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In one complex variable, given a function holomorphic in the unit disc or
in the upper half-plane the Hilbert formulas show the relation between
the real components of its boundary value; in other words, the relation
between the boundary values of a pair of conjugate harmonic functions.
The main goal of this work is to establish some analogues of those for-
mulas on the unit sphere for solenoidal and irrotational vector fields. Our
formulas relate one of the real components of the boundary vector field
of a solenoidal and irrotational vector field in the unit ball, with the rest
of real components. Such formulas have been obtained using an intimate
relation between solenoidal and irrotational vector fields and quaternionic
analysis for the Moisil–Teodoresco operator; thus, the Hilbert formulas for
the latter are obtained as well which relate a pair of real components of the
boundary value of a quaternionic hyperholomorphic function in the unit
ball with the other pair of real components.
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1. Introduction. In one complex variable, given a function holomor-
phic in the unit disk or in the upper half-plane what is called usually the
Hilbert formulas is the relation between the real components of the bound-
ary value of the holomorphic function; in other words, it is a relation be-
tween the boundary values of a pair of conjugate harmonic functions. An
encyclopedic source of information about them is the book [1].

The operator arising in these formulas bears the name of Hilbert oper-
ator, and it is a well-known transformation in mathematics and in signal
processing; for example, in geophysics and astrophysics it deals with input
signals. Examples of this type of signals are seismic, satellite and grav-
itational data; and the Hilbert operator proves to be useful for a local
analysis of them, providing a set of rotation-invariant local properties: the
local amplitude, local orientation and local phase, see, e.g., [2] and [3].

Since it turns out that in case of the half-plane the Hilbert operator
coincides, up to a constant factor, with the singular Cauchy transform
and in case of the unit disk it is tightly related with the latter, then the
multidimensional generalizations of the classical Hilbert operator go mostly
in the direction of generalizing the singular Cauchy transform, not the
formulas themselves.

The main goal of our work is to establish some analogues of the Hilbert
formulas on the unit sphere for solenoidal and irrotational vector fields
in the unit ball. Our formulas relate one of the real components of the
boundary vector field of a solenoidal and irrotational vector field in the
unit ball, with the rest of real components; thus, their structure is deeply
similar to that of their one-dimensional antecedents.

Such formulas have been obtained using an intimate relation between
solenoidal and irrotational vector fields and quaternionic analysis for the
Moisil–Theodoresco operator; thus, the Hilbert formulas for the latter have
been obtained as well which relate a pair of real components of the bound-
ary value of a quaternionic hyperholomorphic function in the unit ball with
the other pair of real components.

Notice that certain analogue of the Hilbert formulas for the Moisil–
Theodoresco system can be found in [4], pp. 186 — 191, where both the
methods and the results are drastically different.

Although we do not introduce it explicitly but, of course, our formulas
give rise to the generalizations of the Hilbert operator into the contexts of
both considered theories. In this sense, our works fit into the research of
other generalizations of the Hilbert operator. In the setting of differential
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forms one can find such generalizations in [5] and [6]. Many papers on
the topic have been published in the framework of Clifford analysis which
seems to be especially well-suited for a treatment of multidimensional phe-
nomena encompassing all dimensions at once as an intrinsic feature, see,
e.g., [7 — 15]. Directional Hilbert operators are considered in [16, 17]. For
α-hyperholomorphic quaternionic function theory the Hilbert formulas and
the Hilbert operator for a half-plane and a half space have been obtained
in [18] and in the book [19] respectively.

The paper is organized as follows. Section 2 describes what occurs in
the complex analysis situation and, thus, what is going to be generalized.
In Section 3 the analogues of the Hilbert formulas on the unit sphere for
solenoidal and irrotational vector fields are announced and their corollaries
are formulated. Then, in Section 4 we present a brief review of the prop-
erties of hyperholomorphic functions in the sense of Moisil–Theodoresco
which includes the notion of hyperconjugate harmonic functions. Section
5 presents the Hilbert formulas and their proof in the context of quater-
nionic analysis for the Moisil–Theodoresco operator which relate a pair of
real components of the boundary value of a quaternionic hyperholomorphic
function in the unit ball with the other pair of real components. Finally,
in Section 6 we obtain the results announced in Section 3 using what is
proved in Section 5.

The first- and the third-named authors were partially supported by
CONACYT projects as well as by Instituto Politécnico Nacional in the
framework of COFAA and SIP programs.

The second-named author was partially supported by CONACYT and
by Instituto Politécnico Nacional as Doctoral scholarship and PIFI schol-
arship recipient.

2. The Hilbert formulas for the unit disk in one complex vari-
able.

2.1. Our aim is to establish some analogues of the Hilbert and Schwarz
formulas of the holomorphic function theory in one complex variable. With
this in mind, we shall describe here what occurs in the complex situation.

Let S = S(0; 1) be the unit circumference in the complex plane C which
is the boundary of the unit disk B = B(0; 1). The following definitions are
useful for us.

Definition 1. U(B(0; 1);C0,ϵ(S)), 0 < ϵ < 1, denotes the class of func-
tions f̃ such that
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1) f̃ ∈ Hol(B(0; 1)), the class of holomorphic in the unit disk functions;
2) there exists everywhere on S the limit lim

B(0;1)∋x→τ∈S
f̃(x) =: f(τ) gen-

erating the function f in C0,ϵ(S).

Definition 2. U(B(0; 1);Lp(S)), 1 < p <∞, denotes the class of func-
tions f̃ such that

1) f̃ ∈ Hol(B(0; 1));
2) there exists almost everywhere on S the limit lim

B(0;1)∋x→τ∈S
f̃(x) =:

=: f(τ) generating the function f in Lp(S).

Note that sometimes the class U(B(0; 1);Lp(S)) is called the Hardy class
Hp(S).

In what follows, f̃ always denotes a function satisfying any of Defini-
tions 1 or Definition 2, and f is its limit function. We want to express one
of the real components of its limit function f =: f1 + if2 via the other.
Or, which is equivalent, we wonder how to construct the limit function f
knowing one of its real components. Of course, this has one more inter-
pretation: since having the limit function f we have the function f̃ also,
then an important consequence of the above is that we can reconstruct
the function f̃ provided we know one of the real components of its limit
function f .

On the linear spaces C0,ϵ(S) and Lp(S) define

H[g](φ) :=
1

2π

∫ 2π

0

cot
ψ − φ

2
g(ψ)dψ, φ ∈ [0, 2π], (1)

M [g] :=
1

2π

∫ 2π

0

g(ψ)dψ, (2)

where the integralH[g] is understood in the sense of Cauchy’s principal val-
ue, generating the so-called Hilbert operator with (real) kernel 1

2π cot ψ−φ2
which is well defined on both spaces, and where M is a functional which
can be seen as the average value of the function.

Given a limit function f , denote g(φ) := f(eiφ), g = g1 + ig2. Then
the real components of g, g1 and g2, are related by the following formulas
known as the Hilbert formulas for the unit disk, or for the unit circumfe-
rence:

M [g1] +H[g2] = g1, M [g2] −H[g1] = g2. (3)
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2.2. There are known many proofs of them, see, for instance, [1]. We
give here one of them which admits its exact analogues for some classes of
hyperholomorphic functions.

Let S denote the singular integration operator along an appropriate
curve γ:

S[f ](t) :=
1

πi

∫
γ

f(τ)

τ − t
dτ, t ∈ γ. (4)

It is known that S is an involution on C0,ϵ(γ), 0 < ϵ < 1, and on Lp(γ),
1 < p: S2 = I, the identity operator. Besides, a necessary and sufficient
condition for f to be the limit function of a function f̃ is

f = S[f ]. (5)

Let now γ = S, then one has:

S[f ](t) =
1

πi

∫
S

f(τ)

τ − t
dτ =

1

πi

∫
S

τ̄ − t̄

|τ − t|2
f(τ)dτ =

=
1

πi

∫
S

τ̄ − t̄

|τ − t|2
in(s)f(τ)dsτ =

1

π

∫
S

τ̄ − t̄

|τ − t|2
τf(τ)dsτ =

=
1

π

∫
S

|τ |2 − t̄τ

|τ − t|2
f(τ)dsτ =

1

π

∫
S

1 − t̄τ

|τ − t|2
f(τ)dsτ .

Let Ξ be the angle between the vectors t and τ then

t̄τ = cos Ξ + i sin Ξ, |τ − t|2 = 2 − 2 cos Ξ,

and the formula for S[f ] becomes:

S[f ](t) =
1

π

∫
S

1 − cos Ξ − i sin Ξ

2 − 2 cos Ξ
f(τ)dsτ =

=
1

π

∫
S

1 − cos Ξ

2 − 2 cos Ξ
f(τ)dsτ − i

1

π

∫
S

sin Ξ

2 − 2 cos Ξ
f(τ)dsτ =

=
1

2π

∫
S
f(τ)dsτ − i

1

2π

∫
S

cot

(
Ξ

2

)
f(τ)dsτ . (6)

Take now a function f̃ then for its limit function f formulas (5) and
(6) give:

f(t) =
1

2π

∫
S
f(τ)dsτ − i

1

2π

∫
S

cot

(
Ξ

2

)
f(τ)dsτ . (7)
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Making the change of variables τ = eiφ, 0 ≤ φ ≤ 2π, and recalling that
g(φ) = f(eiφ), g = g1 + ig2, we get:

g1 + ig2 = (M − iH)[g1 + ig2],

and separating the real and the imaginary parts we obtain the Hilbert
formulas (3).

We have done the change of variables in order to obtain the Hilbert
formulas in their classical form, but we can separate the real and the
imaginary parts directly from (7) and then to make the change of variables.

2.3. Because of the relation between g1 and g2, the function g can be
written as

g = g1 − iH[g1] + iM [g2] = M [g1] +H[g2] + ig2,

which means that up to an additive constant the function g is determined
by any one of its real components. Applying the Cauchy Integral Formula
we obtain for f̃ the following formula:

f̃(z) =
1

2πi

∫
γ

f(t)

t− z
dt =

1

2π

∫ 2π

0

eiφ

eiφ − z
g(φ)dφ =

=
1

2π

∫ 2π

0

eiφ

eiφ − z
(g1(φ) − iH[g1](φ) + iM [g2]) dφ, (8)

which after some computations becomes

f̃(z) =
1

2π

∫ 2π

0

f1(eiφ)
eiφ + z

eiφ − z
dφ+ if2,0, (9)

where f2,0 := 1
2π

∫ 2π

0
f2(eiφ)dφ.

This formula is known as the Schwarz formula for the unitary disk and
shows how the function itself can be reconstructed from its real part on
the boundary up to a purely imaginary constant; a similar formula holds
for the imaginary part.

2.4. Assume now that g ∈ kerM , that is, its average is zero which is
not an onerous restriction, then the Hilbert formulas take the form

H[g2] = g1, −H[g1] = g2. (10)

These formulas are often called the mutually inverse Hilbert formulas.
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In this case the function g, and thus the function f , is determined
uniquely by any one of its real components:

g = g1 − iH[g1] = H[g2] + ig2.

The function f̃ in (9) does not contain any additive constant.

3. Analogues of the Hilbert formulas on the unit sphere for
solenoidal and irrotational vector fields.

3.1. Let Ω be a domain in R3 and let Γ be its boundary; we as-
sume that Γ is smooth enough. Consider a vector field F⃗ ∈ C1(Ω;R3), if
F⃗ = F1i1 + F2i2 + F3i3 satisfies the following system:{

divF⃗ = 0,

rotF⃗ = 0,
(11)

then it is called a solenoidal and irrotational vector field (SI-vector field).
The set of SI-vector fields in Ω will be denoted by M⃗(Ω).

One would like to have an analogue of the Cauchy-type integral for the
class M⃗(Ω) in the same sense as its analogue for holomorphic functions in
one variable. It turns out that for having it one should restrict the class of
SI-vector fields. Our methods impose the following condition: if f⃗ ∈ C(Γ)
then it should satisfy for u⃗ ∈ R3 \ Γ, the identity

0 =

∫
Γ

1

|u⃗− v⃗|3
{⟨

[(u⃗− v⃗) × n⃗(v⃗)] , f⃗(v⃗)
⟩}

dΓv⃗ . (12)

For such vector fields the Cauchy-type integral is defined by

KSI [f⃗ ](u⃗) :=
1

4π

∫
Γ

1

|u⃗− v⃗|3
{
−⟨(u⃗− v⃗), n⃗(v⃗)⟩ f⃗(v⃗) +

+
[
[(u⃗− v⃗) × n⃗(v⃗)] × f⃗(v⃗)

]}
dΓv⃗ , (13)

where n⃗(v⃗) is an outward pointing normal to the surface Γ at a point v⃗.
The fine point here is that if F⃗ is an SI-vector field in Ω which is

continuous up the boundary where it satisfies the condition (12) then the
Cauchy integral representation with the integral (13) holds.

The origin of this restriction will be made more precise below. There
are also physical reasons for considering vector fields with condition (12) as
explained in [3], see pages 120 — 128 and Appendix A. A similar reasoning
can be found in [20, 21].
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Assuming additionally that f⃗ is a Hölder vector field on Γ then the
limits of the right-hand side of (12) when u⃗ tends to x⃗ ∈ Γ from the inside
or outside exist and thus

0 =

∫
Γ

1

|x⃗− v⃗|3
{⟨

[(x⃗− v⃗) × n⃗(v⃗)] , f⃗(v⃗)
⟩}

dΓv⃗ , (14)

where the integral is understood in the sense of Cauchy’s principal value.
Also, we can consider f⃗ ∈ Lp(Γ) with 1 < p < ∞ and the previous
conclusions are valid almost everywhere on Γ.

3.2. Let S2 = S2(0; 1) be the unit sphere in R3 which is the boundary
of the unit ball B2 = B2(0; 1), the following formulas define linear bounded
operators on both spaces of our interest which are C0,ϵ(S2), 0 < ϵ < 1,
and Lp(S2), 1 < p <∞:

M0
S2 [f ](x⃗) :=

1

2π

∫
S2

1

2|x⃗− y⃗|
f(y⃗)dΓy⃗ , (15)

H1
S2 [f ](x⃗) :=

1

2π

∫
S2

(x2y3 − x3y2)

|x⃗− y⃗|3
f(y⃗)dΓy⃗ , (16)

H2
S2 [f ](x⃗) :=

1

2π

∫
S2

(x3y1 − x1y3)

|x⃗− y⃗|3
f(y⃗)dΓy⃗ , (17)

H3
S2 [f ](x⃗) :=

1

2π

∫
S2

(x1y2 − x2y1)

|x⃗− y⃗|3
f(y⃗)dΓy⃗ . (18)

These operators are well-defined for functions taking values in R and
can be extended component-wise to vector fields. Observe that the operator
M0

S2 [f ] has a singularity of order one, thus it is understood as improper;
meanwhile the integrals Hk

S2 [f ] with k = 1, 2, 3 have singularities of order
two (for reasons that will we be clear later) and the integrals have to be
understood in the sense of Cauchy’s principal value.

The integral M0
S2 [f ] sometimes is called a boundary value simple-layer

Newton potential (or Riesz potential) with density f ; it is a harmonic
function on R3\S2 and continuos on R3. Moreover, this operator is compact
on both spaces (see [22]).

3.3. Our techniques require to consider the following real linear spaces:

Ĉ0,ϵ(Γ) := {f⃗ ∈ C0,ϵ(Γ), 0 < ϵ < 1; (14) is valid}.

L̂p(Γ) := {f⃗ ∈ Lp(Γ), 1 < p <∞; (14) is valid}.



254 M.E. Luna-Elizarrarás et al.

Definition 3. U⃗(B2(0; 1); Ĉ0,ϵ(S2)), 0 < ϵ < 1, denotes the class of
vector fields F⃗ such that

1) F⃗ ∈ M⃗(B2(0; 1));
2) there exists everywhere on S2 the limit lim

B2(0;1)∋u⃗→x⃗∈S2
F⃗ (u⃗) =: f⃗(x⃗)

generating the vector field f⃗ in Ĉ0,ϵ(S2).

Definition 4. U⃗(B2(0; 1); L̂p(S2)), 1 < p < ∞, denotes the class of
vector fields F⃗ such that

1) F⃗ ∈ M⃗(B2(0; 1));
2) there exists almost everywhere on S2 the limit lim

B2(0;1)∋u⃗→x⃗∈S2
F⃗ (u⃗) =:

=: f⃗(x⃗) generating the vector field f⃗ in L̂p(S2).

Note that U⃗(B2(0; 1); L̂p(S2)) may be reasonably called the Hardy space
for SI-vector fields.

3.4. We announce now several statements whose profs will be given
later, in Section 6.

Theorem 5 (Analogues of the Hilbert formulas for SI-vector fields).
Let F⃗ ∈ U⃗(B2(0; 1); Ĉ0,ϵ(S2)) or F⃗ ∈ U⃗(B2(0; 1); L̂p(S2)). A vector field
f⃗ = i1f1 + i2f2 + i3f3 is the limit function of F⃗ if and only if the following
relations between its components hold:

f1 = M0
S2 [f1] + H2

S2 [f3] −H3
S2 [f2],

f2 = M0
S2 [f2] + H3

S2 [f1] −H1
S2 [f3],

f3 = M0
S2 [f3] + H1

S2 [f2] −H2
S2 [f1].

(19)

The reader may compare the formulas (19) with (3), they have the
same structure relating now the real components of the limit function f⃗ .
We can conclude that on kerM0

S2 formulas (19) become

f1 = H2
S2 [f3] −H3

S2 [f2],

f2 = H3
S2 [f1] −H1

S2 [f3],

f3 = H1
S2 [f2] −H2

S2 [f1],

(20)

compare with (10), although now we do not have an explicit description
of kerM0

S2 .
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Corollary 6. Let f⃗ be the limit function of F⃗ , then f⃗ is determined by

f⃗ = (M0
S2 [f1] + H2

S2 [f3] −H3
S2 [f2])i1 + f2i2 + f3i3 =

= f1i1 + (M0
S2 [f2] + H3

S2 [f1] −H1
S2 [f3])i2 + f3i3 =

= f1i1 + f2i2 + (M0
S2 [f3] + H1

S2 [f2] −H2
S2 [f1])i3.

In particular, if f⃗ ∈ kerM0
S2 then

f⃗ = (H2
S2 [f3] −H3

S2 [f2])i1 + f2i2 + f3i3 =

= f1i1 + (H3
S2 [f1] −H1

S2 [f3])i2 + f3i3 =

= f1i1 + f2i2 + (H1
S2 [f2] −H2

S2 [f1])i3.

That is, if f⃗ ∈ kerM0
S2 then f⃗ is determined by any two of its real

components.
Corollary 7 (Analogue of the Schwarz formula for SI-vector fields).

Let f⃗ be the limit function of F⃗ , then F⃗ is determined by

F⃗ = KSI

[
(M0

S2 [f1] + H2
S2 [f3] −H3

S2 [f2])i1 + f2i2 + f3i3
]

=

= KSI

[
f1i1 + (M0

S2 [f2] + H3
S2 [f1] −H1

S2 [f3])i2 + f3i3
]

=

= KSI

[
f1i1 + f2i2 + (M0

S2 [f3] + H1
S2 [f2] −H2

S2 [f1])i3
]
,

where KSI is the Cauchy-type integral for SI-vector fields defined by (13).
In particular, if f⃗ ∈ kerM0

S2 then

F⃗ = KSI

[
(H2

S2 [f3] −H3
S2 [f2])i1 + f2i2 + f3i3

]
=

= KSI

[
f1i1 + (H3

S2 [f1] −H1
S2 [f3])i2 + f3i3

]
=

= KSI

[
f1i1 + f2i2 + (H1

S2 [f2] −H2
S2 [f1])i3

]
.

That is, if f⃗ ∈ kerM0
S2 then F⃗ is determined by any two of the limit

functions of its real components.

4. Rudiments of quaternionic analysis for the Moisil–Theodo-
resco operator.

4.1. In the previous sections, we announced the results related to the
Hilbert formulas for SI-vector fields. On the other hand, it turns out that
there exists a quaternionic function theory that have shown to be a gen-
eralization of the theory of functions of one complex variable and which
includes the SI-vector theory as a particular case (see [19]).
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We shall denote by H the set of real quaternions, each quaternion w is
represented in the form

w = w0 + w1i1 + w2i2 + w3i3.

The coefficients {wk} are real; {i1, i2, i3} are the quaternionic imaginary
units. H has the structure of a real non-commutative, associative division
algebra.

The representation w = w0 + w⃗, where w⃗ := Vec(w) := w1i1 + w2i2 +
+w3i3, will rather essential for our purposes. w0 := Sc(w) will be called
the scalar part and w⃗ the vector part of the quaternion w.

For a quaternion w we will consider its quaternionic conjugate w̄ defined
byThe coefficients

w̄ := w0 − w⃗.

4.2. We will consider H–valued functions given in a domain Ω ⊂ R3

with Γ its boundary which is smooth enough. On the set C1(Ω;H) the
well-known Moisil–Theodoresco operator is defined by the formula:

DMT :=
3∑
k=1

ik∂k, (21)

where ∂k := ∂
∂xk

. In vectorial language, the Moisil–Theodoresco system

DMT [f ] = 0,

can be rewritten as
divf⃗ = 0, (22)

gradf0 + rotf⃗ = 0. (23)

The system (22), (23) is considered by many as the most natural and
simple spatial generalization of the Cauchy–Riemann equations. Note that
SI-vector fields satisfy the previous system.

A function f : Ω ⊂ R3 → H satisfying (21) in Ω, i.e., f ∈
∈ kerDMT (Ω) =: M(Ω), will be called hyperholomorphic in Ω in the
sense of Moisil–Theodoresco, or MT-hyperholomorphic function.

From the definition of the operatorDMT its important property follows:

−D2
MT = ∆R3 , (24)

where ∆R3 :=
∑3
k=1 ∂

2
k is the Laplace operator.
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The Cauchy-type integral operator is defined by

KH[f ](u⃗) :=
1

4π

∫
Γ

(u⃗− v⃗)

|u⃗− v⃗|3
n⃗(v⃗)f(v⃗)dΓv⃗ , u ∈ R3 \ Γ, (25)

where (u⃗ − v⃗) := (u1 − v1)i1 + (u2 − v2)i2 + (u3 − v3)i3 and n⃗(v⃗) is an
outward pointing normal to the surface Γ at the point v⃗ ∈ Γ, which can
be written in the quaternionic form: n⃗ := n1i1 + n2i2 + n3i3.

4.3. One more structure of quaternions proved to be useful for our
purposes. Let f ∈ H, then

f =
3∑
k=0

fkik = (f0 + f1i1) + (f2 + f1i1)i2 =: F1 + F2i2.

F1, F2 are of the form a + bi1 with a, b usual real numbers, and thus
they are complex numbers with the imaginary unit i1: F1 and F2 belongs
to C(i1). F1 and F2 will be called the complex components of f .

If f is a hyperholomorphic function in the sense of Moisil–Theodoresco
then

DMT [f ] = i1
∂f

∂x1
+ i2

∂f

∂x2
+ i3

∂f

∂x3
= 0,

now witting f in terms of its complex components F1 and F2 and separa-
ting the complex components in the above equality we obtain:

i1
∂F1

∂x1
−
(
∂F̄2

∂x2
+ i1

∂F̄2

∂x3

)
= 0,

i1
∂F2

∂x1
+

(
∂F̄1

∂x2
+ i1

∂F̄1

∂x3

)
= 0.

(26)

Define
2

∂

∂z̄2,3
:=

(
∂

∂x2
+ i1

∂

∂x3

)
, (27)

then we will say that the complex-valued functions of three real variables
F1 and F2 are hyperconjugate harmonic functions in the sense of Moisil–
Theodoresco if they satisfy the system

i1
∂F1

∂x1
− 2

∂F̄2

∂z̄2,3
= 0,

i1
∂F2

∂x1
+ 2

∂F̄1

∂z̄2,3
= 0,

(28)
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which can be considered as an analogue of the complex Cauchy–Riemann
equations for this case. In the paper [23] the pair (f0, f⃗) is called a hyper-
conjugate harmonic pair if they satisfy the system (22), (23).

5. The Hilbert formulas on the unit sphere for MT-hyperho-
lomorphic functions.

5.1. We will use the combinations of the operators introduced in (15) —
(18)

MS2 [f ](x⃗) : = M0
S2 [f ](x⃗) + i1H1

S2 [f ](x⃗) =

=
1

2π

∫
S2

(
1

2|x⃗− y⃗|
+

(x2y3 − x3y2)i1
|x⃗− y⃗|3

)
f(y⃗)dΓy⃗ , (29)

HS2 [f ](x⃗) : = −H2
S2 [f ](x⃗) − i1H3

S2 [f ](x⃗) =

= − 1

2π

∫
S2

(
(x3y1 − x1y3) + (x1y2 − x2y1)i1

|x⃗− y⃗|3

)
f(y⃗)dΓy⃗ , (30)

M̄S2 [f ](x⃗) :=
1

2π

∫
S2

(
1

2|x⃗− y⃗|
− (x2y3 − x3y2)i1

|x⃗− y⃗|3

)
f(y⃗)dΓy⃗ , (31)

H̄S2 [f ](x⃗) := − 1

2π

∫
S2

(
(x3y1 − x1y3) − (x1y2 − x2y1)i1

|x⃗− y⃗|3

)
f(y⃗)dΓy⃗ (32)

which are well-defined on C0,ϵ(S2), 0 < ϵ < 1, and on Lp(S2), 1 < p <∞;
the integrals are understood in the sense of Cauchy’s principal value.

Definition 8. U(B2(0; 1);C0,ϵ(S2)), 0 < ϵ < 1, denotes the class of
functions f̃ such that

1) f̃ ∈ M(B2(0; 1));
2) there exists everywhere on S2 the limit lim

B2(0;1)∋u⃗→x⃗∈S2
f̃(u⃗) =: f(x⃗)

generating the function f in C0,ϵ(S2).

Definition 9. U(B2(0; 1);Lp(S2)), 1 < p < ∞, denotes the class of
functions f̃ such that

1) f̃ ∈ M(B2(0; 1));
2) there exists almost everywhere on S2 the limit lim

B2(0;1)∋u⃗→x⃗∈S2
f̃(u⃗) =:

=: f(x⃗) generating the function f in Lp(S2).

Note that, again, the class U(B2(0; 1);Lp(S2)) may be called the
(quaternionic) Hardy space for MT-hyperholomorphic functions.
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5.2.
Theorem 10 (Analogue of the Hilbert formulas for MT-hyperholomor-

phic functions). Let f̃ ∈ U(B2(0; 1);C0,ϵ(S2)) or f̃ ∈ U(B2(0; 1);Lp(S2)).
A function f = F1 + F2i2 is the limit function of f̃ if and only if F1 and
F2 are related by the formulas:

F1 = MS2 [F1] + HS2 [F̄2], F2 = MS2 [F2] −HS2 [F̄1]. (33)

Proof. Let SH denote de singular integral operator along S2:

SH[f ](x⃗) :=
1

2π

∫
S2

(x⃗− y⃗)

|x⃗− y⃗|3
n⃗(y⃗)f(y⃗)dΓy⃗ , x⃗ ∈ Γ, (34)

where (x⃗− y⃗) := (x1 − y1)i1 + (x2 − y2)i2 + (x3 − y3)i3.
It is known that SH is an involution on C0,ϵ, 0 < ϵ < 1, and on Lp,

1 < p <∞: S2
H = I, the identity operator. Also, a necessary and sufficient

condition for f to be the limit value of a function f̃ is that

f = SH[f ], (35)

for proofs of these statements see for instance [19].
The definition of the operator SH implies that

SH = MS2 −HS2i2,

where the last operator acts by the formula

HS2i2[f ](x⃗) = − 1

2π

∫
S2

(
(x3y1 − x1y3) + (x1y2 − x2y1)i1

|x⃗− y⃗|3

)
i2f(y⃗)dΓy⃗ .

Then

SH[f ] = (MS2 −HS2i2) [f ] = (MS2 −HS2i2) [F1 + F2i2] =

=
(
MS2 [F1] + HS2 [F̄2]

)
+
(
MS2 [F2] −HS2 [F̄1]

)
i2.

Making use of condition (35) leads to (33). Theorem is proved.

The reader may compare the formulas (33) with (3), they have the
same structure relating now the complex components of the limit function
f . Again, we can conclude that on kerMS2 formulas (33) become

F1 = HS2 [F̄2], F2 = −HS2 [F̄1], (36)
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compare with (10), although now we do not have an explicit description
of kerMS2 .

Remark 11. Using now the fact that the operator SH is an involution
we have that

Id = S2
H = M2

S2 −HS2H̄S2 − (HS2M̄S2 +MS2HS2)i2,

from which one concludes that

Id = M2
S2 −HS2H̄S2 and HS2M̄S2 +MS2HS2 = 0.

We believe that it would not be so easy to prove these properties directly.

5.3. In analogy with the complex case Theorem 10 implies several corol-
laries.

Corollary 12. Given two complex-valued functions of three real vari-
ables F1 and F2 of the classes C0,ϵ(S2) or Lp(S2), they are the limit func-
tions of a pair F̃1 and F̃2 of hyperconjugate harmonic functions in the sense
of Moisil-Theodoresco if and only if they satisfy the following formulas:

F1 = MS2 [F1] + HS2 [F̄2], F2 = MS2 [F2] −HS2 [F̄1].

In particular, if F1, F2 ∈ kerMS2 then

F1 = HS2 [F̄2], F2 = −HS2 [F̄1].

Of course this is just a reformulation of Theorem 10.

Corollary 13. Let f = F1 + F2i2 be the limit function of f̃ , then f is
determined by

f = F1 +
(
MS2 [F2] −HS2 [F̄1]

)
i2 = MS2 [F1] + HS2 [F̄2] + F2i2.

In particular, if f ∈ kerMS2 then

f = F1 −HS2 [F̄1]i2 = HS2 [F̄2] + F2i2.

That is, if f ∈ kerMS2 then f is determined by any one of its complex
components.
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Corollary 14 (Analogue of the Schwarz formula for MT-hyperholo-
morphic functions). Let f = F1 + F2i2 be the limit function of f̃ , then f̃
is determined by

f̃ = KH
[
F1 +

(
MS2 [F2] −HS2 [F̄1]

)
i2
]

= KH
[
MS2 [F1] + HS2 [F̄2] + F2i2

]
.

In particular, if f ∈ kerMS2 then

f̃ = KH
[
F1 −HS2 [F̄1]i2

]
= KH

[
HS2 [F̄2] + F2i2

]
.

That is, if f ∈ kerMS2 then f̃ is determined by any one of the limit
functions of its complex components.

6. Proof of the Hilbert formulas for SI-vector fields.
6.1. The aim of this section is to prove the statements of Section 3.
Let’s analyze the structure of the singular integral operator SH; since

on the unit sphere n⃗(y⃗) = y⃗ then we have that

SH[f ](x⃗) =
1

2π

∫
S2

(x⃗− y⃗)

|x⃗− y⃗|3
n⃗(y⃗)f(y⃗)dΓy⃗ =

1

2π

∫
S2

(x⃗− y⃗)

|x⃗− y⃗|3
y⃗f(y⃗)dΓy⃗ ; (37)

if Ξ is the angle between x⃗ and y⃗ then |x⃗− y⃗|2 = 2 − 2 cos Ξ, therefore

(x⃗− y⃗)

|x⃗− y⃗|3
y⃗ =

1 − ⟨x⃗, y⃗⟩
|x⃗− y⃗|2

· 1

|x⃗− y⃗|
+

[x⃗× y⃗]

|x⃗− y⃗|3
=

=
1 − cos Ξ

2(1 − cos Ξ)
· 1

|x⃗− y⃗|
+

[x⃗× y⃗]

|x⃗− y⃗|3
=

1

2|x⃗− y⃗|
+

[x⃗× y⃗]

|x⃗− y⃗|3
.

Thus

SH[f ](x⃗) =
1

2π

∫
S2

1

2|x⃗− y⃗|
f(y⃗)dΓy⃗ +

1

2π

∫
S2

[x⃗× y⃗]

|x⃗− y⃗|3
f(y⃗)dΓy⃗,

If we write [x⃗ × y⃗] = |x⃗||y⃗| sin Ξ · r⃗ = sin Ξ · r⃗ with r⃗ a unitary vector
perpendicular to the plane that contains x⃗ and y⃗ in the direction given by
the right-hand rule, then |[x⃗× y⃗]| = sin Ξ while |x⃗− y⃗| = 2 sin Ξ

2 ; so when
x⃗ tends to y⃗ we have that |[x⃗×y⃗]|

|x⃗−y⃗|3 ≈ Ξ
Ξ3 = 1

Ξ2 which shows that the second
integral has a strong singularity (of order two).
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Thus

SH[f ](x⃗) =
1

2π

∫
S2

(
1

2|x⃗− y⃗|
+

+
(x2y3 − x3y2)i1 + (x3y1 − x1y3)i2 + (x1y2 − x2y1)i3

|x⃗− y⃗|3

)
f(y⃗)dΓy⃗ =

= M0
S2 [f ](x⃗) + i1H1

S2 [f ](x⃗) + i2H2
S2 [f ](x⃗) + i3H3

S2 [f ](x⃗), (38)

where the operators M0
S2 , H1

S2 , H2
S2 and H3

S2 are defined in formulas (15)-
(18). Recall that the operator M0

S2 is understood as improper. If now we
write [x⃗× y⃗] = sin Ξ · r⃗ = sin Ξ · r1i1 + sin Ξ · r2i2 + sin Ξ · r3i3 we see that
the operators Hk

S2 with k = 1, 2, 3 have singularities of order 2.

6.2. Since we have that: S2
H = Id, we come to the following equality:

Id = S2
H =

(
(M0

S2)2 − (H1
S2)2 − (H2

S2)2 − (H3
S2)2

)
+

+ i1
(
M0

S2H1
S2 + H1

S2M
0
S2 + H2

S2H3
S2 −H3

S2H2
S2
)

+

+ i2
(
M0

S2H2
S2 + H2

S2M
0
S2 + H3

S2H1
S2 −H1

S2H3
S2
)

+

+ i3
(
M0

S2H3
S2 + H3

S2M
0
S2 + H1

S2H2
S2 −H2

S2H1
S2
)
,

therefore

Id = (M0
S2)2 − (H1

S2)2 − (H2
S2)2 − (H3

S2)2,

0 = M0
S2H1

S2 + H1
S2M

0
S2 + H2

S2H3
S2 −H3

S2H2
S2 ,

0 = M0
S2H2

S2 + H2
S2M

0
S2 + H3

S2H1
S2 −H1

S2H3
S2 ,

0 = M0
S2H3

S2 + H3
S2M

0
S2 + H1

S2H2
S2 −H2

S2H1
S2 .

As we noticed in Remark 11, we believe that it would not be so easy
to prove these properties directly.

6.3. We are ready to get obtaining the results of Section 3 as a partic-
ular case of the results of the MT-hyperholomorphic function theory.

First, we write (for an arbitrary surface Γ, not necessarily the unit
sphere) the Cauchy-type integral (25) in vectorial form:
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KH[f ](u⃗) =
1

4π

∫
Γ

(u⃗− v⃗)

|u⃗− v⃗|3
n(v⃗)f(v⃗)dΓv⃗ =

=
1

4π

∫
Γ

1

|u⃗− v⃗|3
{− ⟨(u⃗− v⃗), n⃗(v⃗)⟩ f0(v⃗)−

−
⟨

[(u⃗− v⃗) × n⃗(v⃗)] , f⃗(v⃗)
⟩
− ⟨(u⃗− v⃗), n⃗(v⃗)⟩ f⃗(v⃗)+

+ [(u⃗− v⃗) × n⃗(v⃗)] f0(v⃗) +
[
[(u⃗− v⃗) × n⃗(v⃗)] × f⃗(v⃗)

]}
dΓv⃗ . (39)

Separating the scalar and vector parts we get:

Sc(KH[f ](u⃗)) =
1

4π

∫
Γ

1

|u⃗− v⃗|3
{− ⟨(u⃗− v⃗), n⃗(v⃗)⟩ f0(v⃗)−

−
⟨

[(u⃗− v⃗) × n⃗(v⃗)] , f⃗(v⃗)
⟩}

dΓv⃗ ,

Vec(KH[f ](u⃗)) =
1

4π

∫
Γ

1

|u⃗− v⃗|3
{
−⟨(u⃗− v⃗), n⃗(v⃗)⟩ f⃗(v⃗)+

+ [(u⃗− v⃗) × n⃗(v⃗)] f0(v⃗) +
[
[(u⃗− v⃗) × n⃗(v⃗)] × f⃗(v⃗)

]}
dΓv⃗ ,

which for a vector field f = f⃗ , i.e., f0 = 0, become

Sc(KH[f⃗ ](u⃗)) =
1

4π

∫
Γ

1

|u⃗− v⃗|3
{
−
⟨

[(u⃗− v⃗) × n⃗(v⃗)] , f⃗(v⃗)
⟩}

dΓv⃗ ,

Vec(KH[f⃗ ](u⃗)) =
1

4π

∫
Γ

1

|u⃗− v⃗|3
{
−⟨(u⃗− v⃗), n⃗(v⃗)⟩ f⃗(v⃗)+

+
[
[(u⃗− v⃗) × n⃗(v⃗)] × f⃗(v⃗)

]}
dΓv⃗ .

We see that KSI [f⃗ ] in (13) coincides with Vec(KH[f⃗ ]) and besides we
want Sc(KH[f⃗ ]) to be identically zero. This explains the condition (12) and
the fact that KSI [f⃗ ] is an SI-vector field: this is because the quaternion-
ic Cauchy-type integral of a vector field f⃗ is an MT-hyperholomporphic
function and since its scalar part is identically zero then it is an SI-vector
field.
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Restricting our consideration to the unit sphere again, the action of the
singular integral operator in vectorial terms takes the form:

SH[f ](x⃗) =
1

2π

∫
S2

(x⃗− y⃗)

|x⃗− y⃗|3
n(y⃗)f(y⃗)dΓy⃗ =

=
1

2π

∫
S2

1

|x⃗− y⃗|3
{

(1 − ⟨x⃗, y⃗⟩) f0(y⃗) −
⟨

[x⃗× y⃗] , f⃗(y⃗)
⟩

+

+ (1 − ⟨x⃗, y⃗⟩) f⃗(y⃗) + [x⃗× y⃗] f0(y⃗) +
[
[x⃗× y⃗] × f⃗(y⃗)

]}
dΓy⃗ .

Condition (12) implies the following: for x⃗ ∈ S2

0 =

∫
S2

1

|x⃗− y⃗|3
⟨

[x⃗× y⃗] , f⃗(y⃗)
⟩
dΓy⃗ , (40)

giving also the condition Sc(SH[f ]) = 0, thus the following integral defines
in fact the singular integral operator for SI-vector fields:

SSI [f⃗ ](x⃗) :=
1

2π

∫
S2

1

|x⃗− y⃗|3
{

(1 − ⟨x⃗, y⃗⟩) f⃗(y⃗)+
[
[x⃗× y⃗]× f⃗(y⃗)

]}
dΓy⃗. (41)

6.4. Now we are in a position to prove Theorem 5. By (38), for SI-vector
fields f = f⃗ we get the following equality:

SH[f⃗ ] = M0
S2 [f⃗ ] + i1H1

S2 [f⃗ ] + i2H2
S2 [f⃗ ] + i3H3

S2 [f⃗ ] =

=
(
H1

S2 [f1] + H2
S2 [f2] + H3

S2 [f3]
)

+

+
(
M0

S2 [f1] + H2
S2 [f3] −H3

S2 [f2]
)
i1+

+
(
M0

S2 [f2] + H3
S2 [f1] −H1

S2 [f3]
)
i2+

+
(
M0

S2 [f3] + H1
S2 [f2] −H2

S2 [f1]
)
i3. (42)

We have that (40) is satisfied and can be be rewritten as

0 = H1
S2 [f1] + H2

S2 [f2] + H3
S2 [f3].

In addition, recalling the condition (35) we obtain

f⃗ =
(
M0

S2 [f1] + H2
S2 [f3] −H3

S2 [f2]
)
i1+

+
(
M0

S2 [f2] + H3
S2 [f1] −H1

S2 [f3]
)
i2+

+
(
M0

S2 [f3] + H1
S2 [f2] −H2

S2 [f1]
)
i3. (43)

Therefore, separating the coefficients of the imaginary units i1, i2, i3 in
(43) we get the Hilbert formulas (19). Theorem is proved.
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[18] Rocha-Chávez R., Shapiro M., Tovar L.M. On the Hilbert operator
for α-hyperholomorphic function theory in R2 // Complex Variables. —
2000. — 43. — P. 1—28.

[19] Kravchenko V., Shapiro M. Integral representations for spatial models
of mathematical physics. — Addison-Wesley-Longman. Pitman Research
Notes in Mathematics, 1996.— 351. — 256 p.

[20] Abreu-Blaya R., Bory-Reyes J., Shapiro M. On the Laplacian vector
felds theory in domains with rectifable boundary // Mathematical Methods
in Applied Sciences. — 2006. — 29, № 15. — P. 1861—1881.

[21] Schneider B., Shapiro M. Some properties of the Cauchy-type integral
for the Laplace vector felds theory // Global analysis and applied mathe-
matics: International Workshop on Global Analysis, Ankara, Turkey, 15–17
April. — AIP Conference Proceedings. — 2004. — 729. — P. 274—281.

[22] Ebenfelt P., Khavinson D., Shapiro H. S. A free boundary problem
related to single-layer potentials // Annales Academicæ Scientiarum Fenni-
cæ Mathematica. — 2002. — 27. — P. 21—46.

[23] Colombo F., Luna M.E., Sabadini I., Shapiro M., Struppa D.C.
A quaternionic treatment of the inhomogeneous div-rot system // Moscow
Math. J. — 2012. — 12, № 1. — P. 37—48.


