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For a given rectangular electric conductor we are looking for a cutting-up
under some side conditions such that the enlargement of the resistance is
minimal. There is a connection with conformal mapping theory.

1. The Problem. We take a metallic plate R in the form of a rectangle
in the complex z-plane, with a constant thickness. We consider the electric
resistance in the case of the flow from one side s1 of R to the opposite side
s2, assuming at the whole s1 and at the whole s2, resp., a constant voltage.
Apart from a physical constant and the thickness of R, this resistance is
the quotient of the lengths of R (distance of s1 and s2 divided by the
length of s1 and s2). If we make a cut in R from s1 to s2 then in general
this resistance will increase. Only in the case of a cut along a segment
orthogonal to s1 and s2, the resistance will be unchanged.

Now we mark in the interior of s1 a point z1 and in the interior of s2 a
point z2. Then we have the

Physical Problem: For which cut from z1 to z2 the resistance is as small
as possible ?

Of course, with such cuts from z1 to z2, it is possible to get an arbitrary
great resistance.

We can transform this physical problem into a problem of conformal
mapping. Then it will become obvious that the problem in the original
form in general has no solution. Namely, there is no cut for which the
resistance assumes the infimum of the possible values.

c⃝ R. Kühnau, 2013
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To state our problem more precisely, we define R as the rectangle

R : 0 ≤ x ≤ a, 0 ≤ y ≤ b (a > 0, b > 0) (1)

in the complex plane z = x+ iy, further

s1 : 0 ≤ x ≤ a, y = 0; s2 : 0 ≤ x ≤ a, y = b . (2)

For the marked points z1 and z2, we can assume

0 < Re z1 (= z1) < Re z2 < a (with Im z2 = b). (3)

For the following, c.f. Fig. 1.
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Fig.1: rectangle R in the z-plane
with the extremal decomposition Fig.2: 8-gon in the ζ-plane
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Now let V1 and V2 be two disjoint topological quadrilaterals (simply-
connected domains with 4 marked boundary points and 2 marked opposite
sides), contained in the interior of R. Let one of the opposite sides of V1

be situated on the segment 0 ≤ x ≤ Re z1, y = 0, the other side on
s2. Furthermore, let one of the opposite sides of V2 be situated on the
segment Re z2 ≤ x ≤ a, y = b, the other side on s1. The conformal
module of, e.g., V1 is defined by a schlicht conformal mapping of V1 onto
a rectangle, such that the opposite sides of V1 transform onto opposite
sides of the rectangle. Then the module V1 is the length of these opposite
sides divided by the length of the other sides (c.f., e.g., [Ku6]).

By Grötzsch’s Principle (c.f. [Go], [Ku6]), we have

module V1 +module V2 ≤ a

b
(4)
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in the class of all such admissible pairs V1,V2. Because of Re z1 < Re z2
(c.f. (3)), we never have equality in (4). Therefore, there arises the problem
to determine

sup (module V1 +module V2). (5)

The connection with the physical problem of the beginning is obvious
because, e.g., the module V1 is (apart from a physical constant) the recip-
rocal resistance of V1 (between the sides on s1 and s2). Of course, we can
state problem (5) also as an extremal length problem for curve families in
R.

Problem (5) is slightly more general than the physical problem because
we require only that, e.g., the second side of V1 is situated on s2 and not
strongly on the segment 0 ≤ x ≤ Re z2, y = b. The proof covers also this
more general configuration.

Obviously, our problem is a special case in the great field of confor-
mal geometry of non-overlapping domains. That means extremal problems
for functionals in which conformal moduli of non-overlapping domains,
e.g., quadrilaterals or ring-domains are involved. The starting point for
this great field was the work of H. Grötzsch, whose “strip-method” always
works with non-overlapping domains. Then this direction was continued
by O. Teichmüller (c.f., e.g., [Te], §4), and later in a systematic manner
by U. Pirl [Pi1,2], J. A. Jenkins [Je] and K. Strebel (c.f. [St], Chapter
VI). A new method was given by H. Renelt [Re]; c.f. there also additional
references.

As always in this type of problems, the solution of problem (5) contains
a quadratic differential, although in our case only hiddenly.

By the way, we remark also that related to this direction there is a
lot of papers in which extremal problems with non-overlapping, mainly
simply-connected domains were discussed; c.f., e.g., the surveys [Le], [BBZ]
(preferable references in Russian and Ukrainian). In [Ku3] it was remarked
that in principle extremal problems of this type can be considered (without
clearing the question of equality in the obtained inequalities) also as a limit
case for mappings of only one domain.

The aim of this paper is now only to show that in our special case a
more concrete discussion is possible. Namely, we give an explicit formula
for the solution by means of elliptic functions, and obtain a geometric
property of V1 and V2 in the extremal case. It is useful and impressive to
observe again the great strength and depth of the general results in [Pi1,2],
[Je], [St], [Re] and now to discuss an example in detail and “to the end”.
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The following discussions are also possible in the more general case of
a linear combination of module V1 and module V2 instead of (5), or in
the more general case of more than one cuts to decompose R. It is also
possible to study the limit case in which the rectangle degenerates into a
strip. But for simplicity, we will restrict ourselves to the case (5) which is
simple but not too simple.

Perhaps, from the physical point of view, the Theorem 1 is in some
sense surprising. But with the knowledge of Geometric Function Theory,
it is clear that we will obtain a description of the solution with a quadratic
differential which has a simple pole at z1 and z2 and further somewhere
two simple zeros. Indeed, these facts are hiddenly included in Theorem 1.

2. The solution.
Theorem 1. The problem (5) has exactly one solution, namely a pair

of admissible quadrilaterals V∗
1,V

∗
2 with

module V1 +module V2 ≤ module V∗
1 +module V∗

2 (6)

for all admissible pairs V1, V2. For this extremal pair we have the following
properties.

a) There exists (under our general assumption (3)) a point z∗1 with

Im z∗1 = 0, z1 < Re z∗1 = z∗1 < a, (7)

moreover a point z∗2 with

Im z∗2 = b, 0 < Re z∗2 < Re z2, (8)

and a closed analytic arc C with the endpoints z∗1 and z∗2 , contained (apart
from these endpoints) in the interior of R, such that one pair of the opposite
sides of V∗

1 consists in

the segment (0, z1) and the segment (ib, z∗2)

while the other pair is

the segment (0, ib) and C ∪ segment (z1, z
∗
1).

The situation in the case of V∗
2 is analogous; c.f. Fig. 1.

b) At the endpoint z∗1 of C the angle between C and the positive direction
of the real axis equals π

3 while − 2π
3 at the other endpoint z∗2 .
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c) If we go on C from z∗1 to z∗2 then both Re z and Im z are increasing,
especially

Re z∗1 < Re z∗2 . (9)

d) With the Weierstraß σ-function corresponding to the periods 2ω =
= 2a and 2ω′ = 2ib (c.f. [TK]), the function

ζ = f(z) =

∫ √
σ(z − z∗1)σ(z + z∗1)σ(z − z∗2)σ(z + z∗2)

σ(z − z1)σ(z + z1)σ(z − z2)σ(z + z2)
dz (10)

yields a schlicht conformal mapping of R onto the interior of a polygon
(“8-gon”, c.f. Fig.2) whose 8 sides are parallel to the real axis or to the
imaginary axis, resp.. The 8 corners are the images ζk = f(zk) of the 6
points z1, z2, z3 = 0, z4 = ib, z5 = a, z6 = a + ib and the images ζ∗1 , ζ∗2
of the 2 points z∗1 , z∗2 . At the points f(z∗1) and f(z∗2) the interior angle of
this polygon is 3

2π, while at the other corners the interior angle is 1
2π. For

example, the segment (f(z3), f(z1)) is parallel to the real axis. The corners
f(z∗1) and f(z∗2) have the same real part, and the arc C is the pre-image of
the segment (f(z∗1), f(z∗2)). The segments (f(z1), f(z∗1)) and (f(z2), f(z∗2))
(lying on the same line as the image of C) have the same length.

e) The last geometric description of the image of R yields the following
two equations for the analytic characterization of the unknown parameters
z∗1 and z∗2 (always with the integral as in (10))∫ z∗1

z1

=

∫ z2

z∗2

, (11)

∫ z1

0

=

∫ z∗2

ib

, (12)

while the essential arc C is characterized by

Re

∫ z

z∗1

= 0. (13)

f ) The maximal value (right-hand side of (6)) of the extremal problem
is given by

module V∗
1 +module V∗

2 =

(∫ z1

0

+

∫ a

z∗1

)/(
1

i

∫ ib

0

)
. (14)
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Because the integrals in (11), (12), (13), (14) represent some length of
sides of the image of R, we obviously can replace these integrals by other
integrals (side length).

There is also another possibility to describe analytically the solution
of our problem. Namely, after a transformation of R by a Weierstraß ℘-
function onto a half-plane, we have a usual Schwarz–Christoffel transforma-
tion, again with a parameter problem; c.f. also [Pi2], § 9. The disadvantage
of this procedure is that this needs two mapping steps.

3. Proof of Theorem 1. We start with the inverse situation. Namely,
we set in the ζ-plane an 8-gon as in Fig. 2 and prescribed after (10) and use
the conformal mapping onto a rectangle R in the z-plane, with the corners
0, a, a+ ib, ib and with some a > 0 and b > 0 such that ζ3 transforms onto
z3 = 0, and so on. First we ignore the restriction Im ζ2 > Im ζ4, using only
Im ζ4 − Im ζ3 = Im ζ6 − Im ζ5.

We obtain C as the image of the segment [ζ∗1 , ζ
∗
2 ].

With the so obtained points z1 and z2 (first not necessarily with Re z1 <
< Re z2), the inverse mapping f(z) has the extremal property (6). To
confirm this, in our case we only have to apply Grötzsch’s strip method in
the usual manner. That means we only have to use Grötzsch’s fundamental
inequality (c.f. [Ku6], p. 104) for both the obtained quadrilaterals V∗

1 and
V∗

2 and then to add both inequalities.
Now the problem is: Is it possible to choose the 8-gon such that we

obtain the rectangle R with points z1 and z2 (as images of ζ1 and ζ2)
at the “correct places” ? Observe that we have at the 8-gon and also at
R, z1, z2 essentially three real parameters. The solution of this existence
problem follows as in [Pi1,2] by Koebe’s classical method of continuity
(the necessary uniqueness follows from the extremal property), in [Je] by
a variational method, or in [Re] by means of Dirichlet integrals.

It is also possible to transform our problem for quadrilaterals into a
problem for ring-domains. For this reason, without loss of generality we
can choose b = π, use reflection at the real axis and then transform by the
complex logarithm.

After this existence proof we obtain

Re z1 < Re z∗1 , Re z∗2 < Re z2 if Im ζ2 > Im ζ4.

Of course, in the other case Im ζ2 < Im ζ4 the situation is analogous.
Now we will derive in the case Im ζ2 > Im ζ4 the property c).
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We use the fact that at the boundary of R the function f ′2(z) has
only real values, with the exception of the points z∗1 , z∗2 , z1, z2 where we
have the expansions (15), (16), (17), (18) below. Namely, the bound-
ary of R consists of segments between the critical points z3 = 0, z1, z

∗
1 ,

z5 = a, z6 = a+ ib, z2, z
∗
2 , z4 = ib. At all open segments, the function f ′(z)

is non-vanishing and real, with the exception of the segments (z1, z
∗
1) and

(z2, z
∗
2) where f ′(z) is non-vanishing and imaginary. This means we have

f ′2 > 0, resp. f ′2 < 0.
Now we have to study the behavior at the mentioned critical points.
At the corners z3, z5, z6, z4 of R, the function f ′(z) is analytic and

f ′(z) > 0.
At the point z∗1 , the function (f(z) − ζ∗1 )

2/3 is analytic with a positive
derivative:

(f(z) − ζ∗1 )2/3 = A1(z − z∗1) + . . . , A1 > 0.

From here it follows that also f ′2(z) is analytic with a zero of first order:

f ′2(z) =
9

4
A3

1(z − z∗1) + . . . . (15)

The same holds at z∗2 :

f ′2(z) = −9

4
A3

2(z − z∗2) + . . . , A2 > 0, (16)

with some constants A1, A2.
In the same manner, we obtain for the function f ′2(z) a simple pole at

z1 and z2:

f ′2(z) = −B1

4

1

z − z1
+ analytic function, B1 > 0, (17)

f ′2(z) =
B2

4

1

z − z2
+ analytic function, B2 > 0, (18)

with some constants B1, B2.
The expansions (15), (16), (17), (18) guarantee that the values of the

function f ′2(z) in a neighborhood of the critical points are lying in the
upper half-plane. Therefore, all values of f ′2(z) in the (open) rectangle R
must lie in the upper half-plane. This follows by the maximum principle,
applied for the harmonic function Im f ′2(z) in R after deleting small half-
discs with centers at z1 resp. z2.
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From Im f ′2(z) > 0 for z ∈ R, now it follows

Re f ′(z) > 0, Im f ′(z) > 0 for all z ∈ R. (19)

The other case Re f ′(z) < 0, Im f ′(z) < 0 is impossible what we can see,
e.g., for the points in a neighborhood of z∗1 (c.f. the development (15)). Now
(19) yields at C the orientation of dz as asserts c). From c) it follows also
Re z1 < Re z2. (Of course, in the other case Im ζ2 < Im ζ4 the situation is
analogous, especially then Re z1 > Re z2.)

In the opposite direction, it follows now Im ζ2 > Im ζ4, that means
Re z1 < Re z∗1 < Re z∗2 < Re z2 if Re1 < Re z2.

The assertion b) of the Theorem is now obvious by conformal mapping
theory.

For the proof of the analytic representation (10) in the assertion d)
we use again the fact that f ′2(z) is real at the boundary of R. Using
analytic continuation by reflection, we see that f ′2(z) is an elliptic function
with the periods 2a and 2b, with simple poles at z1, z2,−z1,−z2 (mod
periods), and simple zeroes at z∗1 , z∗2 ,−z∗1 ,−z∗2 (mod periods). Form here it
follows (c.f. [TK], p.292), apart from a positive multiplicative constant, the
representation for f ′2(z), which is equivalent to (10). This multiplicative
constant is positive because, e.g., at z = 0 the function f ′2(z) is positive.
Without loss of generality, we can choose this constant as 1.

This procedure to obtain the analytic expression for f(z) is the same
as in [Ku2] (p. 101); c.f. also [DT] (p. 49).

4. A surprising phenomenon. Here we will show that in Theorem
1 the arc C always has an orthogonal projection at the basic side [0, a] of
the rectangle R which is in some sense always strongly smaller than this
basic side. We demonstrate this in the simplest

symmetric case z1 − z3 = z6 − z2 (20)

(c.f. the notations in Fig. 1). In Fig. 2 then we have also a centrally sym-
metric situation.

In what follows, without loss of generality we can assume a = 1.
Theorem 2. In this symmetric case with a = 1, there is a univer-

sal positive constant c (independent of the hight b of the rectangle R
and independent of the prescribed points z1 and z2) such that C always
lies in the strip c < Re z < a − c (or equivalently: it holds z∗1 > c,
z∗2 − ib = a− z∗1 < a− c).
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The determination of the greatest possible value c (= a “Weltkonstante”
in the sense of Edmund Landau) is a great desideratum. This needs a subtle
discussion of the corresponding Schwarz-Christoffel formula for the 8-gon
of Fig.2. However by the first step of the following proof it is enough to
study the much simpler limit case (a 6-gon) of Fig.4 (c.f. similar discussions
in [KS], p. 234).

In the Proof of Theorem 2 we make a discussion by the free parameters
in the ζ-plane. The proof is based on the comparison of the conformal
module of quadrilaterals, in several steps using Grötzsch’s principle (c.f.
[Go]) which goes back to Paul Koebe (c.f. an essential footnote in [Gr],
p. 62).

(i) First step of the Proof. Here we show that it is enough to prove
the Theorem 2 for the limit case with z1 → z3, z2 → z6. Without loss of
generality, in this case we can assume

z3 = z1 = 0, z2 = z6 = 1 + ib and ζ∗1 = 0, ζ5 = 1, ζ4 = −1 + ih, (21)

ζ∗2 = ih with some h > 0, ζ1 = ζ3 = −i∞, ζ2 = ζ6 = +i∞.
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Now we have only the essential parameter b resp. h (= a function of b,
and vice versa).
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The reduction of the general case (Fig. 1 and 2) to this limit case runs
as follows. We have to prove that Theorem 2 is true if it is always true for
the limit case.

We start with an 8-gon as in the ζ-plane of Fig. 2 (but now more special
with central symmetry analogous as in (20)), with the corresponding R as
in Fig.1 (also with central symmetry). Beside a = 1 we can assume ζ∗1 =
0, ζ5 = 1. That means we have with fixed values h > 0, H > 0 (h < H)
the corners (in the following order) 0 (= ζ∗1 ), 1 (= ζ5), 1 + iH (= ζ6, with
some H > 0), iH (= ζ2), ih (= ζ∗2 ), −1 + ih (= ζ4), −1 − i(H − h) (=
ζ3), −i(H − h) (= ζ1). We consider this 8-gon as a quadrilateral V with
the opposite sides (both consisting in 3 segments)

[ζ4, ζ
∗
2 ] ∪ [ζ∗2 , ζ2] ∪ [ζ2, ζ6] and [ζ3, ζ1] ∪ [ζ1, ζ

∗
1 ] ∪ [ζ∗1 , ζ5].

Further, we create from V an unbounded (also centrally symmetric) 6-gon
Ṽ (of limit case type, c.f. Fig. 4) by shifting the segment [ζ2, ζ6] to the
point i∞ (in Fig. 4 denoted by ζ̃2 = ζ̃6) in the direction of the positively
imaginary axis and by shifting the segment [ζ3, ζ1] to the point −i∞ (in
Fig. 4 denoted by ζ̃1 = ζ̃3) in the direction of the negatively imaginary
axis (the points ζ4, ζ5, ζ∗1 , ζ∗2 unchanged). We consider this Ṽ(⊃ V) as a
quadrilateral with the opposite sides [ζ4, ζ

∗
2 ] ∪ [ζ∗2 ,+i∞] (the latter ray

containing the original ζ2) and [−i∞, ζ∗1 ] ∪ [ζ∗1 , ζ5].
Evidently, we have module V > module Ṽ. This means b̃ > b for the

corresponding rectangles R resp. R̃ (c.f. Fig. 3) with corners 0, 1, ib, 1+ib
resp. 0, 1, ib̃, 1 + ib̃ (the usual boundary correspondence at the corner, as
above).

Furthermore, for the images z∗2 resp. z̃∗2 of ζ∗2 (with Re z∗2 >
1
2 , Re z̃∗2 >

1
2 by (9)) we have at the boundary of R resp. R̃

Re z∗2 < Re z̃∗2 (22)

(an analogous inequality for the centrally symmetric points). For otherwise,
we additionally consider the image of the 8-gon V (as a part of the 6-gon
Ṽ) by the mapping of the whole 6-gon onto a part of R̃ and observe the
module of this part as a quadrilateral with the opposite sides [ib̃, z̃∗2 ] and
[z̃∗1 , 1]. If (22) not were true then we obtain a contradiction by comparing
with the (equal) module of the by the similarity

ζ −→ b̃

b

(
ζ − 1

2
− i

b

2

)
+

1

2
+ i

b̃

2

enlarged R (with analogously opposite sides).
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The inequality (22) was the aim of this first part (i) of the proof.
(ii) In the second step of the proof we demonstrate the assertion of

Theorem 2 in the limit case (Fig. 3 and 4) for all R̃ under the restriction

b̃ ≥ c1 > 0, (23)

where c1 is an arbitrary given positive constant. In the first place, it then
always follows h ≥ c2 (= a positive constant, depending only on c1), be-
cause b̃ is also the module of the 6-gon in the ζ-plane (Fig. 4) with the
opposite sides [1, i∞] and [−1 + ih,−i∞] (two rays parallel to the imagi-
nary axis), and this module obviously (by a comparison of modules) is a
monotonic function of h. (It is possible to calculate a concrete c2, because
the mentioned module of the 6-gon is smaller than the module of the strip
−1 < Re ζ < 1 slitted along the rays [ih,+i∞] and [0,−i∞], with the
lines Re ζ = −1 and Re ζ = 1 as opposite sides. And the calculation of
the module of this slitted strip is possible by considering the fourth part,
namely the half-strip defined by 0 < Re ζ < 1, Im ζ > h/2 and conformal
mapping onto a half-plane).

By h ≥ c2 now it follows that there is also an analogous estimation of
the module of the 6-gon of Fig. 4, but now with the opposite sides [ih,+i∞]
and [−1 + ih,−i∞] (two rays parallel to the imaginary axis). Namely,
this module is also a monotonic function of h. Therefore we get again
an estimation of this module, of the form ≥ c3 with a positive constant
c3 (again only depending on c1). This means the same inequality for the
module of R̃, but now with the opposite sides [0, ib̃] and [z̃∗2 , 1+ ib̃]. All the
more, this inequality ≥ c3 follows for the (greater) module of the half-strip
Im z < b̃, 0 < Re z < 1 as a quadrilateral with the opposite sides [ib̃,−i∞]
and [z̃∗2 , 1 + ib̃]. Because this latter module is a monotonic function of the
distance between z̃∗2 and 1 + ib̃, this distance is also always greater then a
positive constant (only depending on c1). This second step of our proof is
completed.

(iii) In the last third step of the proof it is enough to show the correctness
of the assertion of Theorem 2 in the limit case, for all R̃ (c.f. again Fig. 3
and 4) and for sufficiently small b̃ (corresponding to sufficiently small h),
that means under the restriction

b̃ ≤ c∗ (24)

with some constant c∗ > 0 which is fixed and sufficiently small.
We start with a situation which in some sense is (after a similarity)

the limit case b̃ → 0 of Fig. 3 and 4. Namely, we consider the schlicht
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conformal mapping ζ̌ = ζ̌(ž) of
the strip 0 < Im ž < 1 onto the unbounded 4-gon{

−π < arg(ζ̌ − i) <
π

2

}
∩
{

0 < arg ζ̌ <
3π

2

}
, (25)

under the side conditions

ž =
i

2
onto ζ̌ =

i

2
, ž = +∞ onto ζ̌ = +∞, ž = −∞ onto ζ̌ = −∞ (26)

(c.f. Fig. 5 and 6). Then an (centrally symmetric) arc Č in the strip corre-
sponds to the segment [0, i] in the ζ̌-plane. Both domains in (25) are cen-
trally symmetric with respect to the point i

2 . Also this mapping ζ̌ = ζ̌(ž)

is centrally symmetric with respect to the point i
2 .
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Fig.5: ž-plane and ˇ̌z -plane

Fig.6: 4-gon in the ζ̌-plane
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We have for this limit case, as in Theorem 1.c (c.f. the proof by (19)):
If we run on the arc Č from the endpoint at Im ž = 0 to the endpoint
at Im ž = 1 then both Re ž and Im ž are monotonically increasing. The
same also holds for the pre-images of the rays with Re ζ̌ = const.

Now we take into account that part V̌ of our 4-gon which is lying in the
strip −m < Re ζ̌ < m with a m > 0. Let Ř be the pre-image of V̌ in the ž
-plane. Its boundary consists in two segments on Im ž = 0 and Im ž = 1,
and further on an unbounded curve starting at a point l with ζ̌(l) = m and
running to ž = ∞, and the centrally symmetric curve starting at −l + i
(c.f. the two broken curves in Fig. 5).
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Of course, our goal is now to pas over from Ř to a R̃ of the form of
Fig. 3. For this reason, we first take the conformal mapping ˇ̌z = ˇ̌z(ž) of
Ř (as a quadrilateral) onto a rectangle ˇ̌R with corners ˇ̌l = ˇ̌z(l), −ˇ̌l =

= ˇ̌z(−∞), ˇ̌l + i = ˇ̌z(i+ ∞), −ˇ̌l + i = ˇ̌z(−l + i), with some constant ˇ̌l > 0
depending on l.

We have the following essential inequality

l < ˇ̌l < l + f (27)

with some universal constant f > 0 (that means f is independent of l
resp. m). The left-hand side of this inequality (27) is obvious using a
module comparison. The right-hand side of (27) means an inequality for
the module 2ˇ̌l of the quadrilateral ˇ̌R with the boundary parts (two rays)
on Im ž = 0 and Im ž = 1 as the opposite sides. To get this estimation,
we use a formula for the extremal length of an one-parameter family of
curves, given in [Ku1] (c.f. also [Ku6], p. 109). Denoting by 2l(t) the length
of the greatest segment in Ř parallel to the real axis and lying on Im ž = t,
0 < t < 1, we obtain

1

2ˇ̌l
≥
∫ 1

0

dt

2l(t)
=

∫ 1

1/2

dt

l + 1
2Ll(t)

. (28)

Here we write 2l(t) = 2l + Ll(t) with a new function Ll(t) ≥ 0, also
depending on l.

For the following we have to take into account that Ll(t) → +∞ if
t → +1 and if t → −1 whereby the following integrals are always con-
vergent. To obtain this convergence we see after analytic continuation by
reflection that the function exp

{
π
2 ž(ζ̌)

}
has at ζ̌ = ∞ a simple pole.

This yields the development

ž =
2

π
log ζ̌ +

2

π
log λ+

A

ζ̌
+ . . . with some λ > 0, A > 0,

and further coefficients. If we now put ζ̌ = m+ iτ with a constant m > 0
and a parameter τ > 0 then we get

ž =
2

π
log τ +

2

π
log λ+ i+

2p

πiτ
+

A

m+ iτ
+ . . . ,

from here by eliminating of τ the development of Re ž as a function of Im ž.
Because here always the essential term is log τ , we see the convergence of
the following integrals and the possibility to get universal estimates.
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It follows by (28)
1

2ˇ̌l
>

∫ 1

1/2

1

l

(
1 − 1

2

Ll(t)

l

)
dt =

=
1

2

∫ 1

0

1

l

(
1 − 1

2

Ll(t)

l

)
dt =

1

2l

(
1 − 1

2l

∫ 1

0

Ll(t)dt

)
dt,

ˇ̌l < l

(
1 +

1

l

∫ 1

0

Ll(t)dt

)
= l + 2

∫ 1

0

L∗
l (t)dt (for large l), (29)

where now L∗
l (t) is the length of that part of l(t) which is lying in the half-

plane Re ž ≥ l. Because of the foregoing, universal estimates (independent
of l) for the integrals in (29) are possible and we can obtain a constant f
for the inequality (27).

For the point d + i with ζ̌(d + i) = i (c.f. Fig. 5 and 6), we need in
addition the point ˇ̌d = ˇ̌z(d + i) because our aim is an estimate of the
distance ˇ̌l − ˇ̌d, more precisely an inequality of the form

ˇ̌l − ˇ̌d
ˇ̌l

> const > 0 (30)

for sufficiently great ˇ̌l (c.f. a similarity of R such that the basic side of
length 2ˇ̌l transforms onto the length 1, as with R̃ in Fig. 3). To this end
we denote by M the conformal module of ˇ̌R as a quadrilateral with the
opposite sides [−ˇ̌l, ˇ̌l ] and [ ˇ̌d+i, ˇ̌l+i]. Observing the pre-image Ř (containing
the rectangle d < Re ž < l, 0 < Im ž < 1) we obtain

M > l − d . (31)

(It is true that ˇ̌d depends on p but not on d). On the other side, we have
M < M ′ whereM ′ is the module of the half-strip Re ž < ˇ̌l, 0 < Im ž < 1,

considered as a quadrilateral with the opposite sides [−∞, ˇ̌l] (ray on the
real axis) and [ ˇ̌d+ i, ˇ̌l + i].

To avoid the calculation of the exact value of M ′ with elliptic integrals,
we estimate

M ′ <
π/2

ArSin
(

1/(ˇ̌l − ˇ̌d)
) . (32)

To prove (32) we observe after a similarity the module of the half-strip
0 < Re η, 0 < Im η < H (H > 0) in a η-plane as a quadrilateral
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with the opposite sides [0, 1] and [iH,+∞] (a ray) with H = 1/(ˇ̌l − ˇ̌d).
Transforming this half-strip by arcsin η the image contains the rectangle
0 < Re arcsin η < π

2 , 0 < Im arcsin η < ArSinH. This yields (32).
Bringing now all together we get

ˇ̌l − ˇ̌d
ˇ̌l

>
1

ˇ̌l Sin π/2
ˇ̌l−f−d

. (33)

Because here on the right-hand side the limit for ˇ̌l → ∞ is 2/π ̸= 0, (30)
is proven. This was the aim of the third and last step (iii) of the proof.

5. Remarks.
1. Because of the conformal invariance of the conformal module we can

restrict ourselves in Theorem 1 to the case of a rectangle R. That means
we obtain mutatis mutandis an analogous result for a general quadrilateral
instead of a rectangle R.

2. Our problem (5) can be interpreted as a special case or limit case
of the general problem of the reduction of the module of a rectangle by
an inscribed obstacle. A qualitative solution was already given in [Gr]
(Hilfssatz 3a). This is important in the application of Grötzsch’s strip
method.

3. Of course, after Theorem 1 and 2 there arises the question for further
discussions of the geometric properties of the for our solution essential
curve C. For example, we have the

Problem: Is it true that z∗1 is monotonically increasing if z1 is mono-
tonically increasing?

4. Discussions as in Theorem 1 and 2, of the extremal cutting C are
also possible in related and in more general situations. We remark here
only the following configuration which is closely related to the Problem of
Section 1.

Let a concentric circular ring R be given and at the two boundary
circles two points z1 and z2. We consider all cuttings from z1 to z2 and
ask for extremal cuttings. Of course, here we have additionally to fix a
homotopy class for the cuttings, because here a “winding” in R is possible.

Instead of the circular ring R, it is also possible to consider the confor-
mally equivalent situation on a circular cylinder, between two circles.

5. We can generalize the problem of Section 1 in the following manner.
Now let R be not necessarily homogeneous. That means, the conductivity
is not necessarily a constant but depends on the point z in R (we can think,
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e.g., of a metallic plate with a non-constant thickness). Then by [Ku5] we
have to take into account more generally a so-called p-module where p is a
real function of z. That means, we have to replace the conformal mappings
of R,V1,V2 by mappings ζ = u(x, y) + iv(x, y) which are solutions of the
elliptic system

ux =
1

p
vy, uy = −1

p
vx. (34)

Without loss of generality, we can assume p ≥ 1 for the fixed function
p = p(z). We obtain the solution of the physical problem and of the cor-
responding mathematical problem (5) (now with the p-module) similarly
as in Section 2 and 3 if we can solve the corresponding existence problem.
The latter remains as a great desideratum. (The inverse problem corre-
sponding to the beginning of Section 3 is simple — this means only the
solution of a Beltrami system.) Only the proof of the extremal property
is exactly the same as in the conformal case, now using [Ku4,5], because
Grötzsch’s fundamental inequality remains true for solutions of (34), after
a suitable new formulation — [Ku4] (c.f. there (3)).

The situation becomes much simpler if we weaken the side condition
that the cut C has two fixed endpoints z1 and z2. If we fix, e.g., only z1
as one endpoint while z2 is free on s2, then we obtain the cut C with the
smallest enlargement of the resistance if we transform R onto a rectangle
(beside the usual side conditions) by a solution of the system (34). Then
the extremal cut is the pre-image of the vertical segment starting at ζ(z1).
Of course, for a function p(z) which is a constant, this extremal cut C is a
vertical segment (c.f. the beginning of Section 1).

6. It is also possible to consider an analogue of problem (5) in space.
Here we can state again a problem like (5), now with partitioning a resistor
in space by disjoint resistors. Again we can attack the extremal property of
a “suitable” partitioning, because in space the resistance can characterized
by the space form extremal length introduced by J. Hersch [He1,2]. (This
extremal length definition is different from the extremal length definition
used in quasiconformal mapping theory in space; c.f. [Ku6], p. 114.) But
the existence of the corresponding extremal partitioning is now a great
desideratum. Namely, the method, e.g., in [Pi1,2] fails because of the use
of conformal mapping theory. Perhaps here the method in [Re] could be
successful.

It is also difficult to give a non-trivial spatial example. We can present
here only the following. Let be given in the x, y, t- space the resistor 0 ≤
x ≤ a, 0 ≤ y ≤ b, 0 ≤ t ≤ c with the flow from the boundary rectangle
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0 ≤ x ≤ a, 0 ≤ t ≤ c, y = 0 to the rectangle 0 ≤ x ≤ a, 0 ≤ t ≤
c, y = b. We divide this resistor by a surface whose boundary consists in
the segments x = x1, y = 0, 0 ≤ t ≤ c and x = x2, y = b, 0 ≤ t ≤ c with
fixed x1 and x2, and two arcs C1 and C2 in the planes t = 0 and t = c
joining the points x = x1, y = 0, t = 0 and x = x2, y = b, t = 0 resp.
x = x1, y = 0, t = c and x = x2, y = b, t = c. Let be C1 the orthogonal
projection of C2 at the plane t = 0. We have again the question: For which
cutting-up of the resistor, the enlargement of the resistance is minimal ?
If we take into account only such cutting-up whose complete projection
at the plane t = 0 is also C1 then the solution is obvious by Theorem 1.
Otherwise, for a more general cutting-up we have to use [He1,2].

Furthermore, for this space problem it should be mentioned that an
additional complication can appear because we have to take into account
the more difficult topological situation. That means there is the possibility
to prescribe in the partitioning a knotting of the resistors.
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