algebra gener-
ated by operators (5) with piecewise continuous coefficients on the spaces
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Lp(Γ, ρ) with power weights ρ was constructed in [5] (see also papers by
G.Yu. Vinogradova for the case Γ = R in [4]).

In the present paper we establish a Fredholm criterion and an index
formula for the operator (5) under the following conditions: the finite group
G in (1) is non-cyclic, the coefficients a±g are piecewise slowly oscillating
and admit only finite sets of discontinuities on T, the derivatives α′ and β′

are slowly oscillating on T, and the fixed points of the shifts α and δ := α◦β
are isolated discontinuity points for the derivatives α′ and δ′, respectively.
The study is based on the Fredholm theory for Mellin pseudodifferential
operators with non-regular symbols, which was constructed in [6 — 8].

The paper is organized as follows. Section 2 contains preliminaries on
slowly oscillating and piecewise slowly oscillating functions. Section 3 con-
tains necessary results on Mellin pseudodifferential operators. In Section 4
the operator B with shifts given by (5) is reduced to an equivalent matrix
operator BΓ without shifts. In Section 5 the operator BΓ is reduced to
a finite family of Mellin pseudodifferential operators, which together de-
scribe the Fredholmness of BΓ. Finally, applying the results of Section 3,
we obtain a Fredholm criterion and an index formula for the operator B
in Sections 6 and 7, respectively.

2. The C∗-algebra of PSO(T) functions. Let C(T), PC(T) and
SO(T) denote the C∗-subalgebras of L∞(T) consisting, respectively, of
all continuous functions on T, all piecewise continuous functions on T,
that is, the functions having one-sided limits at each point t ∈ T, and all
slowly oscillating functions on T, that is, the functions f that are slowly
oscillating at each point λ ∈ T:

lim
ε→0

ess sup
{
|f(z1) − f(z2)| : z1, z2 ∈ Tε(λ)

}
= 0,

where Tε(λ) := {z ∈ T : ε/2 ≤ |z − λ| ≤ ε}. Denoting by SOλ(T) the
C∗-subalgebra of L∞(T) consisting of the continuous functions on T\{λ}
that are slowly oscillating at λ ∈ T, we deduce that SO(T) is the smallest
C∗-subalgebra of L∞(T) containing all C∗-algebras SOλ(T) for λ ∈ T.

Let PSO(T) := alg (SO(T), PC(T)) be the C∗-subalgebra of L∞(T)
generated by the C∗-algebras SO(T) and PC(T).

Since C(T) ⊂ SO(T) ⊂ PSO(T), it follows from [9] that

M(SO(T)) =
∪
t∈T

Mt(SO(T)), M(PSO(T)) = M(SO(T)) × {0, 1},
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where the fibers of the maximal ideal space M(SO(T)) are given for t ∈ T
by

Mt(SO(T)) =
{
ξ ∈M(SO(T)) : ξ|C(T) = t

}
, (6)

and t(f) = f(t) for f ∈ C(T).

Theorem 1 [9, Theorem 4.6]. If ξ ∈ Mt(SO(T)) with t ∈ T and
µ ∈ {0, 1}, then the characters (ξ, µ) ∈M(PSO(T)) possess the following
properties: (ξ, µ)|SO(T) = ξ, (ξ, µ)|C(T) = t, (ξ, µ)|PC(T) = (t, µ); and
(t, 0)a = a(t − 0) and (t, 1)a = a(t + 0) are the left and right one-sided
limits of a function a ∈ PC(T) at the point t ∈ T.

Given a ∈ PSO(T), we put a(ξ+) := a(ξ, 1) and a(ξ−) := a(ξ, 0) for
all ξ ∈M(SO(T)).

By the proof of [9, Theorem 6.2], the C∗-algebra SO(T) is contained
in the C∗-algebra QC(T) of quasicontinuous functions on T, and by [10],

QC(T) := (C(T) +H∞) ∩ (C(T) +H∞) = L∞(T) ∩ VMO(T),

where the C∗-algebra H∞ consists of all functions being non-tangential
limits on T of the functions bounded and analytic on the open unit
disc, and VMO(T) is the Banach space of functions of vanishing mean
oscillation. Hence, the compactness criteria in [11], the fact SO(T) ⊂
⊂ L∞(T)∩VMO(T), and [12, Theorem 4.1 and Proposition 4.5] together
imply the following.

Theorem 2. Let 1 < p <∞.

(a) If a ∈ SO(T), then aST − STaI ∈ K(Lp(T)).

(b) If α is an orientation-preserving Lipschitz homeomorphism of T onto
itself and α′ ∈ SO(T), then VαST − STVα ∈ K(Lp(T)).

(c) If β is an orientation-reversing Lipschitz homeomorphism of T onto
itself and β′ ∈ SO(T), then VβST + STVβ ∈ K(Lp(T)).

3. Mellin pseudodifferential operators. Let a be an absolutely
continuous function of finite total variation V (a) =

∫
R
|a′(x)|dx on R. The

set V (R) of all absolutely continuous functions of finite total variation on
R becomes a Banach algebra with the norm ∥a∥V := ∥a∥L∞(R) + V (a).

Following [6, 7], let Cb(R+, V (R)) denote the Banach algebra of all
bounded continuous V (R)-valued functions on R+ = (0,∞) with the norm

∥a(·, ·)∥Cb(R+,V (R)) = sup
t∈R+

∥a(t, ·)∥V .
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As usual, let C∞
0 (R+) be the set of all infinitely differentiable functions of

compact support on R+.
Take the Lebesgue space Lp(R+, dµ) with invariant measure dµ(t) =

= dt/t on R+. The following boundedness result for Mellin pseudodiffer-
ential operators follows from [7, Theorem 6.1] (see also [6, Theorem 3.1]).

Theorem 3. If a ∈ Cb(R+, V (R)), then the Mellin pseudodifferential
operator Op(a), defined for functions f ∈ C∞

0 (R+) by the iterated integral

[Op(a)f ](t) =
1

2π

∫
R

dx

∫
R+

a(t, x)

(
t

τ

)ix
f(τ)

dτ

τ
for t ∈ R+,

extends to a bounded linear operator on the space Lp(R+, dµ) and there is
a number Cp ∈ (0,∞) depending only on p such that

∥Op(a)∥B(Lp(R+,dµ)) ≤ Cp∥a∥Cb(R+,V (R)).

Let SO(R+, V (R)) denote the Banach subalgebra of Cb(R+, V (R))
consisting of all V (R)-valued functions a on R+ that slowly oscillate at 0
and ∞, that is,

lim
r→0

cmC
r (a) = lim

r→∞
cmC

r (a) = 0,

where

cmC
r (a) = max

{∥∥a(t, ·) − a(τ, ·)
∥∥
L∞(R)

: t, τ ∈ [r, 2r]
}
.

Let E(R+, V (R)) be the Banach algebra of all V (R)-valued functions
a ∈ SO(R+, V (R)) such that

lim
|h|→0

sup
t∈R+

∥∥a(t, ·) − ah(t, ·)
∥∥
V

= 0 ,

where ah(t, x) := a(t, x+ h) for all (t, x) ∈ R+ ×R.
To study the Fredholmness of Mellin pseudodifferential operators

Op(a), we also need the Banach algebra Ẽ(R+, V (R)) consisting of all
functions a ∈ E(R+, V (R)) such that

lim
M→∞

sup
t∈R+

∫
R\[−M,M ]

∣∣∣∣∂a(t, x)

∂x

∣∣∣∣ dx = 0.
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Thus, E(R+, V (R)) and Ẽ(R+, V (R)) are Banach subalgebras of the al-
gebras SO(R+, V (R)) ⊂ Cb(R+, V (R)).

Below we need the following Fredholm criterion and index formula for
Mellin pseudodifferential operators Op(a) with symbols a ∈ Ẽ(R+, V (R)),
which were obtained in [8, Theorem 4.3] on the base of [6, Theorems 12.2
and 12.5]. Let Mt(SO(R+)) denote the fibers the maximal ideal space
M(SO(R+)) defined similarly to (6).

Theorem 4. If a ∈ Ẽ(R+, V (R)), then the Mellin pseudodifferential
operator Op(a) is Fredholm on the space Lp(R+, dµ) if and only if

a(t,±∞) ̸= 0 for all t ∈ R+, a(ξ, x) ̸= 0 for all (ξ, x) ∈ ∆ ×R, (7)

where ∆ = M0(SO(R+)) ∪M∞(SO(R+)). In the case of Fredholmness

Ind Op(a) = lim
τ→+∞

1

2π

{
arg a(t, x)

}
(t,x)∈∂Πτ

,

where Πτ = [τ−1, τ ] × R and
{

arg a(t, x)
}
(t,x)∈∂Πτ

denotes the increment
of arg a(t, x) when the point (t, x) traces the boundary ∂Πτ of Πτ counter-
clockwise.

4. Reduction to an operator BΓ without shifts. Let the group G
be of the second form in (1). Then the operator (5) takes the form

B = A+P
+
T +A−P

−
T , (8)

where A± are functional operators given by

A± :=

n−1∑
k=0

a±k V
k
α +

n−1∑
k=0

a±n+kV
k
α Vβ (9)

and a±k , a
±
n+k ∈ PSO(T) for all k = 0, 1, . . . , n− 1.

To study the operator (8), we first apply a reduction to an operator
without shifts.

Fix t0 ∈ T such that β(t0) = t0. Then the points t0, α(t0), . . . , αn−1(t0)
are pairwise distinct. In what follows we assume without loss of generality
that t0 ≺ α(t0) ≺ . . . ≺ αn−1(t0) ≺ t0. The shift δ = α ◦ β reverses the
orientation on T and maps the endpoints of the arc segment [t0, α(t0)] ⊂ T
to each other: δ(t0) = (α ◦ β)(t0) = α(t0), δ[α(t0)] = (α ◦ β)[α(t0)] = t0.
Hence the open arc (t0, α(t0)) ⊂ T contains exactly one fixed point of the
shift δ = α ◦ β. We denote this point by t1.
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Let Γ be the arc segment [t0, t1] ⊂ T,

T =
n−1∪
k=0

(
αk(Γ) ∪ (β ◦ αk)(Γ)

)
and the arcs Γ, α(Γ), . . . , αn−1(Γ), β(Γ), (β ◦ α)(Γ), . . . , (β ◦ αn−1)(Γ)
can admit pairwise intersections only at the points of the set∪n−1
k=0

{
αk(t0), αk(t1)

}
.

Let Lp2n(Γ) denote the Banach space of vector functions ψ =
{
ψk
}2n−1

k=0

where ψk ∈ Lp(Γ) and ∥ψ∥Lp
2n(Γ)

=
(∑2n−1

k=0 ∥ψk∥pLp(Γ)

)1/p
. Consider the

isomorphism

Υ : Lp(T) → Lp2n(Γ), (Υφ)(t) =
{
φk(t)

}2n−1

k=0
for t ∈ Γ, (10)

where φk(t) = φ[αk(t)] if k = 0, 1, . . . , n − 1 and φk(t) = φ[(β ◦ αk)(t)] if
k = n, n+ 1, . . . , 2n− 1. Then for every k = 0, 1, . . . , n− 1 it follows that

ΥVβΥ−1 =

[
0 In
In 0

]
I, ΥV kαΥ−1 =

[
Yk 0
0 Yn−k

]
I,

Yk =

[
0 In−k
Ik 0

]
I,

(11)

where Ik is the k × k identity matrix. Making use of (11) we immediately
obtain the following lemma.

Lemma 5. If A± are functional operators (9) and Υ is given by (10),
then ΥA±Υ−1 = A±I ∈ B(Lp2n(Γ)), where

A±(t) =

[
A±

1 (t) A±
2 (t)

A±
3 (t) A±

4 (t)

]
for t ∈ Γ,

A±
1 (t) =


a±0 (t) a±1 (t) . . . a±n−1(t)

a±n−1[α(t) a±0 [α(t)] . . . a±n−2[α(t)]
...

...
. . .

...
a±1 [αn−1(t)] a±2 [αn−1(t)] . . . a±0 [αn−1(t)]

 ,

A±
4 (t) =


a±0 [β(t)] a±n−1[β(t)] . . . a±1 [β(t)]

a±1 [β(α(t))] a±0 [β(α(t))] . . . a±2 [β(α(t))]
...

...
. . .

...
a±n−1[β(αn−1(t))] a±n−2[β(αn−1(t))] . . . a±0 [β(αn−1(t))]

 ,
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and the matrix functions A±
2 and A±

3 are obtained, respectively, from A±
1

and A±
4 by replacing a±k by a±n+k for k = 0, 1, . . . , n− 1.

If the functions α′, β′ ∈ SO(T), then for every k = 0, 1, . . . , n − 1 it
follows from Theorem 2 that

V kα STV
−k
α ≃ ST, V kα VβSTV

−1
β V −k

α ≃ −ST, (12)

where A ≃ B means that the operator A−B is compact.

Lemma 6. If α′, β′ ∈ SO(T) and δ = α ◦ β, then

ΥSTΥ−1 ≃
[
SΓ −H
H −SΓ

]
, H =



R0 0 0 . . . 0 R1

0 0 0 . . . R1 R0

0 0 0 . . . R0 0
...

...
...

. . .
...

...
0 R1 R0 . . . 0 0
R1 R0 0 . . . 0 0


, (13)

where the operators R0, R1 ∈ B(Lp(Γ)) are given for t ∈ Γ by

(
R0φ

)
(t) =

1

πi

∫
Γ

φ(τ)

τ − β(t)
dτ,

(
R1φ

)
(t) =

1

πi

∫
Γ

φ(τ)

τ − δ(t)
dτ. (14)

Proof. The operator ΥSTΥ−1 ∈ B(Lp2n(Γ)) is the operator matrix

ΥSTΥ−1 =

[
S
(1)
Γ −S(2)

Γ

S
(3)
Γ −S(4)

Γ

]
, S

(r)
Γ =

[
S
(r)
k,j

]n−1

k,j=0
(r = 1, 2, 3, 4),

where for t ∈ Γ and all k, j = 0, 1, . . . , n− 1 we have

[
S
(1)
k,jφ

]
(t) =

1

πi

∫
Γ

(αj)′(τ)

αj(τ) − αk(t)
φ(τ)dτ,

[
S
(2)
k,jφ

]
(t) =

1

πi

∫
Γ

(β ◦ αj)′(τ)

(β ◦ αj)(τ) − αk(t)
φ(τ)dτ,

[
S
(3)
k,jφ

]
(t) =

1

πi

∫
Γ

(αj)′(τ)

αj(τ) − (β ◦ αk)(t)
φ(τ)dτ,

[
S
(4)
k,jφ

]
(t) =

1

πi

∫
Γ

(β ◦ αj)′(τ)

(β ◦ αj)(τ) − (β ◦ αk)(t)
φ(τ)dτ.
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The operators S(1)
k,j and S

(4)
k,j are compact if k ̸= j, because in that case

αk(Γ) ∩ αj(Γ) = ∅ and (β ◦ αk)(Γ) ∩ (β ◦ αj)(Γ) = ∅. On the other hand,
if k = j, then we infer from (12) that

S
(1)
k,k ≃ SΓ, S

(4)
k,k ≃ SΓ.

Analogously, (β ◦ αj)(Γ) intersects αk(Γ) only if either j = n − k (here
j = 0 if k = 0) or j = n− k − 1, and then

(β ◦ αj)(Γ) ∩ αk(Γ) = {αk(t0)} if j = n− k,

(β ◦ αj)(Γ) ∩ αk(Γ) = {αk(t1)} if j = n− k − 1.

Hence the operators S(2)
k,j and S

(3)
k,j are compact if j /∈ {n − k, n − k − 1}.

On the other hand, for j = n− k and j = n− k − 1 we have the relations

S
(2)
k,n−k ≃ R0, S

(2)
k,n−k−1 ≃ R1,

S
(3)
k,n−k ≃ R0, S

(3)
k,n−k−1 ≃ R1.

(15)

Indeed, let ε > 0 be sufficiently small and let χ+
ε , χ̃−

ε , χ−
ε , χ̃+

ε be the
characteristic functions of the arc segments

γ+ε := [t0, t0e
iε] ⊂ Γ, γ̃−ε := β(γ+ε ) ⊂ T \ Γ,

γ−ε := [t1e
−iε, t1] ⊂ Γ, γ̃+ε := δ(γ−ε ) ⊂ T \ Γ,

respectively. Clearly,

S
(r)
k,n−k ≃ χ+

ε S
(r)
k,n−kχ

+
ε I, S

(r)
k,n−k−1 ≃ χ−

ε S
(r)
k,n−k−1χ

−
ε I

for r = 2, 3 and any sufficiently small ε > 0. Then, taking into account (2)
and (12), setting σ := β(t) for t ∈ γ+ε , ς := δ(t) for t ∈ γ−ε and denoting
by K compact operators in B(Lp(T)), for t ∈ T we get[
χ+
ε S

(2)
k,n−k(χ+

ε φ)
]
(t) =

χ+
ε (t)

πi

∫
Γ

(β ◦ αn−k)′(τ)χ+
ε (τ)φ(τ)

(β ◦ αn−k)(τ) − αk(t)
dτ =

=
χ̃−
ε (σ)

πi

∫
Γ

(β ◦ αn−k)′(τ)χ+
ε (τ)φ(τ) dτ

(β ◦ αn−k)(τ) − (β ◦ αn−k)(σ)
=

=
χ̃−
ε (σ)

πi

∫
Γ

χ+
ε (τ)φ(τ)

τ − σ
dτ +

[
χ+
ε K(χ+

ε φ)
]
(β−1(σ)) =

=
χ+
ε (t)

πi

∫
Γ

χ+
ε (τ)φ(τ) dτ

τ − β(t)
+
[
χ+
ε K(χ+

ε φ)
]
(t),
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χ−
ε S

(2)
k,n−k−1(χ−

ε φ)
]
(t) =

χ−
ε (t)

πi

∫
Γ

(β ◦ αn−k−1)′(τ)χ−
ε (τ)φ(τ)

(β ◦ αn−k−1)(τ) − αk(t)
dτ =

=
χ̃+
ε (ς)

πi

∫
Γ

(β ◦ αn−k−1)′(τ)χ−
ε (τ)φ(τ) dτ

(β ◦ αn−k−1)(τ) − (β ◦ αn−k−1)(ς)
=

=
χ̃+
ε (ς)

πi

∫
Γ

χ−
ε (τ)φ(τ)

τ − ς
dτ +

[
χ−
ε K(χ−

ε φ)
]
(δ−1(ς))=

=
χ−
ε (t)

πi

∫
Γ

χ−
ε (τ)φ(τ) dτ

τ − δ(t)
+
[
χ−
ε K(χ−

ε φ)
]
(t),

which proves the first two relations in (15) in view of (14). The second two
relations in (15) are proved analogously, which completes the proof.

By (8), (9) and by Lemmas 5 and 6, we obtain

Corollary 7. If B is the operator (8), then

BΓ := ΥBΥ−1 ≃ A+

[
P+
Γ −2−1H

2−1H P−
Γ

]
+ A−

[
P−
Γ +2−1H

−2−1H P+
Γ

]
=

= C+P+
Γ + C−P−

Γ + 2−1A
[

0 −H
H 0

]
, (16)

where H is given by (13), A = A+−A−, and the matrix functions C± are
given by

C+(t) =

[
A+

1 (t) A−
2 (t)

A+
3 (t) A−

4 (t)

]
, C−(t) =

[
A−

1 (t) A+
2 (t)

A−
3 (t) A+

4 (t)

]
.

Let Γ0 := Γ \ {t0, t1}. Passing from Γ to a segment [0, arg(t1/t0)] ⊂ R,
one can prove that there exists an orientation-reversing Lipschitz homeo-
morphism β̂ of Γ onto β(Γ) such that t0 is its fixed point, β̂′ ∈ SO(Γ) ∩
∩C(Γ0) and the function β′ − β̂′ is continuous at the points t0 and t1 and
has zero values there. Let χ+

Γ and χ−
Γ be the characteristic functions of Γ

and β(Γ). Then, setting σ := β̂(t) for t ∈ Γ and extending the orientation-
preserving shift ζ = β ◦ β̂−1 : β(Γ) → β(Γ) to T \ β(Γ) as the identity
shift, we infer that ζ ′ ∈ SO(T) and therefore, by Theorem 2,

χ+
Γ (t)

πi

∫
Γ

φ(τ)

τ − β(t)
dτ −

χ+
Γ (t)

πi

∫
Γ

φ(τ)

τ − β̂(t)
dτ =
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=
χ−
Γ (σ)

πi

∫
T

χ+
Γ (τ)φ(τ)

τ − (β ◦ β̂−1)(σ)
dτ −

χ−
Γ (σ)

πi

∫
T

χ+
Γ (τ)φ(τ)

τ − σ
dτ =

=
χ−
Γ (σ)

πi

∫
T

χ+
Γ (τ)ζ ′(τ)φ(τ)

ζ(τ) − ζ(σ)
dτ −

χ−
Γ (σ)

πi

∫
T

χ+
Γ (τ)φ(τ)

τ − σ
dτ =

=
[
χ+
ΓK(χ+

Γφ)
]
(t) (t ∈ Γ),

where K ∈ K(Lp(T)). Hence R0 ≃ R̂0, where

(R̂0φ)(t) =
1

πi

∫
Γ

φ(τ)

τ − β̂(t)
dτ for t ∈ Γ.

Thus, we may (and will) assume without loss of generality that the shifts β
and δ in the operators R0 and R1 given by (14) have derivatives in SOt0(Γ)
and SOt1(Γ), respectively (recall that the operators R0 and R1 have fixed
singularities only at these points).

5. Reduction to Mellin pseudodifferential operators. In what
follows we assume that all the coefficients a±k , a

±
n+k ∈ PSO(T) of the

operator B given by (8)–(9) admit only finite sets of discontinuities on T,
α′, β′ ∈ SO(T), and t0 and t1 are isolated points of SO discontinuities for
β′ and δ′ = (α ◦ β)′, respectively.

Let τ1 ≺ τ2 ≺ . . . ≺ τm−1 be the finite set of all discontinuities of the
matrix functions A± ∈ PSO(Γ) on the arc Γ0 := Γ \ {t0, t1}. Consider the
arc segments γs = [τs−1, τs] ⊂ Γ for s = 1, 2, . . . ,m, where τ0 = t0 and
τm = t1. Without loss of generality we may assume that β′ ∈ SOt0(γ1)
and (α ◦ β)′ ∈ SOt1(γm).

For every s = 0, 1, . . . ,m we introduce the operators

B0 = C(0)
+ P+

Γ + C(0)
− P−

Γ + 2−1A(0)

[
0 −H0

H0 0

]
,

Bs = C(s)
+ P+

Γ + C(s)
− P−

Γ (s = 1, 2, . . . ,m− 1),

Bm = C(m)
+ P+

Γ + C(m)
− P−

Γ + 2−1A(m)

[
0 −H1

H1 0

]
(17)

in B(Lp2n(Γ)), where

H0 =


R0 0 . . . 0 0
0 0 . . . 0 R0

0 0 . . . R0 0
...

...
. . .

...
...

0 R0 . . . 0 0

, H1 =


0 0 . . . 0 R1

0 0 . . . R1 0
...

...
. . .

...
...

0 R1 . . . 0 0
R1 0 . . . 0 0

. (18)
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Here the matrix functions C(s)
± ∈ PSO(Γ) are continuous on Γ \ {τs},

admit PSO discontinuities at the points τs, equal I2n on (Γ \ γ1) ∪ uτ0 ,
(Γ\ (γs∪γs+1))∪ (uτs−1 ∪uτs+1) and (Γ\γm)∪uτm , respectively, for s = 0,
s = 1, 2, . . . ,m−1 and s = m, where uτs ⊂ Γ are some open neighborhoods
of points τs, and

C(s−1)
± (t)C(s)

± (t) = C±(t) for all t ∈ γs (s = 1, 2, . . . ,m). (19)

For all s = 0, 1, . . . ,m the matrix functions A(s) ∈ PSO(Γ) ∩ C(Γ \ {τs})
coincide with A on uτs and equal zero matrix on Γ\γ1, Γ\ (γs∪γs+1) and
Γ \ γm, respectively, for s = 0, s = 1, 2, . . . ,m− 1 and s = m.

Under these conditions we infer that BΓ ≃
∏m
s=0Bs, where the mul-

tiples commute to within compact operators. Hence, the operator BΓ

is Fredholm on the space Lp2n(Γ) if and only if all the operators Bs
(s = 0, 1, . . . ,m) are Fredholm on this space, and

IndBΓ =
m∑
s=0

IndBs . (20)

In its turn, we may consider the operators Bs on the spaces Lp(γ1), Lp(γs∪
∪γs+1) and Lp(γm) instead of Lp(Γ) for s = 0, s = 1, 2, . . . ,m − 1 and
s = m, respectively.

For every s = 1, 2, . . . ,m we introduce the diffeomorphisms

ηs : [0, 1] → γs, x 7→ exp
{
i[arg τs−1 + θs(x)(arg τs − arg τs−1)]

}
,

η̃s : [0, 1] → γs, x 7→ exp
{
i[arg τs − θs(x)(arg τs − arg τs−1)]

}
,

(21)

where θs is a diffeomorphism of I := [0, 1] onto itself such that

θs(0) = 0, θs(1) = 1, θ′s(0) = (arg τs − arg τs−1)−1 > 0. (22)

Such θs exists. Indeed, let c := (arg τs − arg τs−1)−1 and take θs(x) =
= cx+(1− c)xµ, where µ > 1 if c ≤ 1 and 1 < µ < c/(c−1) if c > 1. Then
(22) holds and θ′s(x) = c+ µ(1 − c)xµ−1 > 0 for x ∈ I. Thus, θs : I → I is
an orientation-preserving diffeomorphism, and

η′s(0) = iτs−1, η̃′s(0) = −iτs. (23)

Further, for s = 0 and s = m we introduce the isomorphisms

Υ0 : Lp2n(γ1) → Lp2n(I), f 7→ f ◦ η1,
Υm : Lp2n(γm) → Lp2n(I), f 7→ f ◦ η̃m,
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where η1 and η̃m are given by (21). Take the diffeomorphism

η̃0 : [0, 1] → β(γ1), x 7→ exp
{
i
[

arg τ0 − θ0(x)
(

arg τ0 − arg β(τ1)
)]}

,

where θ0 is a diffeomorphism of I onto itself such that

θ0(0) = 0, θ0(1) = 1, θ′0(0) =
(

arg τ0 − arg β(τ1)
)−1

.

Then the map η : [−1, 1] → β(γ1) ∪ γ1 given by

η(x) =

{
η̃0(−x) if x ∈ [−1, 0],

η1(x) if x ∈ [0, 1],

is a diffeomorphism. Consequently, for t ∈ I we infer that(
Υ0R0Υ−1

0 φ
)
(t) =

1

πi

∫
I

η′1(τ)φ(τ)

η1(τ) − (β ◦ η1)(t)
dτ =

=
1

πi

∫
I

η′(τ)φ(τ)

η(τ) − η[−(η̃−1
0 ◦ β ◦ η1)(t)]

dτ =

=
1

πi

∫
I

φ(τ)

τ + β̃(t)
dτ + (Kφ)(t),

where K is a compact operator and β̃ = η̃−1
0 ◦ β ◦ η1 is an orientation-

preserving map of I onto itself. Thus, Υ0R0Υ−1
0 ≃ R̃0, where(

R̃0φ
)
(t) =

1

πi

∫
I

φ(τ)

τ + β̃(t)
dτ for t ∈ I, (24)

and we may assume without loss of generality that β̃′(1) = 0.
Analogously, take the diffeomorphism ηm+1 : [0, 1] → δ(γm) given by

ηm+1(x) = exp
{
i
[

arg τm + θm+1(x)
(

arg δ(τm−1) − arg τm
)]}

,

where θm+1 is a diffeomorphism of I onto itself such that

θm+1(0) = 0, θm+1(1) = 1, θ′m+1(0) =
(

arg δ(τm−1) − arg τm
)−1

.

Then the map η̂ : [−1, 1] → δ(γm) ∪ γm given by

η̂(x) =

{
ηm+1(−x) if x ∈ [−1, 0],

η̃m(x) if x ∈ [0, 1],
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is a diffeomorphism. Consequently, for t ∈ I we deduce that(
ΥmR1Υ−1

m φ
)
(t) = − 1

πi

∫
I

η̃′m(τ)φ(τ)

η̃m(τ) − (δ ◦ η̃m)(t)]
dτ =

= − 1

πi

∫
I

η̂′(τ)φ(τ)

η̂(τ) − η̂[−(η−1
m+1 ◦ δ ◦ η̃m)(t)]

dτ =

= − 1

πi

∫
I

φ(τ)

τ + δ̃(t)
dτ + (Kφ)(t),

where K is a compact operator and δ̃ = η−1
m+1 ◦ δ ◦ η̃m is an orientation-

preserving map of I onto itself. Thus, ΥmR1Υ−1
m ≃ R̃1, where(

R̃1φ
)
(t) = − 1

πi

∫
I

φ(τ)

τ + δ̃(t)
dτ for t ∈ I, (25)

where again without loss of generality we may assume that δ̃′(1) = 0.
It follows from (17), (18) that

Υ0B0Υ−1
0 ≃

(
C(0)
+ ◦ η1

)
P+
I +

(
C(0)
− ◦ η1

)
P−
I + 2−1

(
A(0) ◦ η1

) [ 0 −H̃0

H̃0 0

]
,

ΥmBmΥ−1
m ≃

(
C(m)
− ◦ η̃m

)
P+
I +

(
C(m)
+ ◦ η̃m

)
P−
I +

+ 2−1(A(m) ◦ η̃m)

[
0 −H̃1

H̃1 0

]
, (26)

where

H̃0 =


R̃0 0 . . . 0 0

0 0 . . . 0 R̃0

0 0 . . . R̃0 0
...

...
. . .

...
...

0 R̃0 . . . 0 0

, H̃1 =


0 0 . . . 0 R̃1

0 0 . . . R̃1 0
...

...
. . .

...
...

0 R̃1 . . . 0 0

R̃1 0 . . . 0 0

, (27)

and the operators R̃0, R̃1 ∈ B(Lp(I)) with fixed singularities at 0 are given
by (24) and (25), respectively.

For s = 1, 2, . . . ,m− 1, we introduce the isomorphisms

Υs : Lp2n(γs ∪ γs+1) → Lp4n(I), f 7→
{
f ◦ ηs+1

f ◦ η̃s

}
.
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Then for these s we infer from (17) that

ΥsBsΥ
−1
s ≃ diag

{
C(s)
+ ◦ ηs+1, C(s)

+ ◦ η̃s
} [P+

I 0
0 P−

I

]
+

+ diag
{
C(s)
− ◦ ηs+1, C(s)

− ◦ η̃s
} [P−

I 0
0 P+

I

]
+

+ 2−1diag
{
D(s) ◦ ηs+1, D(s) ◦ η̃s

} [ 0 T+
s

T−
s 0

]
,

where D(s) := C(s)
+ − C(s)

− , T±
s := diag

{
R̃±
s

}2n−1

k=0
, and the operators

R̃±
s ∈ B(Lp(I)) are given by

(R̃+
s φ)(t) = − 1

πi

∫
I

η̃′s(τ)φ(τ)

η̃s(τ) − ηs+1(t)
dτ,

(R̃−
s φ)(t) =

1

πi

∫
I

η′s+1(τ)φ(τ)

ηs+1(τ) − η̃s(t)
dτ.

In its turn, applying (23), we can easily obtain the relation

R̃±
s ≃ ∓RI for all s = 1, 2, . . . ,m− 1,

where

(RIφ)(t) =
1

πi

∫
I

φ(τ)

τ + t
dτ for t ∈ I.

Thus, for s = 1, 2, . . . ,m− 1,

ΥsBsΥ
−1
s ≃diag

{
C(s)
+ ◦ηs+1, C(s)

− ◦ η̃s
}
P+
I +diag

{
C(s)
− ◦ ηs+1, C(s)

+ ◦ η̃s
}
P−
I +

+ 2−1diag
{
D(s) ◦ ηs+1, D(s) ◦ η̃s

} [0 −T
T 0

]
, (28)

where T := diag
{
RI

}2n−1

k=0
.

Taking ΥsBsΥ
−1
s given for s = 0, 1, . . . ,m by (26) and (28), let

B̂s := χIΥsBsΥ
−1
s χII + (1 − χI)I ∈ B(Lpns

(R+)), (29)

where χI is the characteristic function of I, n0 = nm = 2n and ns = 4n
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for s = 1, 2, . . . ,m− 1. Hence B̂s ≃ B̃s, where

B̃0 = Ĉ(0)
+ P+

R+
+ Ĉ(0)

− P−
R+

+ 2−1Â(0)

[
0 −Hβ

Hβ 0

]
, (30)

B̃s = diag
{
Ĉ(s)
+ , C̃(s)

−
}
P+
R+

+ diag
{
Ĉ(s)
− , C̃(s)

+

}
P−
R+

+

+ 2−1diag
{
D̂(s), D̃(s)

}[0 −T̃
T̃ 0

]
(s = 1, 2, . . . ,m− 1), (31)

B̃m = C̃(m)
− P+

R+
+ C̃(m)

+ P−
R+

+ 2−1Ã(m)

[
0 −Hδ

Hδ 0

]
, (32)

the operator matrices Hβ and Hδ are given by (27) with R̃0 and R̃1 re-
placed by Rβ and Rδ, respectively,

T̃ := diag
{
R
}2n−1

k=0
, (Rφ)(t) =

1

πi

∫
R+

φ(τ)

τ + t
dτ for t ∈ R+,

(Rβφ)(t) =
1

πi

∫
R+

φ(τ)

τ + β̂(t)
dτ, (Rδφ)(t) = − 1

πi

∫
R+

φ(τ)

τ + δ̂(t)
dτ,

β̂(t) =

{
β̃(t) if t ∈ I,

1 if t ∈ R+ \ I,
δ̂(t) =

{
δ̃(t) if t ∈ I,

1 if t ∈ R+ \ I.

The matrix coefficients in (30) — (32) are defined as follows.

Â(0)(t) =
(
A(0) ◦ η1

)
(t) if t ∈ I, Â(0)(t) = 0 if t ∈ R+ \ I,

Ã(m)(t) =
(
A(m) ◦ η̃m

)
(t) if t ∈ I, Ã(m)(t) = 0 if t ∈ R+ \ I.

(33)

If s = 0, 1, . . . ,m− 1, then

Ĉ(s)
± (t)=

(
C(s)
± ◦ ηs+1

)
(t) if t ∈ I, Ĉ(s)

± (t)= I2n if t ∈ R+ \ I,

D̂(s)(t)=
(
[C(s)

+ − C(s)
− ] ◦ ηs+1

)
(t) if t ∈ I, Â(s)(t)=02n if t ∈ R+ \ I;

(34)

and if s = 1, 2, . . . ,m, then

C̃(s)
± (t)=

(
C(s)
± ◦ η̃s

)
(t) if t ∈ I, C̃(s)

± (t) = I2n if t ∈ R+ \ I,

D̃(s)(t)=
(
[C(s)

+ − C(s)
− ] ◦ η̃s

)
(t) if t ∈ I, Ã(s)(t) = 02n if t ∈ R+ \ I;

(35)

where the entries of the matrix functions Ĉ(s)
± , C̃(s)

± , D̂(s), D̃(s), Â(0), Ã(m)

belong to SO0(R+).
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Thus, applying (20), (29) and the relations B̂s ≃ B̃s, where the opera-
tors B̃s are given by (30) — (32), we arrive at the following assertion.

Lemma 8. Let the matrix coefficients C±,A ∈ PSO(Γ) of the operator
(16) admit discontinuities only at the points τ0, τ1, . . . , τm ∈ Γ, α′, β′ ∈
∈ SO(T), and let t0 and t1 be isolated discontinuity points for the deriva-
tives β′ and δ′, respectively. Then the operator BΓ given by (16) is Fred-
holm on the space Lp2n(Γ) if and only if the operators B̃0 and B̃m are Fred-
holm on the space Lp2n(R+) and the operators B̃s for all s = 1, 2, . . . ,m−1
are Fredholm on the space Lp4n(R+). In that case

IndBΓ =
m∑
s=0

Ind B̃s. (36)

Clearly, the functions ωβ and ωδ given by

ωβ(t) := ln
(
β̂(t)/t

)
, ωδ(t) := ln

(
δ̂(t)/t

)
(37)

belong to SO0(R+) along with β̂′ and δ̂′ (see, e.g. [13, Lemma 2.2]).
Consider the isometric isomorphism

Φ : Lp(R+) → Lp(R+, dµ), (Φf)(t) := t1/pf(t) (t ∈ R+).

Then (see, e.g. [13, Theorem 4.3])

ΦP±
R+

Φ−1 = Op(p±), ΦRΦ−1 = Op(r) (38)

and, by the proof of [13, Lemma 8.3],

ΦR̃βΦ−1 = Op(b), ΦR̃δΦ
−1 = Op(d), (39)

where the functions p±, r, b, d ∈ Cb(R+, V (R)) are defined for (t, x) ∈
∈ R+ ×R by

p±(t, x) = P±(x), r(t, x) = rp(x),

P±(x) :=
[
1 ± coth(πx+ πi/p)

]
/2, rp(x) = 1/ sinh(πx+ πi/p),

b(t, x) = eiωβ(t)(x+i/p)rp(x), d(t, x) = eiωδ(t)(x+i/p)rp(x),

and the functions ωβ , ωδ ∈ SO0(R+) are given by (37). Obviously, p±, r ∈
∈ Ẽ(R+, V (R)). By analogy with [13, Lemmas 7.3, 7.4] one can prove that
b, d ∈ Ẽ(R+, V (R)) as well.
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Thus, for all s = 0, 1, . . . ,m we infer from (38) and (39) that

ΦB̃sΦ
−1 = Op(Bs), (40)

where Op(B0),Op(Bm) ∈ B(Lp2n(R+, dµ)), Op(Bs) ∈ B(Lp4n(R+, dµ))
for all s = 1, 2, . . . ,m− 1, and the symbols of these operators are given for
(t, x) ∈ R+ ×R by

B0(t, x) = Ĉ(0)
+ (t)P+(x) + Ĉ(0)

− (t)P−(x) + 2−1Â(0)(t)

[
0 −Hβ(t, x)

Hβ(t, x) 0

]
,

Bs(t, x) = diag
{
Ĉ(s)
+ (t), C̃(s)

− (t)
}
P+(x) + diag

{
Ĉ(s)
− (t), C̃(s)

+ (t)
}
P−(x)+

+2−1

[
0 −D̂(s)(t)rp(x)

D̃(s)(t)rp(x) 0

]
(s = 1, 2, . . . ,m− 1), (41)

Bm(t, x) = C̃(m)
− (t)P+(x) + C̃(m)

+ (t)P−(x)+2−1Ã(m)(t)

[
0 −Hδ(t, x)

Hδ(t, x) 0

]
,

where

Hβ(t, x) =


b(t, x) 0 . . . 0 0

0 0 . . . 0 b(t, x)
0 0 . . . b(t, x) 0
...

...
. . .

...
...

0 b(t, x) . . . 0 0

 ,

Hδ(t, x) = −


0 0 . . . 0 d(t, x)
0 0 . . . d(t, x) 0
...

...
. . .

...
...

0 d(t, x) . . . 0 0
d(t, x) 0 . . . 0 0

 ,

6. A Fredholm criterion for the operator B. Consider the follow-
ing matrix functions:

Ht0(ξ+, x) =


b(ξ+, x) 0 . . . 0 0

0 0 . . . 0 b(ξ+, x)
0 0 . . . b(ξ+, x) 0
...

...
. . .

...
...

0 b(ξ+, x) . . . 0 0
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for all (ξ, x) ∈Mt0(SO(T)) ×R, and

Ht1(ξ−, x) = −


0 0 . . . 0 d(ξ−, x)
0 0 . . . d(ξ−, x) 0
...

...
. . .

...
...

0 d(ξ−, x) . . . 0 0
d(ξ−, x) 0 . . . 0 0


for all (ξ, x) ∈Mt1(SO(T)) ×R, where

b(ξ+, x) = |β′(ξ+)|ix−1/prp(x) for (ξ, x) ∈Mt0(SO(Γ)) ×R ,

d(ξ−, x) = |δ′(ξ−)|ix−1/prp(x) for (ξ, x) ∈Mt1(SO(Γ)) ×R .

By (16), Lemma 8 and (40), the operator B is Fredholm if and only if so
are the operators Op(Bs) (s = 0, 1, . . . ,m). Applying the matrix version
of Theorem 4 to the Mellin pseudodifferential operators Op(Bs) given by
(40) with matrix symbols (41) that have entries in Ẽ(R+, V (R)), we obtain
the following.

Theorem 9. Let the operator B be given by (8), (9), where the co-
efficients a±k , a

±
n+k ∈ PSO(T) (k = 0, 1, . . . , n − 1) admit only a finite

set Y of discontinuities on T, Y ∩ Γ = {τ0, τ1, . . . , τm}, α′, β′ ∈ SO(T),
and let t0 = τ0 and t1 = τm be the isolated points of discontinuities for
β′ ∈ SO(T) and δ′ ∈ SO(T), respectively. Then the operator B is Fred-
holm on the space Lp(T) if and only if the following four conditions are
fulfilled:

(i) the functions det C± are separated from zero on Γ;

(ii) for every t ∈ (t0, t1) and every (ξ, x) ∈ Mt(SO(T)) × R, the next
4n× 4n matrix is invertible:

Bt(ξ, x) := diag
{
C+(ξ+), C−(ξ−)

}
P+(x) + diag

{
C−(ξ+), C+(ξ−)

}
P−(x)+

+ 2−1

[
0 −

(
C+(ξ+) − C−(ξ+)

)
rp(x)(

C+(ξ−) − C−(ξ−)
)
rp(x) 0

]
;

(iii) for every (ξ, x) ∈Mt0(SO(T)) ×R, the 2n× 2n matrix

Bt0(ξ, x) := C+(ξ+)P+(x) + C−(ξ+)P−(x)+

+ 2−1A(ξ+)

[
0 −Ht0(ξ+, x)

Ht0(ξ+, x) 0

]
is invertible;
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(iv) for every (ξ, x) ∈Mt1(SO(T)) ×R, the 2n× 2n matrix

Bt1(ξ, x) := C−(ξ−)P+(x) + C+(ξ−)P−(x)+

+ 2−1A(ξ−)

[
0 −Ht1(ξ−, x)

Ht1(ξ−, x) 0

]
is invertible.

Proof. By definition, det Ĉ(s)
± (t) = 1 (s = 0, 1, . . . ,m − 1) and

det C̃(s)
± (t) = 1 (s = 1, 2, . . . ,m) for all t ∈ R+ \ I. Hence detBs(ξ

−, x) = 1

for all s = 0, 1, . . . ,m and all (ξ, x) ∈ M∞(SO0(R+)) × R. Then we in-
fer from Theorem 4 that the operator Op(B0) is Fredholm on the space
Lp2n(R+, dµ) if and only if

det Ĉ(0)
± (t) ̸= 0 for all t ∈ (0, 1], (42)

detB0(ξ+, x) ̸= 0 for all (ξ, x) ∈M0(SO0(R+)) ×R. (43)

Analogously, for every s = 1, 2, . . . ,m−1, the operator Op(Bs) is Fredholm
on the space Lp4n(R+, dµ) if and only if

det Ĉ(s)
± (t) ̸= 0, det C̃(s)

± (t) ̸= 0 for all t ∈ (0, 1], (44)

detBs(ξ
+, x) ̸= 0 for all (ξ, x) ∈M0(SO0(R+)) ×R . (45)

Finally, the operator Op(Bm) is Fredholm on the space Lp2n(R+, dµ) if
and only if

det C̃(m)
± (t) ̸= 0 for all t ∈ (0, 1], (46)

detBm(ξ+, x) ̸= 0 for all (ξ, x) ∈M0(SO0(R+)) ×R . (47)

Making use of definitions (33)–(35) of the matrix functions Â(0), Ã(m),
Ĉ(s)
± , C̃(s)

± , D̂(s), D̃(s) and the equalities (19), we deduce that assertion (i)
is equivalent to the fulfilment of all conditions (42), (44) and (46), if as-
sertions (43), (45) and (47) hold. On the other hand, conditions (43), (45)
and (47) are equivalent to assertions (ii) — (iv), because M0(SO0(R+)) =
= Mτs(SO(T)) and hence the matrices Bs(ξ, x) for (ξ, x) ∈
∈ M0(SO0(R+)) × R coincide with matrices Bτs(ξ, x) for (ξ, x) ∈
∈ Mτs(SO(T)) × R. Finally, if t ∈ Γ \ {τ0, τ1, . . . , τm} and (ξ, x) ∈
∈ Mt(SO(T)) × R, then detBt(ξ, x) = C+(t)C−(t), and therefore the
invertibility of the matrix Bt(ξ, x) is equivalent to the invertibility of both
matrices C±(t), which completes the proof.
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Remark. Applying results of [13, 14], one can prove that Theorem 9
remains valid for arbitrary coefficients a±k ∈ PSO(T) (k = 0, 1, . . . , 2n−1).
The arguments presented at the end of Section 4 also say that Theorem 9
is true for arbitrary α′, δ′ ∈ SO(T).

7. An index formula for the operator B. Given s = 0, 1, . . . ,m and
0 < ε0 < ε1 < 1, let l0 = [ε0, ε1], ls = [ζs(εns), ζs(εn′

s
)], where ζ0(t) = t,

ζs(t) = (η̃−1
s ◦ ηs ◦ η̃−1

s−1 ◦ ηs−1 ◦ . . . ◦ η̃−1
1 ◦ η1)(t) for s = 1, 2, . . . ,m and

t ∈ [0, 1], ns = [1 − (−1)s]/2 and n′s = [1 + (−1)s]/2.

Theorem 10. If all the conditions of Theorem 9 are fulfilled, then the
index of the Fredholm operator B acting on the space Lp(T) is calculated
by the formula

IndB = lim
ε0→0, ε1→1

1

2π

(
−

m∑
s=0

{
arg detBs

(
ζs(εns), x

)}
x∈R

+

+

m∑
s=1

{
arg det C−[ηs(t)]

}
t∈ls−1

−
m∑
s=1

{
arg det C+[ηs(t)]

}
t∈ls−1

)
. (48)

Proof. Since IndB = IndBΓ by Corollary 7 and since Ind B̃s =
= Ind Op(Bs) for every s = 0, 1, . . . ,m due to (40), we infer from (36)
that

IndB = IndBΓ =

m∑
s=0

Ind Op(Bs). (49)

Because det Ĉ(s)
± (t) = 1 (s = 0, 1, . . . ,m − 1) and det C̃(s)

± (t) = 1
(s = 1, 2, . . . ,m) for all t ∈ [1,∞), and therefore detBs(t, x) = 1 for
all s = 0, 1, . . . ,m and all (t, x) ∈ [1,∞) ×R, we deduce from Theorem 4
that the indices of the Mellin pseudodifferential operators Op(Bs) on the
space Lp(R+, dµ) for s = 0, 1, . . . ,m are calculated by the formula:

Ind Op(Bs) = lim
ε0→0, ε1→1

1

2π

{
arg detBs(t, x)

}
(t,x)∈∂(ls×R)

(50)

where
{

arg detBs(t, x)
}
(t,x)∈∂(ls×R)

denotes the increment of the function
arg detBs(t, x) when the point (t, x) traces the boundary ∂(ls×R) of ls×R
counter-clockwise. It follows from conditions (ii) — (iv) of Theorem 9 that
in (50) the functions detBs(t, ·) given by (41) are separated from zero for
all s = 0, 1, . . . ,m and all t ∈ (0, ε], where ε > 0 is sufficiently small.
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Consequently, we infer from (41) in view of (33) — (35) that

Ind Op(B0) = lim
ε0→0, ε1→1

1

2π

[{
arg det(C

(0)
− ◦ η1)(t)

}
t∈[ε0,ε1]

−

−
{

arg det(C
(0)
+ ◦ η1)(t)

}
t∈[ε0,ε1]

−
{

arg detB0(ε0, x)
}
x∈R

]
, (51)

Ind Op(Bs) = lim
ε0→0, ε1→1

1

2π

[{
arg det(C

(s)
− ◦ ηs+1)(t)

}
t∈ls

+

+
{

arg det(C
(s)
+ ◦ η̃s)(t)

}
t∈ls

−
{

arg det(C
(s)
+ ◦ ηs+1)(t)

}
t∈ls

−

−
{

arg det(C
(s)
− ◦ η̃s)(t)

}
t∈ls

−
{

arg detBs(ζs(εns), x)
}
x∈R

]
(52)

for s = 1, 2, . . . ,m− 1, and

Ind Op(Bm) = lim
ε0→0, ε1→1

1

2π

[{
arg det(C

(m)
+ ◦ η̃m)(t)

}
t∈lm

−

−
{

arg det(C
(m)
− ◦ η̃m)(t)

}
t∈lm

−
{

arg detBm(ζm(εnm), x)
}
x∈R

]
. (53)

Further, by (19), C(s−1)
± (t)C(s)

± (t) = C±(t) for t ∈ γs for all s =
= 1, 2, . . . ,m, and therefore{

arg det C(s−1)
± [ηs(t)]

}
t∈ls−1

−
{

arg det C(s)
± [η̃s(t)]

}
t∈ls

=

=
{

arg det C±[ηs(t)]
}
t∈ls−1

. (54)

Substituting (51) — (53) into (49) and applying (54), we obtain (48), which
completes the proof.
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P. 189—224.

[8] Karlovich Yu. I. An algebra of shift-invariant singular integral operators
with slowly oscillating data and its application to operators with a Carle-
man shift // Analysis, Partial Differential Equations and Applications. The
Vladimir Maz’ya Anniversary Volume. — Operator Theory: Advances and
Applications. — Basel: Birkhäuser, 2009, 193. — P. 81—95.
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[14] Böttcher A., Roch S., Silbermann B., Spitkovsky I.M. A Gohberg–
Krupnik–Sarason symbol calculus for algebras of Toeplitz, Hankel, Cauchy,
and Carleman operators // Topics in Operator Theory. Ernst D. Hellinger
Memorial Volume. — Operator Theory: Advances and Applications. —
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