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We establish universal distortion bounds for arbitrary holomorphic func-
tionals on some Teichmüller spaces and on general classes of univalent
functions in quasidisks.

1. Introductory remarks and results.
1.1. Classes of functions. Let L be an oriented quasicircle on the

Riemann sphere Ĉ = C ∪ {∞} with interior and exterior domains D and
D∗ so that D∗ contains the infinite point and D is bounded. Denote by
Σ(D∗) the collection of univalent functions on D∗ with expansions

f(z) = z + b0 + b1z
−1 +O(1/z2) near z = ∞, (1.1)

and let Σ0(D∗) be its subset, which consists of f admitting quasiconformal
extensions across L (hence to Ĉ).

Any f ∈ Σ0 is a solution to the Schwarz equation Sw := (w′′/w′)′ −
−(w′′/w′)2/2 = φ with given holomorphic φ in D∗, and to the Beltrami
equation ∂zw = µ∂zw with µ from the ball of Beltrami coefficients

Belt(D)1 = {µ ∈ L∞(C) : µ(z)|D∗ = 0, ∥µ∥∞ < 1}.

The admissible Schwarzians Sf range over a bounded domain in the com-
plex Banach space B(D∗) of holomorphic functions φ : D∗ → Ĉ with norm
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∥φ∥ = supD∗ λ−2
D∗ |φ(z)|, generated by the hyperbolic metric λD∗(z)|dz| of

curvature −4 on D∗. This domain models the universal Teichmüller space
T = T(D∗) with the base point D∗.

Both equations determine f up to a constant c, or equivalently, up to
a translation w 7→ w + b. We fix this constant by passing to

f̃(z) = f(z) − f(0), (1.2)

which means that f is normalized by (1.1) and f(0) = 0. All other admis-
sible values of b = f(0) are those for which f(z) ̸= 0 on D∗. This ensures
compactness of Σ0(D∗) in the topology of uniform convergence on closed
sets in C. For any fµ ∈ Σ0(D∗), the admissible translations are generat-
ed only by b running over the closure of the complementary domain to
f̃µ(D∗).

One can vary the functions (1.2) by

ω = Hµ(z) = w− 1

π

∫∫
f(D)

µ(ζ)g(w, ζ)dξdη+O(∥µ∥2∞) (ζ = ξ+ iη), (1.3)

where g(w, ζ) = 1/(ζ − w) − 1/ζ and the ratio O(∥µ∥2∞)/∥µ∥2∞ remains
uniformly bounded on Ĉ as ∥µ∥∞ → 0 (see, e.g. [Kr1]). A simple modi-
fication of (1.3) yields the variation for fµ with small ∥µ∥∞ and another
additional normalization, for example, f(1) = 1.

1.2. Holomorphic functionals. Consider on Σ0(D∗) a holomorphic
(continuous and Gateaux C-differentiable) functional J(f), which means
that for any f ∈ Σ0(D∗) and small t ∈ C,

J(f + th) = J(f) + tJ ′
fh+O(t2), t→ 0, (1.4)

in the topology of locally uniform convergence onD∗; here J ′
fh is a C-linear

functional.
Any J is lifted to a holomorphic function J̃(Sf ; b) on the Bers fiber

space Fib(T) over T consisting of pairs (φ, b) ⊂ B×C, where φ = Sf ∈ T
and b = f(0). By Bers’ Isomorphism Theorem [Be2], Fib(T) is biholo-
morphically equivalent to the Teichmüller space of the punctured disk
∆ \ {0}, hence, a Banach domain. Therefore, for each fixed b (or equiv-
alently, b0 in (1.1)), the functional J is lifted to a holomorphic function
J̃b(Sf ) = J̃(Sf ; b) on the space T(D∗) and to a holomorphic function
Jb(f

µ) on the ball Belt(D)1 related by Ĵb(·) = J̃b ◦ ϕT(·) where ϕT is the
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canonical factorizing projection Belt(D)1 → T(D∗) (see, e.g., [Be2], [GL],
[Kr1]).

Using the well-known representation of J by a complex Borel mea-
sure on C, one extends this functional to all holomorphic functions on D∗

(cf. [Sch]). In particular, the value Jid(g(id, z)) of J on the identity map
id(z) = z is well defined.

We assume that the functional derivative

ψ0(z) = J ′
id(g(id, z)) (1.5)

is a meromorphic function on C without singularities in D, and ψ0 belongs
to the space A1(D) of integrable holomorphic functions on D. Put

∥J ′
id∥ =

1

π

∫∫
D

|J ′
id(g(id, z))| dxdy. (1.6)

All this holds, for example, for the general distortion functionals of the
form

J(f) :=J(f(z1), f ′(z1), . . . ,f (α1)(z1); . . . ; f(zp), f
′(zp), . . . ,f

(αp)(zp)) (1.7)

where zj are distinguished distinct points in D∗ with prescribed orders αj
(with Ĵ(0) = 0, Ĵ ′(0) ̸= 0). Another important example is given by

J(f) = g(Sf ),

where g is a holomorphic function T(D∗) → C.

1.3. Main theorems. The purpose of this paper is to establish some
universal distortion estimates for arbitrary holomorphic functionals J .

Theorem 1.1. Any functional (1.4) with Ĵ(0) = 0, Ĵ ′(0) ̸= 0 is
estimated for all 0 < k < 1 from below by

max
∥µ∥∞≤k

|J(fµ)| ≥ ∥J ′
id∥k. (1.8)

This lower bound is sharp and it is attained for small k.

Theorem 1.2. For each holomorphic functional J on Σ0(D∗) with
J(id) = 0 and holomorphic integrable derivative J ′

id(g(id, ·)), there ex-
ists a holomorphic J0 : Σ0(D∗) → C with J0(id) = 0, Ĵ ′

0,id(g(id, ·)) =

= Ĵ ′
id(g(id, ·)) = ψ0, which satisfies

sup
Σ0(D∗)

|J0(f)| = ∥J ′
id∥. (1.9)
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The equality (1.9) means that the corresponding function J̃0(Sf )/∥J ′
id∥ in

the Teichmüller space T(D) is maximizing for the Carathéodory distance
between any two points of the disk

∆(J ′
id) = {ϕT(t|J ′

id(g(id, ·))|/J ′
id)(g(id, ·))} ⊂ T(D),

and this distance coincides with the Teichmüller–Kobayashi distance.

This theorem sheds light on the intrinsic connection between the ex-
tremals of many holomorphic functionals in geometric function theory and
extremal functions for invariant distances in the universal Teichmüller
space.

1.4. Remarks.
1. One can replace in Theorem 1.1 the assumption f(z) ̸= 0 in D∗,

for example, by f(1) = 1 (generically in the Carathéodory sense); then in
(1.3), g(w, ζ) = 1/(ζ − w) − 1/(ζ − 1).

2. The proof of both theorems is geometric and relies on the properties
of subharmonic functions of negative Gaussian curvature considered on
the Teichmüller geodesic disks in the universal Teichmüller space.

Other holomorphic disks intrinsically connected with univalent func-
tions are their homotopy disks, applied, for example, in [Kr4].

3. There have been many investigations addressed to distortion es-
timates for univalent functions with quasiconformal extensions (see, e.g.,
[GR], [Kr1], [KK], [Ku1], [Ku2], [Le], [Sc], [Sh]). All of those were con-
cerned with much more specific functionals and involved completely dif-
ferent methods.

Rather complete distortion theory is now bilt up for quasiconformal
maps with sufficiently small dilatations fow which many variational prob-
lems have been solved explicitly (see [Kr3], [Kr5]). Theorems 1.1 and 1.2
complete these results.

Creating a general distortion theory for univalent functions with k-
quasiconformal extensions for generic k < 1 still remains a very complicate
open problem.

The problem to get a general distortion theory for univalent functions
with quasiconformal extensions for generic k < 1 still remains open.

4. In the case of the disk ∆∗ := {z ∈ Ĉ : |z| > 1}, we get the
well-known class Σ = Σ(∆∗) of univalent Ĉ-holomorphic functions with
expansions (1.1) on ∆∗. For any f ∈ Σ, there is a sharp estimate |b1| ≤
≤ k(f), with equality only for f(z) = z + b0 + b1z

−1 (see, e.g., [Ku1]).
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Thus (1.8) implies the following corollary to Theorem 1.1 which is useful
for investigation of functionals with ∥J ′

id∥ = 1.

Corollary 1.3. For all holomorphic functionals J on Σ∗ with J(id) =
= 0, J ′

id ̸= 0,
max

∥µ∥∞≤κ
|J(fµ)| ≥ ∥J ′

id∥ |b1(fµ)| .

2. Proof of Theorem 1.1.
The proof is based on three lemmas. The first one relates to a general-

ization of the Gaussian curvature due to Royden (cf. [Ah], [He], [Ro]).
As is well known, the curvature of a C2-smooth metric λ > 0 is defined

by κλ = −(∆ log λ)/λ2, where ∆ means the Laplacian 4∂∂.
A subharmonic metric λ in a domain G on C (or on a Riemann surface)

has curvature at most K in the potential sense at a point z0 if there is
a disk U about z0 in which the function log λ + K PotU (λ2), where PotU
denotes the logarithmic potential

PotU h =
1

2π

∫∫
U

h(ζ) log |ζ − z|dξdη (ζ = ξ + iη), (2.1)

is subharmonic. Since the Laplacian ∆PotU h = h (in the sense of dis-
tributions), one can replace U by any open subset V ⊂ U , because the
function PotU (λ2) − PotV (λ2) is harmonic on U . It is equivalent that the
corresponding inequality

∆ log λ ≥ −Kλ2 (2.2)

holds in the sense of distributions. This property is invariant under con-
formal maps.

We shall use Royden’s lemma, estimating from below the circularly
symmetric (radial) metrics satisfying (2.2).

Lemma 2.1 [Ro]. If a circularly symmetric conformal metric λ(|z|)|dz|
in the unit disk has curvature at most −4 in the potential sense, then

λ(r) ≥ a

1 − a2r2
, (2.3)

where a = λ(0).
The right hand-side of (2.3) defines a supporting conformal metric for

λ at the origin with constant Gaussian curvature −4 on the whole disk ∆.
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Now consider the hyperbolic metric of the unit disk ds = λ∆(ζ)|dζ| of
curvature −4, with λ∆(ζ) = 1/(1 − |ζ|2).

For a given sequence of holomorphic functionals {Jm(φ)} on the space
T with |Jm(φ)| < 1 and a holomorphic map h : ∆ → T, define on the
holomorphic disk h(∆) by pulling back λ∆ the conformal metrics

λm(t) = (Jm ◦ h)∗λ∆ =
|(Jm ◦ h)′(t)|

1 − |(Jm ◦ h)(t)|2
, (2.4)

whose Gaussian curvature equals −4 at all noncritical points. Consider the
upper envelopes of these quantities

J (φ) = sup
m

|Jm(φ)|

and
λJ (t) = sup

m
λm(t) (2.5)

followed by their upper regularization u∗(t) = lim sup
t′→t

u(t′).

The enveloping metric (2.5) is subharmonic and also has curvature at
most −4 in the potential sense on ∆ (cf. [Kr2], [Ro]). It can be regarded
as the infinitesimal form of J .

Note that the function J is contionuos. Indeed, for any fixed m, the
function Jm(φ) − Jm(φ0) a holomorphic map of the ball

{φ ∈ T : ∥φ− φ0∥B < d}, d = dist(φ0, ∂T)

into the disk {|w| < 2}. Hence, by Schwarz’s lemma,

|Jm(φ) − Jm(φ0)| ≤ 2

d
∥φ− φ0∥,

and
||hx(φ)| − |hx(φ0)|| ≤ |hx(φ) − hx(φ0)| ≤ 2

d
∥φ− φ0∥,

which easily yieds that J (φ) satisfies locally the same estimate.
Since J (φ) admits the mean value inequality property, it is a plurisub-

harmonic function on T. Its resriction to any holomorphic disk h(∆) in T
is subharmonic. In particular, the enveloping functional J and its metric
λJ are subharmonic on Teichmüller disks

∆(ψ0) = {t|ψ0|/ψ0 : |t| < 1} ⊂ Belt(∆)1.
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In addition, we have

Lemma 2.2. For any sequence Jm with lim sup
m→∞

|Jm(φ)| < 1, the limit

functional
J (φ) = lim sup

m→∞
|Jm(φ)|

is reconstructed on Teichmüller disks ∆(ψ0) from its metric λJ , defined
similar to (2.5), by

tanh−1[J (F r|ψ0|/ψ0)] =

r∫
0

λJ (t)dt, 0 < r < 1. (2.6)

More special lemmas on the reconstruction of the enveloping functional
by its infinitesimal metric were applied in [Kr2], [Kr4].

Proof. Fix r ∈ (0, 1). Then for any appropriate Jm, we have the equal-
ities

tanh−1[Jm(r)] =

Jm(r)∫
0

|dt|
1 − |t|2

=

r∫
0

λJm(t)|dt|,

and, taking a monotone increasing subsequence

λ1 = λJm1
, λ2 = max(λJm1

, λJm2
), λ3 = max(λJm1

, λJm2
, λJm3

), . . .

so that lim
p→∞

λp(t) = supm λJm(t) = lim sup
m→∞

λJm(t),

tanh−1[J (fr|ψ0|/ψ0)] = sup
m

r∫
0

λJm(t)|dt| =

r∫
0

sup
m
λJm(t)|dt|. (2.7)

For any fixed p,
r∫

0

λp(t)|dt| < tanh−1[J (fr|ψ0|/ψ0)],

thus (2.7) yields
r∫

0

λJ (t)dt ≤ tanh−1[J (fr|ψ0|/ψ0)].
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The inverse inequality follows in a similar way. This implies the desired
equality (2.6), completing the proof of the lemma.

We proceed to the proof of the theorem and select on the boundary
quasicircle L a dense subset

e = {z1, z2, . . . , zm, . . . },

getting a sequence of holomorphic maps

Jm(t) = J̃(Sftµ0 , f(zm)) : ∆ → ∆, m = 1, 2, . . .

with µ0 = |ψ0|/ψ0. Using these functions, we define J (t) = supm |Jm(t)|
and the corresponding subharmonic conformal metrics (2.5) of the curva-
ture −4 at noncritical points.

Similarly to above, the envelope metric λJ (t) = supm λm(t) is subhar-
monic on ∆ and, due to [Kr3], its curvature is at most −4 in the potential
sence. Lemma 2.2 yields that J is the integrated form of this metric along
the radii in a Teichmüller geodesic disk:

tanh−1[J (f t|ψ0|/ψ0)] =

|t|∫
0

λJ (reiθ)dr, θ = arg t. (2.8)

Now we make use of circular averaging

Mu(r) =
1

2π

2π∫
0

u(reiθ)dθ.

This mean is well defined for any measurable real-valued function u on the
disk, locally bounded from above, and inherits certain important properties
of its original function. For example, if u is subharmonic on ∆, then so
is Mu. Moreover, in this case Mu(r) is convex with respect to log r. By
Jensen’s inequality, for any convex function ω on a real interval containing
the values of both u and Mu, we have the inequality ω(Mu) ≤ Mω(u).
We also have

Lemma 2.3 [Ro]. Let λ|dz| be a conformal metric on the unit disk
which has curvature at most −4 in the potential sense. Then the metric
λ̃ = eMu, where u = log λ, also has curvature at most −4 in the potential
sense.



Bounds for holomorphic functionals on Teichmüller spaces ... 215

Letting in (2.8) |t| = κ and averaging both sides, we get

κ∫
0

MλJ (r)dr =
1

2π

κ∫
0

2π∫
0

λJ (reiθ)dθdr = M tanh−1[J (f t|ψ0|/ψ0)] ≥

≥ tanh−1[MJ (f t|ψ0|/ψ0)] .

On the other hand, by Lemmas 2.1 and 2.3,
κ∫

0

MλJ (r)dr ≥
κ∫

0

adr

1 − a2r2
= tanh−1(aκ),

while from (1.2) and definition of λJ ,

a = MλJ (0) = λJ (0) = ∥J ′
id∥.

These relations result in (1.8). The sharpness of this bound follows from

Proposition 2.4 [Kr5]. For any holomorphic functional J on Σ0(D∗)
whose range domain has more than two boundary points, there exists a
number k0(J) > 0 such that the values of J on the ball

Belt(D)k = {µ ∈ Belt(D)1 : ∥µ∥∞ ≤ k}

for all k ≤ k0(J) are located in the closed disk ∆(J(id),Mk) centered at
the point J(id) and with radius

Mk(F ) = max
|t|=k

|J(f t|ψ0|/ψ0) − J(id)|.

The boundary points of this disk correspond to µ = t|ψ0|/ψ0 with |t| = k.
This completes the proof of the theorem.

3. Proof of Theorem 1.2.
Let V be a domain in a complex Banach space endowed with a pseudo-

distance ρ. A holomorphic map h : ∆ → V is called a complex ρ-
geodesic if there exist t1 ̸= t2 in ∆ such that

d∆(t1, t2) = ρ(h(t1), h(t2));

one says also that the points h(t1) and h(t2) can be joined by a complex
ρ-geodesic (see [Ve])).
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If h is a complex cV -geodesic then it is also dV -geodesic and the above
equality holds for all points t1, t2 ∈ ∆, so h(∆) is a holomorphic disk in
V hyperbolically isometric to ∆.

Certain sufficient conditions ensuring the existence of complex geodesics
have been given in [Di], [DTV] for convex Banach domains. The main un-
derlying properties are the equality of invariant metrics and weak∗ com-
pactness. Theorem 1.1 allows us to apply the same arguments.

Recall that a Banach space X is called the dual of a Banach space Y if
X = Y ′, that is, X is the space of bounded linear functionals x(y) = ⟨x, y⟩
on Y ; then Y is called the predual ofX. The weak∗ topology σ(X,Y ) on
X determined by Y is the topology of pointwise convergence on points of
Y , i.e., xn ∈ X → x ∈ X in σ(X,Y ) as n→ ∞ if and only if xn(y) → x(y)
for all y ∈ Y .

If X has a predual Y then, by the Alaoglu–Bourbaki theorem, the
closure X1 of its open unit ball is weakly∗ compact.

We model T(D) as a bounded domain D in the corresponding Ba-
nach space B(D∗) and note that this space is dual to the space A1(D∗)
of integrable holomorphic functions on D∗ (satisfying f(z) = O(z−4) as
z → ∞ (see, e.g. [Be1]). As was mentioned above, by the Alaoglu-Boubaki
theorem the weak∗-closure of D in σ(B(Γ), A1(Γ)) is compact.

Now let φ1 and φ2 be distinct points in D. By Theorem 1.1,

dD(φ1, φ2) = cD(φ1, φ2) = inf{d∆(h−1(φ1), h−1(φ2)) : h ∈ Hol(∆,D)};

hence there exist sequences {hn} ⊂ Hol(∆,D) and {rn}, 0 < rn < 1,
such that hn(0) = φ1 and hn(rn) = φ2 for all n, lim

n→∞
rn = r < 1 and

cT(φ1, φ2) = d∆(0, r). Let hn(t) =
∞∑
m=0

an,mt
m for all t ∈ ∆ and n.

Take a ball B(0, R) = {φ ∈ B(Γ) : ∥φ∥ < R} containing D. For any
φ ∈ B(0, R), the Cauchy inequalities imply ∥an,m∥B ≤ R for all n and m.
Passing, if needed, to a subsequence of {hn}, one can suppose that for a
fixed m, the sequence an,m is weakly∗ convergent to am ∈ B(Γ) as n→ ∞,
that is

lim
n→∞

⟨an,m, ψ⟩∆ = ⟨am, ψ⟩∆ for any ψ ∈ A1.

Hence h(t) =
∞∑
m=0

amt
m defines a holomorphic function from ∆ into B(Γ).

Since an,0 = φ1 for all n, we have h(0) = φ1.
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Now, let α, 0 < α < 1, and ε > 0 be given. Choose m0 so that

r
∞∑

m=m0

αm < ε.

If ψ ∈ A1(Γ), ∥ψ∥ = 1, then

sup
|t|≤α

|⟨hn(t) − h(t), ψ⟩∆| ≤
m0−1∑
m=1

|⟨an,m − am, ψ⟩∆| + 2r

∞∑
m=m0

αm

for all n, which implies that hn is convergent to h in σ(B(Γ), A1(Γ))
uniformly on compact subsets of ∆∗ as n → ∞. Since the closure D is
σ(B(Γ), A1(Γ)) compact, h(∆) ⊂ D. Using that h is holomorphic and
h(0) ∈ D, one concludes that h(∆) ⊂ D. For r < r′ < 1,

ω2 = hn(rn) =
1

2πi

∫
|t|=r′

hn(t)dt

t− rn
→ 1

2πi

∫
|t|=r′

h(t)dt

t− r
= h(r)

as n→ ∞. Hence,

d∆(0, r) = dD(φ1, φ2) = cD(h(0), h(r)),

and h is simultaneously complex dD and cD geodesics.
In a similar way, one obtains that there exists a holomorphic map

h : ∆ → D such that for any two points t1, t2 ∈ ∆,

d∆(t1, t2) = dD(h(t1), h(t2)) = cD(h(t1), h(t2)),

and that for any point ψ ∈ T(D) and any nonzero tangent vector v at this
point, there exists at least one complex geodesic h∗ : ∆ → T(D) such
that h(0) = ψ and h′(0) is colinear to v.

Since both metrics dT and cT of the space T(D) are equal to its Te-
ichmüller metric, the above complex geodesic maps h and g define the
corresponding extremal disks h(∆) and g(∆) in this space.

4. Additional remarks.
4.1. Univalent functions in bounded domains. In a similar way,

one can consider holomorphic functionals on the class S0(D) of univalent

functions in a bounded quasidisk D with expansions F (z) = z +
∞∑
2
anz

n

near the origin z = 0 ∈ D with quasiconformal extensions to D∗.
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Their inversions fF (z) = 1/F (1/z) are univalent and do not vanish in
D′ = {z : 1/z ∈ D}, and one derives from Theorem 1.1 a similar result
for S0(D).

4.2. Generalization. Both theorems can be extended to more general
functionals J(f) whose derivative (1.4) has a finite number of simple poles
in the domain D, where the maps are quasiconformal. Accordingly, instead
of (1.6), one can estimate the functionals of the form

J(f) = J(f(a1), f(a2), . . . , f(am); f(z1), f ′(z1), . . . , f (α1)(z1); . . . ;

f(zp), f
′(zp), . . . , f

(αp)(zp)) ,

where a1, a2, . . . , am are distinct fixed points in D, and z1, z2, . . . , zp are
distinct fixed points in D∗ with assigned orders α1, α2, . . . , αp, respec-
tively.

This involve the invariant metrics on Teichmüller spaces of the punc-
tured quasidisks D \ {a1, a2, . . . , am}. The details will be presented else-
where.
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[Ku1] Kühnau R. Verzerrungssätze und Koeffizientenbedingungen vom Grun-
skyschen Typ für quasikonforme Abbildungen // Math. Nachr. — 1971. —
48. — P. 77—105.
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