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Sufficient conditions in terms of p > 1 and q ≥ 0 are found so that all p–
superharmonic, or locally renormalized, solutions of the Riccati equation
(*) −∇ · (|∇u|p−2∇u) = |∇u|q are ordinary weak solutions. Examples are
constructed to show that (*) admits p–superharmonic solutions which are
not weak solutions.

1. Introduction. The quasilinear Riccati equation

−∇ · (|∇u|p−2∇u) = |∇u|q, (1)

p > 1 and q ≥ 0, admits several classes of solutions: very weak solutions,
renormalized solutions, p-superharmonic solutions, weak solutions, smooth
solutions etc. Usually the function space to which the solution belongs
determines the class but there are other subtle differences, for example in
which sense the gradient ∇u of a solution u is understood. In this paper
we study p-superharmonic and weak solutions to a slightly more general
equation

−∇ ·A(x,∇u) = |∇u|q (2)

where A(x, h) ·h ≈ |h|p. Since weak solutions are also A-superharmonic so-
lutions, our goal is to find such values for p and q that all A-superharmonic
solutions are ordinary weak solutions. It seems that the structure of the
polar set {u(x) = ∞} of a solution u has an effect on this problem. By a
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recent result of Kilpeläinen–Kuusi–Tuhola–Kujanpää, see [1], locally renor-
malized solutions of (2) are A-superharmonic and hence these solutions are
included in our study.

The Riccati equation (2) is a special case of the equation

−∇ ·A(x,∇u) = µ. (3)

where µ is a non–negative Radon measure and the theory developed for
(3) can be used to study the solutions of (2), see [2 — 4]. However, there
are important differences since in (2) the Radon measure µ depends on the
solution itself and the exponent q effects the function space to which the
solutions belong.

After preliminaries in Section 2 we present the main results in Section
3. Explicit examples are constructed in Section 4.

2. Preliminaries. Throughout the paper we assume that p > 1 and
that Ω is an open set in Rn, n ≥ 2. The space W 1,p(Ω) is the first order
Sobolev space whose functions together with their distributional gradients
are Lp–integrable in Ω; W 1,p

loc (Ω) stands for the corresponding local space.
We use the following standard assumptions. The mapping A : Ω×Rn →

Rn is a Caratheodory function such that for some 0 < α ≤ β < ∞, all
h ∈ Rn and a.e. x ∈ Ω

A(x, h) · h ≥ α|h|p, (4)
|A(x, h)| ≤ β|h|p−1, (5)

(A(x, h1) −A(x, h2)) · (h1 − h2) > 0 (6)

whenever h1 ̸= h2.
A solution u ∈W 1,p

loc (Ω) of

∇ ·A(x,∇u) = 0 (7)

is a continuous version, called A-harmonic, of a weak solution u satisfying∫
Ω

A(x,∇u) · ∇φdx = 0 (8)

for all φ ∈ C∞
0 (Ω). A function u ∈W 1,p

loc (Ω) is an A-supersolution if∫
Ω

A(x,∇u) · ∇φdx ≥ 0 (9)
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for all nonnegative φ ∈ C∞
0 (Ω). A lower semicontinuous function u in Ω is

said to be A-superharmonic if u is not identically +∞ in any component
of Ω and for all open sets D ⊂⊂ Ω and for all h ∈ C(D), A-harmonic in D,
h ≤ u on ∂D yields h ≤ u in D. Instead of this definition we mainly employ
an equivalent condition. A lower semicontinuous function u in Ω, not iden-
tically +∞ in any component of Ω, is A-superharmonic if and only if for
every k ∈ R, uk = min(u, k) is an A-supersolution. Note that uk belongs
to W 1,p

loc (Ω) and that every A-supersolution has a lower semicontinuous
version and this is A-superharmonic. We shall always use the pointwise
defined versions of A-superharmonic functions and A-supersolutions. For
the theory of A-superharmonic functions see [2, Chapter 7].

It may happen that the distributional derivative of an A-superharmonic
function u is not a function. However, this drawback can be partly repaired
using the limit process u = limk→∞ uk as follows. Let ∇u = limk→∞ ∇uk.
Then ∇u defines a weak gradient of u as a function and this coincides to
the usual distributional gradient if the latter exists as a function. Only for
p ≤ 2 − 1/n there are A-superharmonic functions who do not belong to
W 1,1
loc (Ω) and then the weak gradient need not be the distributional gradi-

ent of u. We shall always use the weak gradient of u unless otherwise stat-
ed. Note that for an A-superharmonic function u, |∇u|p−1 and A(x,∇u)
belong to Lsloc(Ω) for 1 ≤ s < n/(n− 1), see [2, 7.42].

If u is A-superharmonic in Ω, then there is a unique non–negative
Radon measure µ = µ(u), called the Riesz measure or the Riesz mass of
u, such that ∫

Ω

A(x,∇u) · ∇φdx =

∫
Ω

φdµ (10)

for every φ ∈ C∞
0 (Ω), see [2, p. 281 and Chapter 21]. For s > 0 we write

Ls(µ,U) for the set of q–integrable functions in U with respect to the
measure µ and abbreviate Ls(U) = Ls(m,U) for the Lebesgue measure
m.

Let q ≥ 0. A function u ∈ W 1,s
loc (Ω), s = max(p, q), is a weak solution

of the Riccati equation (2) if∫
Ω

A(x,∇u) · ∇φdx =

∫
Ω

φ|∇u|q dx (11)

for every φ ∈ C∞
0 (Ω), i.e. u is an A-supersolution of (10) with dµ =

= |∇u|q dx.
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Let t = max(p − 1, q). A function u is an A-superharmonic solution
of (2) if u is A-superharmonic, ∇u ∈ Ltloc(Ω) and equation (11) holds. In
general, the weak derivative is now used on both sides of (11) if t ≤ 2−1/n.

A weak solution of (2) is an A-superharmonic solution and our purpose
is to find those values p and q that the converse is true. Note that for
q ≥ p or p > n every A-superharmonic solution is a weak solution. For
q ≥ p this is clear and for p > n A-superharmonic functions are continuous
A-supersolutions, see [2, Theorem 7.25]. Note that an A-superharmonic
solution of (2) which is not a weak solution is always locally unbounded
since locally bounded A-superharmonic functions are A-supersolutions.

In [4, Theorems 3.1 and 3.4] the A-supersolution property of an A-
superharmonic function u was investigated in terms of the Riesz mass µ
of u.

Lemma 1. Suppose that 1 < p ≤ n. Then an A-superharmonic function
u in Ω is an A-supersolution if and only if u ∈ L1

loc(µ,Ω) and u|∇u|p−1 ∈
∈ L1

loc(Ω). If p > n− 1 or

lim sup
x→y

u(x) <∞ (12)

for every y ∈ ∂Ω, then the condition u ∈ L1
loc(µ,Ω) alone suffices.

In the boundary condition (12) the point ∞ is considered as a boundary
point of Ω if Ω is unbounded.

3. A-superharmonic versus weak solutions to the Riccati equa-
tion. We first derive from Lemma 1 necessary and sufficient conditions
that an A-superharmonic solution of the Riccati equation (2) is an ordi-
nary weak solution. As remarked above we need to consider the values
1 < p ≤ n and 0 ≤ q < p only.

Lemma 2. Suppose that 1 < p ≤ n. Then an A-superharmonic solution
u of (2) in Ω is a weak solution of (2) if and only if one of the conditions
below is satisfied.

0 ≤ q ≤ p− 1, p ≤ n− 1 and u|∇u|p−1 ∈ L1
loc(Ω), (13)

p− 1 ≤ q < p, p ≤ n− 1 and u|∇u|q ∈ L1
loc(Ω), (14)

0 ≤ q < p, p > n− 1 and u|∇u|q ∈ L1
loc(Ω). (15)
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Moreover, if an A-superharmonic solution u of (2) in Ω satisfies the bound-
ary condition (12), then for 0 ≤ q < p, u is a weak solution if and only if
u|∇u|q ∈ L1

loc(Ω).
Proof. In the case of (13) the condition u|∇u|q ∈ L1

loc(Ω) follows from
u|∇u|p−1 ∈ L1

loc(Ω). Since dµ = |∇u|qdx, Lemma 1 implies the result. A
similar reasoning applies to (14) and (15). The rest of the proof follows
from the boundary condition part of Lemma 1.

In Lemma 2 the conditions for u ∈ W 1,p
loc (Ω) depend on u itself. In the

following we present conditions depending on p, q and n only. The results
are based on the integrability properties of A-superharmonic functions.

Theorem 1. Let 1 < p ≤ n and 0 ≤ q < p. Suppose that u is an
A-superharmonic solution of the Riccati equation (2) in Ω. If either (16)
or (17) below is satisfied, then u is a weak solution of (2).

n ≥ 4, (n+ 1)/2 < p ≤ n− 1, 0 ≤ q ≤ p(n+ 1) − 2n

n− 1
. (16)

n ≥ 2, max(
4

3
, n− 1) < p ≤ n, 0 ≤ q <

p(n+ 1) − 2n

n− 1
. (17)

Proof. Let n ≥ 2, 0 ≤ q ≤ p − 1 and p ≤ n − 1. By (13) in Lemma
2 we need to show that u|∇u|p−1 ∈ L1

loc(Ω). Since an A-superharmonic
function belongs to Ltloc(Ω) for 0 < t < n(p − 1)/(n − p) and its (weak)
gradient to Lηloc(Ω) for 0 < η < n(p − 1)/(n − 1), see [2, p. 154], we can
use the Hölder inequality for 1 < t < n(p− 1)/(n− p) to obtain∫

C

|u||∇u|p−1 dx ≤ (

∫
C

|u|t dx)1/t(

∫
C

|∇u|t(p−1)/(t−1) dx)(t−1)/t

where C ⊂ Ω is compact. If now

t(p− 1)

t− 1
<
n(p− 1)

n− 1
, (18)

then u|∇u|p−1 ∈ L1(C). Inequality (18) gives t > n and since t < n(p −
−1)/(n−p) we end at the condition p > (n+1)/2. Note that p > (n+1)/2
also gives n(p− 1)/(n− p) > 1 for n ≥ 2 and we can choose t > 1.

In (16) we have (n + 1)/2 < n − 1 and hence n ≥ 4. We have proved
that if

n ≥ 4, (n+ 1)/2 < p ≤ n− 1, 0 ≤ q ≤ p− 1 (19)

holds, then u is a weak solution.
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Next let p−1 < q. By Lemma 2 (14) we need to show u|∇u|q ∈ L1
loc(Ω).

We use the same method and notation as in the previous proof. If 1 < t <
< n(p− 1)/(n− p), then∫

C

|u||∇u|q dx ≤ (

∫
C

|u|t dx)1/t(

∫
C

|∇u|tq/(t−1) dx)(t−1)/t

and hence u|∇u|q ∈ L1(C) provided that tq/(t − 1) < n(p − 1)/(n − 1).
This yields

t >
n(p− 1)

n(p− 1) − q(n− 1)
(20)

where q < n(p− 1)/(n− 1) has also been used. Now t < n(p− 1)/(n− p)
gives

q <
p(n+ 1) − 2n

n− 1
.

Note that this also implies q < n(p− 1)/(n− 1) and that

p ≤ n− 1, p− 1 <
p(n+ 1) − 2n

n− 1

yield n ≥ 4. Thus (16) follows from this and (19).
Next let n − 1 < p ≤ n. By Lemma 2 (15) we need to show u|∇u|q ∈

∈ L1
loc(Ω) and the proof is similar to the previous case. The method leads

to
0 ≤ q < min

(
n

n− 1
(p− 1),

p(n+ 1) − 2n

n− 1

)
and since n(p− 1) ≥ p(n+ 1)− 2n for p ≤ n we end at (17). Note that the
condition p > 2n/(n + 1) is needed for t > 1 but this holds for p > n − 1
if n ≥ 3 and for p > 4/3 if n = 2.

Theorem 1 has been proved.

If an A-superharmonic solution u satisfies the boundary condition (12),
then we can employ the proof for the case (17) above to obtain

Theorem 2. Suppose that u is A-superharmonic solution of (2) in Ω
and u satisfies (12), then for

2n

n+ 1
< p ≤ n, 0 ≤ q <

p(n+ 1) − 2n

n− 1
(21)

u is a weak solution of (2).
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Theorems 1 and 2 do not work for p close to 1. However, there is another
method, based on the Wolff potential, which produces a better result for
p ≤

√
n.

Theorem 3. Let 1 < p ≤ n and 0 ≤ q < p. Suppose that u is A-
superharmonic solution of (2) in Ω and either p > n− 1 or u satisfies the
boundary condition (12), then for

0 ≤ q <
n(p− 1)2

(n− 1)p
(22)

u is a weak solution of (2).

Remark 1. Note that

n(p− 1)2

(n− 1)p
≤ p− 1

for 1 < p ≤ n. Hence Theorem 3 does not apply to the case (14) in
Lemma 2.

Proof for Theorem 3. In [4, Lemma 2.1] it is shown that the con-
dition u ∈ L1

loc(µ,Ω) for non-negative A-superharmonic solutions of (3) is
equivalent to the condition that each xo ∈ Ω has r > 0 such that∫

B(xo,r)

Wµ(x, r) dµ(x) <∞. (23)

Here Wµ(x, r) is the Wolff potential of µ defined for x ∈ Ω and 0 < r <
< d(x, ∂Ω) as

Wµ(x, r) =

∫ r

0

(
µ(B(x, t))

tn−p

)1/(p−1)
dt

t
. (24)

Since we may assume that the A-superharmonic solution of the Riccati
equation is non-negative, we can use this result to conclude that u|∇u|q ∈
∈ L1

loc(Ω). Thus we can use this criterion in the cases (14) and (15) of
Lemma 2 as well as when the boundary condition applies.

To this end let xo ∈ Ω and choose r > 0 such that B(xo, 3r) ⊂ Ω. Set
∇u = 0 in Rn \B(xo, 2r) and let

Mf (x) = sup
t>0

1

m(B(x, t))

∫
B(x,t)

|f(y)| dy
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denote the Hardy–Littlewood maximal function of f ∈ L1(Rn). For dµ =
= |∇u|qdx and x ∈ B(xo, r) we obtain

Wµ(x, r) =

∫ r

0

(
µ(B(x, t))

tn−p

)1/(p−1)
dt

t
=

=

∫ r

0

(
1

tn

∫
B(x,t)

|∇u|q dy

)1/(p−1)

t1/(p−1) dt ≤

≤ c

∫ r

0

M|∇u|q (x)1/(p−1)t1/(p−1) dt ≤ cM|∇u|q (x)1/(p−1)

where c depends only on n, p and r. Since |∇u|q ≤M|∇u|q a.e., we get∫
B(xo,r)

Wµ(x, r) dµ(x) =

∫
B(xo,r)

Wµ(x, r)|∇u|q dx ≤

≤ c

∫
B(xo,r)

M|∇u|q (x)p/(p−1) dx <∞

provided that |∇u|q ∈ Lp/(p−1)(Rn) because then by the Hardy–
Littlewood maximal function function theorem, see e.g. [5, p. 5], M|∇u|q ∈
∈ Lp/(p−1)(Rn).

Since an A-superharmonic solution u to (2) has the property that
|∇u| ∈ Lsloc(Ω) for s < n(p − 1)/(n − 1), we see that for qp/(p − 1) <
< n(p− 1)/(n− 1), or in other words

q <
n(p− 1)2

(n− 1)p
,

u|∇u|q ∈ L1
loc(Ω) as required. The theorem follows.

Since
n(p− 1)2

(n− 1)p
≥ p(n+ 1) − 2n

n− 1

for p ≤
√
n, we obtain from Theorems 2 and 3 the following corollaries.

Corollary 1. An A-superharmonic solution u of (2) in Ω ⊂ R2 is a
weak solution of (2) if

0 ≤ q <

{
2(p−1)2

p , 1 < p ≤
√

2,

3p− 4,
√

2 < p ≤ 2.
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Remark 2. Theorem 3 does not improve the case (17) in Theorem 1
for n ≥ 3.

Since 2n/(n+ 1) <
√
n for n ≥ 2, Theorems 2 and 3 yield

Corollary 2. If an A-superharmonic solution u of (2) in Ω ⊂ Rn sat-
isfies the boundary condition (12), then u is a weak solution of (2) provided
that

0 ≤ q <


n(p−1)2

(n−1)p , 1 < p ≤
√
n,

p(n+1)−2n
n−1 ,

√
n < p ≤ n.

4. Examples. In order to show that a function u is an A-superharmonic
solution of (2) in Ω but not a weak solution of the same equation one has
to show that uk = min(u, k) is A-superharmonic for each k ∈ R, u satisfies
equation (11) and u /∈W 1,p

loc (Ω). In the extreme case, i.e. when the polar set
{u(x) = ∞} consists of a single point or, more generally, of a compact set of
zero n–capacity, the following lemma is handy for constructing examples.

Lemma 3. Let 1 < p ≤ n and 0 ≤ q < p. Suppose that u : Ω →
R ∪ {+∞} is a continuous function such that u satisfies the boundary
condition (12) and u is a weak solution of (2) in Ω\C where C = {u = ∞}
is a compact set of zero n–capacity in Ω. If ∇u ∈ Lqloc(Ω) \ Lploc(Ω), and

q ≥ n

n− 1
(p− 1), (25)

then u is an A-superharmonic solution of (2) in Ω but not a weak solution.
Proof. Since u /∈W 1,p

loc (Ω), u is not a weak solution of (2).
Next we show that u is A-superharmonic in Ω. Let uk = min(u, k),

k ∈ R. Since uk ∈ C(Ω), the set Ωk = {u < k} is open and (11)
holds for all φ ∈ C∞

0 (Ωk). Note that the gradient ∇u in Ωk is defined
as a usual distributive gradient of uk ∈ W 1,p

loc (Ωk). Thus u = uk is an A-
supersolution in Ωk. Since uk is continuous in Ω, the Pasting Lemma [2,
Pasting lemma p. 134] implies that uk is A-superharmonic in Ω and thus
an A-supersolution there because uk ∈ W 1,p

loc (Ω). Since u = limk→∞ uk
and not ∞ in any component of Ω, u is A-superharmonic in Ω, see [2,
Chapter 7].

It remains to show that u satisfies (11) in Ω. Fix φ ∈ C∞
0 (Ω) and let

φi ∈ C∞
0 (Rn) be a sequence of functions such that 0 ≤ φ1 ≤ φ2 ≤ ... ≤ 1,
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spt φi ∩ C = ∅, φi(x) → 1 for each x ∈ Rn \ C and ∇φi → 0 in Ln(Rn).
This is possible because C is of zero n-capacity.

Now φiφ ∈ C∞
0 (Ω \ C) and since u is a weak solution of (2) in Ω \ C

we obtain ∫
Ω\C

A(x,∇u) · ∇(φiφ) dx =

∫
Ω\C

φiφ|∇u|q dx.

Since m(C) = 0, see [2, Lemma 2.10], we have∫
Ω\C

φiφ|∇u|q dx→
∫
Ω

φ|∇u|q dx

by the Lebesgue dominated convergence theorem. On the other hand∫
Ω\C

A(x,∇u)·∇(φiφ) dx =

∫
Ω

A(x,∇u)·∇φi φdx+

∫
Ω

A(x,∇u)·∇φφi dx

and for i→ ∞ we get∫
Ω

A(x,∇u) · ∇φφi dx→
∫
Ω

A(x,∇u) · ∇φdx

and
|
∫
Ω

A(x,∇u) · ∇φi φ) dx| ≤ c

∫
sptφ

|∇u|p−1|∇φi| dx

≤ c

(∫
sptφ

|∇u|n(p−1)/(n−1) dx

)(n−1)/n(∫
Ω

|∇φi|n dx
)1/n

→ 0 (26)

where c <∞ depends only on the structure constant β and φ. By (25) the
first integral in (26) is finite and the second integral converges to 0. Thus
(11) holds and the lemma follows.

The p -harmonic Riccati equation (1) takes the form

|u′|p−2((p− 1)u′′ +
n− 1

r
u′) = −|u′|q (27)

in the spherical coordinates of Rn; here u = u(r), r > 0. We are looking
for p-superharmonic solutions of (1) depending only on r in B(0, 1) with
a singularity at 0.
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Assume p− 1 < q < p < n and let v = u′. For v equation (27) reads as

(p− 1)v′ +
n− 1

r
v = −|v|q−p+2 (28)

and we seek a solution v = v(r) = crα, i.e. the solution u has the form

u(r) =
c

α+ 1
(rα+1 − 1)

where c < 0 and α+ 1 < 0. A computation gives

α = − 1

q − p+ 1
< 0

and
c = −[(p− 1)α+ n− 1]−α

provided that q > n(p − 1)/(n − 1). The last condition also yields
∇u ∈ Lq(B(0, 1)) and the condition (25) of Lemma 3. On the other hand
∇u /∈ Lp(B(0, 1)) if q ≤ n+1

n p− 1. Hence by Lemma 3 for

n

n− 1
(p− 1) < q ≤ n+ 1

n
p− 1 (29)

u is a p -superharmonic solution of (1) in B(0, 1) that is not a weak solution.
Note that there is a gap on the values between the conditions in (29) and
in Corollary 2.
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