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Below we introduce concepts of partial derivatives of functions on
anisotropic spaces and prove necessary conditions of the local extremum
extending criterions of the classical analysis.

1. Anisotropic space.
1.1. Let X be a nonempty set and let r : X × X → R be a function

with the following properties:

α) r(x, x) = 0 and r(x, y) ≥ 0 for all x, y ∈ X ;
β) r(x, y) ≤ r(x, z) + r(z, y) for all x, y, z ∈ X .

The pair (X , r) is called anisotropic space, and the function r is called
anisotropic metric. Note that we do not assume here the symmetry of the
anisotropic metric r, i.e. in general r(x, y) ̸= r(y, x).

Special cases of anisotropic spaces are pseudometric and metric spaces
(see, for example, [1, §21]).

For other examples of anisotropic spaces arising in the theory of ab-
stract surfaces see, for example, [2, Ch. 1].

Let a ∈ X and ε > 0 be a real number. Define ε-neighbourhood of a
putting

O(a, ε) = {x ∈ X : ρ(a, x) < ε} (or O(a, ε) = {x ∈ X : ρ(x, a) < ε})

c⃝ V. M. Miklyukov, 2013
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and by standard way we define the basis topological concepts for anisotrop-
ic spaces.

1.2. Recall that the concept anisotropy (in Greek ánisos — unequal and
trópos — direction) means the dependence of some properties of objects
from directions. Thus, the space can be even metric, but to be anisotropic.

Simplest examples of anisotropic spaces are surfaces Ω = (D, ds2Ω),
whereD is a domain in the Euclidean space Rn and dsΩ is a length element,
defined by the relation

ds2Ω =

n∑
k=1

gk dx
2
k, gk ≡ const (k = 1, 2, . . . , n),

where coefficients gk are not equal among themselves.
Anisotropic surfaces Ω = (D, ds2Ω) with length elements

ds2Ω =
n∑

i,j=1

gij(x) dxi dxj ,

where gij(x), i, j = 1, 2, . . . , n, are Lebesgue measurable functions,
arise, for example, as graphs of locally Lipschitz functions xn+1 =
= f(x1, x2, . . . , xn).

If the length element dsΩ is defined on D by the relation

ds2Ω = λ2(x)
n∑
k=1

dx2k,

then the variables x1, x2, . . . , xn are called isotermal coordinates on the
surface Ω.

With respect to existence isothermal coordinates on surfaces see, for
example, [3].

1.3. Let M be an n-dimensional Riemannian C2-manifold. As in [2,
Ch. 1] for two-dimensional case, we define an abstract surface over a domain
D ⊂ M by presetting the length element of curves lying on it, and the
area element.

Let Γ(D) be the set of all Jordan arcs or curves γ ⊂ D locally rectifi-
able (with respect to the metric of M). We will assume that along every
γ ∈ Γ(D) there is defined a direction. Every closed rectifiable arc γ
can be given in the form m = m(s) : [0, length (γ)] → D , where
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0 ≤ s ≤ length (γ) is the length of the arc, counting off the start point
m(0) up to the moving point m(s) with respect to the direction along γ.
Locally rectifiable curves γ can be parametrized evidently with length of
the arc, counting off a fixed point in positive or negative directions along γ.

Suppose that along every γ ∈ Γ(D) it is given some nonnegative,
Lebesgue measurable function hγ(m). The set of all such functions for
the arcs γ ∈ Γ(D), we will designate by the symbol H = {hγ}.

We will say that the set of functions H is coordinated at the point
a ∈ D, if for all curves γ ∈ Γ(D), passing through the point a in the same
direction ξ (i.e. having the same tangent vector ξ ∈ Ta(M), |ξ| = 1) at a,
values hγ(a) coincide.

Suppose that the set of functions H is coordinated almost every on
the domain D. Thus, for almost everywhere m ∈ D and all directions
ξ ∈ Tm(M), |ξ| = 1, there is defined an nonegative function H(m, ξ).
Extend H with respect to the second variable onto the all space Tm(M),
using the following rule H(m,λ ξ) = λH(m, ξ) , λ ≥ 0 . As the result
of such extension, along every γ ∈ Γ(D) we have everywhere

H(m,
−→
dsM) = hγ(m) |

−→
dsM| . (1.1)

Here
−→
dsM is a vector of length dsM on Tm(M) with its beginning at the

point m.
Fix arbitrarily an nonnegative function σ(m) defined almost everywhere

and Lebesgue measurable on D.
An arbitrary triple Ω = (D,H, σ) of the described form is called the

abstract surface.
The quantity

dsΩ = hγ(m(s)) |dsM| , (1.2)

is called the length element of γ ∈ Γ(D) at the point m ∈ D, and the
quantity

dΩ = σ(m) ∗ 1M = σ(m) dHn
M (1.3)

is called the area element of Ω.
Here by ∗1M we denote the volume form on the manifold M.
The metric (1.2) is a Finsler metric (see [4, 5]).
Let Ω = (D,H, σ) be an abstract surface. For an arbitrary oriented,

locally rectifiable arc (or curve) γ ⊂ D, the length of γ with respect to the
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metric (1.2) is given by the following formula

lengthΩγ =

∫
γ

H(m,
−→
dsM) . (1.4)

Observe, that in the general case, the lengthΩγ depends on the direc-
tion, choose on γ, and the metric dsΩ, defined by the relation (1.2), is
anisotropic.

Let Ω = (D,H, σ) be an abstract surface. Below we will need a function
dual to the function H(x, ξ):

G(x, η) = sup
ξ∈Ξ(x)

⟨ξ, η⟩, (1.5)

where Ξ(x) = {ξ ∈ Rn : |ξ| < 1} and ⟨ξ, η⟩ is the standard scalar product
of vectors ξ and η on Tx(M).

We put G+(x) = sup|η|=1 supG(x,ξ)=1⟨ξ, η⟩.
It is not difficult to prove that the function G(x, η) satisfies the con-

ditions: G(x, η) ≥ 0 and for an arbitrary x ∈ D the set {η ∈ Tx(M) :
H(x, η) < 1} is convex. Moreover, everywhere on D the following property
holds

G(x, ξ) = sup
η:H(x,η)̸=0

⟨ξ, η⟩
H(x, η)

(1.6)

(see [6]).
In general, the function G(x, η) assumes on D×Tx(M) values from R1

.
Infinite valuesG(x, η) arise, for example, in cases, when the convex set Ξ(x)
is unbounded. On the other hand, it is not difficult to prove, that the set
Ξ(x) is bounded if and only if G+(x) < +∞.

Example 1.1. Let (e1, e2, . . . , en) be an orthonormal basis in Rn and
let H(x, ξ) = |⟨e1, ξ⟩|. Then the set

Ξ(x) = {ξ : |⟨e1, ξ⟩| < 1} = {ξ ∈ Rn : |ξ1| < 1}.

Here the dual function has the form

G(x, η) =

{
|η1|, if ηi = 0, i = 2, 3, . . . , n
+∞, if there exists i ≥ 2 : ηi ̸= 0

and has infinite values. The set Ξ(x) is the open interval (−1,+1), lying
on the axis Oη1. The function G+(x) ≡ +∞.
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Example 1.2. Let k1, k2 ≥ 0 are constants. Consider the function
k(ξ) : R1 → R1, where

k(ξ) =

{
k1 ξ if ξ ≥ 0 ,
k2 ξ if ξ < 0 .

Let (a, b) ⊂ R1 be an arbitrary interval and let h(x) : (a, b) → R1 be an
nonnegative measurable function. The function

H(x, ξ) = h(x) k(ξ) : (a, b) × R1 → R1

is homogeneous with respect to the variable ξ. The triple Ω = ((a, b),H, σ),
where the function σ(x) : (a, b) → R1 is nonegative and Lebesgue measur-
able, gives the simplest example of the abstract surface.

Example 1.3. Observe, that an arbitrary p-dimensional surface Σ,
given by a locally Lipschitz vector function f : D ⊂ Rp → Rn , p < n ,
is an abstract surface. In this case the vector function f is absolutely
continuous along every locally rectifiable arc γ ⊂ D, described by the
relations x = x(s) : [0, length γ] → D . Here we have

hγ(x(s)) =

∣∣∣∣df(x(s))

ds

∣∣∣∣ =

( n∑
i=1

∣∣∣∣dfi(x(s))

ds

∣∣∣∣2)1/2

.

The vector function f(x) has a total differential almost everywhere on
the domain D. The family H is coordinated at every point, where f(x) is
differentiable, moreover

H(x, ξ) =

( p∑
i,j=1

gij(x) ξi ξj

)1/2

with real Lebesgue measurable coefficients

gij(x) =

⟨
∂f

∂xi
,
∂f

∂xj

⟩
, i, j = 1, 2, . . . , p,

defined almost everywhere on D.
We put g(x) = det (gij(x)) , σ(x) =

√
g(x) , dHp

Σ =
√
g(x) dx1 ∧ . . . ∧

∧ dxp , gij(x) = (gij(x))−1 , i, j = 1, 2, . . . , p , and

G(x, ξ) =

( p∑
i,j=1

gij(x) ξi ξj

)1/2

.
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Thus, we obtain the abstract surface (D,H,
√
g).

See details, for example, in [4, Ch. 1, § 8], [2, Sections 1.1 – 1.7].

2. Anisotropic metric in special coordinates.
2.1. Let D be a subdomain of Rn and let r be an anisotropic metric

on D. We put

Λr(a) = lim sup
a′→a

r(a, a′)

|a′ − a|
, (2.7)

where |a′ − a| is the Euclidean distance between the points a, a′ ∈ D.
For an arbitrary pair of points a′, a′′ ∈ D let γ(a′, a′′) denote an ori-

ented, locally rectifiable arc in D, leading from a′ to a′′.
Fix arbitrarily a set of points

a1, a2, . . . , ak ∈ γ(a′, a′′),

following one to another in the positive direction from a′ to a′′. We have

r(a′, a′′) ≤ r(a′, a1) + r(a1, a2) + . . .+ r(ak, a
′′) =

=
r(a′, a1)

|a′ − a1|
|a′−a1|+

r(a1, a2)

|a1 − a2|
|a1−a2|+. . .+

r(ak, a
′′)

|ak − a′′|
|ak−a′′| ≤

≤ sup
a∈γ(a′,a1)

Λr(a)|a′ − a1| + sup
a∈γ(a1,a2)

Λr(a)|a1 − a2| + . . .+

+ sup
a∈γ(ak,a′′)

Λr(a)|ak − a′′|.

If the function Λr(x) is continuous on D, then the quantity on the right
side of this relation is the upper integral Darboux sum for the integral

∫
γ(a′,a′′)

Λr(x)|dx| =

s(γ)∫
0

Λr(x(s))ds,

where x(s) : [0, s(γ)] → γ(a′, a′′) is the natural parametrization of the arc
γ(a′, a′′). Thus, making the partition of γ(a′, a′′) with points a1, a2, . . . , ak
sufficiently small, we obtain

Theorem 2.1. If the quantity Λr(x) is continuous on the domain D,
then for an arbitrary pair of points a′, a′′ ∈ D the following property holds

r(a′, a′′) ≤ inf
γ(a′,a′′)

∫
γ(a′,a′′)

Λr(x) |dx|. (2.8)
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2.2. If an anisotropic metric r belongs to the class C1(D × D), then
the differential

dr(x, a) =
n∑
i=1

r′xi
(x, a)

∣∣
x=a

dxi

exists at every point a ∈ D and continuous. The function

Hr(a, ξ) =

∣∣∣∣∣
n∑
i=1

r′xi
(x, a)

∣∣
x=a

ξi

∣∣∣∣∣ : D × Rn → R1

satisfies the conditions, imposed on the function H in (1.1), and the Finsler
metric (1.2) is defined.

Theorem 2.2. Let D ⊂ Rn be a domain and let r be an anisotropic
distance on D. If r ∈ C1(D ×D), then

r(a′, a′′) ≤ inf
γ(a′,a′′)

∫
γ(a′,a′′)

Hr(x, dx). (2.9)

Proof. For the proof it is sufficient to consider the case, where the arc
γ = γ(a′, a′′) in the right side of (2.9) is smooth. Namely, for an arbitrarily
pair of points a′, a′′ ∈ D let γ means an oriented arc of the class C1 on D,
leading from a′ to a′′.

Fix arbitrarily a collection of points a0 = a′, a1, a2, . . . , am+1 = a′′ ∈ γ,
following one to another in the positive direction from a′ to a′′. Denote by
γk the part of γ lying between the points ak and ak+1.

For an arbitrary k, 0 ≤ k ≤ m, let

xk(s) : (0, s(γk)) → D, xk(0) = ak, xk(s(γk)) = ak+1,

be the natural parametrization of γk and let sk be the Euclidean length of
γk. We have

r(a′, a′′) ≤
m∑
k=0

r(ak, ak+1) =

m∑
k=0

r(xk(0), xk(sk)) =

=
m∑
k=0

sk∫
0

dr

ds
(xk(s)) ds =

m∑
k=0

sk∫
0

n∑
i=1

r′xi
(xk, ak)

dxi
ds

(xk)

∣∣∣∣∣
xk=xk(s)

ds =

=
m∑
k=0

sk∫
0

n∑
i=1

r′xi
(xk, ak)

∣∣∣∣∣
xk=xk(s)

dxi(s). (2.10)
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On the other hand,∫
γ(a′,a′′)

Hr(x, dx) =
m∑
k=0

sk∫
0

Hr(xk(s), dx) =

=
m∑
k=0

sk∫
0

∣∣∣∣∣
n∑
i=1

r′xi
(x, ak)|x=akdxi(s)

∣∣∣∣∣ . (2.11)

Next we observe, that because the anisotropic metric r belongs to the
class C1(D ×D), then for sufficiently small partitions of the arc γ(a′, a′′)
with points a1, . . . , am, the quantities∣∣∣∣∣

n∑
i=1

r′xi
(xk, ak)|xk=xk(s) −

n∑
i=1

r′xi
(x, ak)

∣∣∣∣∣
are uniformly small. Comparing (2.10) and (2.11), we conclude the validity
of (2.9).

3. Derivative and Differential. Below we recall some concepts of
[7]. These concepts are generalizations of classical notions.

3.1. Because an anisotropic space is a regular topological space, then by
the standard way we can define in it oriented continuous arcs and curves.
The anisotropic metric r permits to define the (oriented) length element
dsγ of an oriented arc (or curve) γ, and also the (oriented) linear measure
on it.

An oriented arc (curve) is called rectifiable, if its length is finite.
For an arbitrary set D ⊂ X by the symbol Γ(D) we will denote the

family of the simple arcs or simple curves (open or closed), lying on D. We
will assume also that on every γ ∈ Γ(D) there is showed an direction (in
particular, from one end point to another). Every closed, locally rectifiable
arc γ ∈ Γ(D) can be given in the following form

a = a(s) : [0, length (γ)] → D ,

where 0 ≤ s ≤ length (γ) is the length of the arc between the start point
a(0) and the moving point a(s) with the given along γ direction. The
locally rectifiable arcs γ ∈ Γ(D) can be evidently parametrized with the
length of arc between a fixed point in the positive and negative directions
along γ.
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Let D ⊂ X be an nonempty set. By a foliation1 xD we will call a family
{γ} of arcs (or curves) γ ∈ Γ(D) with the property: through every point
a ∈ D one and only one arc (or curve) γ ∈ Γ(D) passes.

Curves γ ∈ xD are called layers of the foliation xD.
Two foliations x1D = {γ1} and x2D = {γ2} coincide, if families of layers

{γ1} and {γ2} coincide and the given on them orientations coincide also.

3.2. Let xD = {γ} be a foliation of a domain D ⊂ X . We will name
xD coordinate foliation if there exists a function x : xD → R1, which is
constant on every layer γ ∈ xD.

Thus, if a coordinate foliation xD is given, then a function

x : M ∈ D → xD(M) ∈ R1 (3.12)

is defined. This function we will call by the coordinate function of the
foliation xD. A foliation xD is called continuous (at a point, or a set), if
the corresponding coordinate function is continuous.

Example 3.1. Let D = R2 be the plane with coordinates (x1, x2) and
Euclidean distance r =

√
x21 + x22. We define the foliation xD by assign-

ment in the capacity of layers γ ∈ xD the straight lines parallel to the
axis 0x1 and lying on the half-plane Π1 = {(x1, x2) ∈ R2 : x2 ≤ 0}, and
also rays, formed by intersections of the straight lines, perpendicular to
the axis 0x1, with the half-plane Π2 = {(x1, x2) ∈ R2 : 0 < x2}.

In the capacity of the coordinate function we put

x(x1, x2) =

{
x2 if (x1, x2) ∈ Π1,
1/x2 if (x1, x2) ∈ Π2.

It is clear, that this coordinate foliation is discontinuous on the set
∂Π1 ∩ ∂Π2.

If x : D → R1 is a coordinate function of a foliation xD and
φ : x(D) → R1 is a strongly monotone function, then φ(x) : D → R1

is also a coordinate function of the foliation xD.
Suppose that on the set D ⊂ X it is given a system of coordinate

foliations x1,nD = (x1D, x2D, . . . , xnD), 1 ≤ n ≤ ∞, and, therefore, it is
defined the mapping

x1,nD : M ∈ D → (x1D, x2D, . . . , xnD) ∈ V, (3.13)

where V is some vector space.
1) 1-dimension foliation
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If the system of foliations such that the mapping (3.13) is one-to-one,
then we will call the system x1,nD by the coordinate system on D, and the
quantity n by the dimension of the set D ⊂ X , and write dimD = n.

In the case of two-dimensional surfaces M , prescribed by locally bi-
Lipschitz immersions to Rn, n ≥ 2, examples of mappings (3.13) are con-
formal mappings M → R2, which introduce isothermal coordinates on M .

If an anisotropic metric space X such that every point a ∈ X has a
neighbourhood D, in which there exists a coordinate system, then we will
call

x1D, x2D, . . . , xnD

local coordinates in X .
In particular, if V = Rn and the mapping (3.13) is one-to-one, then in-

vestigation of the geometric structure of the anisotropic metric (sub)space

(D, r), D ⊂ X , r = r(a′, a′′),

is equivalent to investigation of the anisotropic metric space

(∆, r), ∆ = x1,nD(D) ⊂ Rn, r = r
(
x−1
1,nD

(b′), x−1
1,nD

(b′′)
)
. (3.14)

Simplest examples of anisotropic metric spaces (3.14) are the above
described abstract surfaces.

3.3. Let D be a domain in an anisotropic metric space X with an
anisotropic metric r. Let S be a k-dimensional surface in Rn, 1 ≤ k < n,
given by a bi-Lipschitz mapping U → Rn of an open set U ⊂ Rk.
Suppose that there exists a system of coordinate foliations x1,nD =
= (x1D, x2D, . . . , xnD), 1 ≤ n <∞, such that the mapping

x1,nD : M ∈ D → (x1D, x2D, . . . , xnD) ∈ S, x1,nD(D) = S, (3.15)

is one-to-one. Here investigation of the geometric structure of (D, r) is
reducing to investigation of the anisotropic metric space

(S, r), r = r
(
x−1
1,nD

(b′), x−1
1,nD

(b′′)
)
.

3.4. Introduce the concept of derivatives of functions on an anisotropic
metric space. Let D be an nonempty subset of X , f : D → R1 be a function
and let xD = {γ} be a foliation of D. The derivative of the function f with
respect to xD at the point a ∈ D is the following quantity
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∂f

∂xD
(a) = lim

a′→a

f(a′) − f(a)

r⃗(a′, a)
,

where a′ strives to a along the arc γ ∈ xD, γ ∋ a, and the quantity
r⃗(a′, a) = r(a′, a) if the point a′ follows the point a on γ, and r⃗(a′, a) =
= −r(a′, a) if a′ precides a.

In the special case, where D is a domain on Rn and the foliation xD is a
collection of intervals parallel (and equally directed) to the coordinate axis
0x in Rn, the introduced quantity is the partial derivative of the function
f with respect to the variable x.

If x1D, x2D are foliations of D, then we put

∂2f

∂x1D∂x2D
(a) =

∂

∂x1D

[
∂f

∂x2D

]
(a).

By standard way we define (partial) derivatives of higher orders:

∂kf

∂x1D∂x2D . . . ∂xkD
,

where 2 < k <∞ is an integer and x1D, x2D, . . . , xkD are some foliations.
In the case, if

x1D = x2D = . . . = xkD = xD ,

we will use the short notation

∂kf

∂xkD
=

∂kf

∂x1D∂x2D . . . ∂xkD
.

There exist analogs of partial differential equations. For example, the
following (formal) generalization of the Laplace equation, corresponding
to the pair of foliations xD and yD, has the form

∂2f

∂xD
2 +

∂2f

∂yD
2 = 0 .

3.5. Let D be a domain on X and let xD = {γ} be a foliation of D.
The differential of the foliation at a point a ∈ D is defined as the quantity

dxD ≡ r⃗(a′, a),

where a′ are points, belonging to the layer γ ∈ xD, γ ∋ a.
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If f : D → R1 is a function and xD = {γ} is a foliation, then the
differential of the function f at a point a ∈ D with respect to the foliation
xD is, by definition, the quantity

df(a) =
∂f

∂xD
(a) dxD.

Let x1,nD = {x1D, x2D, . . . , xnD}, 1 < n <∞, be a system of foliations
of D and let a ∈ D be a point. For an arbitrary 1 ≤ k ≤ n by γk(a) we
denote the layer xk(D), containing the point a. We will call a function
f : D → R1 is differentiable at the point a ∈ D with respect to the
system of foliations x1,nD, if there exist constants c1, c2, . . . , cn such that
the function’s increment is representable in the form

f(a′) − f(a) =

n∑
k=1

ck r⃗(a
′
k, a) + o

( n∑
k=1

r⃗ 2(a′k, a)

)1/2

, a′ → a, (3.16)

where a′k = (x1D(a), . . . , x(k−1)D(a), xkD(a′), x(k+1)D(a), . . . , xnD(a)),
k = 1, 2, . . . , n, and for an arbitrary l = 1, 2, . . . , n the following relations
hold

r⃗(a′l, a) = o(r⃗(a′k, a)) as a′ → a , a′ ∈ γk(a), k ̸= l. (3.17)

(Because D is a domain and a its inner point, then for a′ sufficiently near
to a, the points a′k belong to D.)

Theorem 3.1. If a function f : D → R1 is differentiable at a point
a ∈ D with respect to a system of foliations x1,nD and exist the derivatives

∂f

∂xkD
(a), 1 ≤ k ≤ n,

then for the constants c1, c2, . . . , cn of (3.16) the following relations hold

ck =
∂f

∂xkD
(a), k = 1, 2, . . . , n.

Proof. Fix arbitrarily k ∈ 1, n and the corresponding layer γk(a) of
the foliation xkD. By (3.16) for a′ → a, a′ ∈ γk(a), we have

f(a′) − f(a)

r⃗(a′k, a)
= ck +

n∑
j=1
j ̸=k

cj
r⃗(a′j , a)

r⃗(a′k, a)
+ ε(a′, a),

where ε(a′, a) → 0 as a′ → a.
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The supposition (3.17) implies

f(a′) − f(a)

r⃗(a′k, a)
= ck + ε1(a′, a) as a′ → a,

and since the derivative ∂f
∂xkD

(a) exists, then

lim
a′→a

f(a′) − f(a)

r⃗(a′k, a)
=

∂f

∂xk,D
(a)

and the statement is proved.

Some sufficient conditions for existence of the total differential of func-
tions in anisotropic metric spaces see [8].

4. Points of local extremum. As in the case of the metric space,
we define the concept of the local extremum of a function on domains of
anisotropic metric spaces.

The following statement holds

Theorem 4.1. If a ∈ D is a point of local extremum of a function
f : D → R1, the function f is differentiable at the point a with respect to a
system of foliations x1,nD, there exist derivatives ∂f

∂xkD
(a), 1 ≤ k ≤ n and

the point a is the inner point of a layer γk(a), then

∂f

∂xkD
(a) = 0 . (4.18)

Proof. Fix foliations x1D, x2D, . . . , xnD, 1 ≤ n < ∞, of the domain
D and corresponding layers γk(a). For an arbitrary k = 1, 2, . . . , n and
a′ → a, a′ ∈ γk(a) we have

f(a′) − f(a) =
∂f

∂xkD
(a) r⃗(a′k, a) +

n∑
i=1
i ̸=k

∂f

∂xiD
(a) r⃗(a′i, a)+

+o

( n∑
i=1

r⃗ 2(a′i, a)

)1/2

.

From here, as in the proof of Theorem 3.1, we prove that

f(a′) − f(a) =
∂f

∂xkD
(a) r⃗(a′k, a) + o(r⃗(a′k, a)) (4.19)

as a′ → a, a′ ∈ γk(a).
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Suppose that a is the point of a local minimum of the function f ,
however the derivative ∂f

∂xkD
(a) ̸= 0. Then by (4.19) we conclude, that

∂f

∂xkD
(a) r⃗(a′k, a) + o(r⃗(a′k, a)) ≥ 0

for all a′ ∈ γk(a), sufficiently near to a. This is impossible, because a is the
inner point of γk(a), and the quantity r⃗(a′k, a) changes its sign if a′ passes
over the point a on γk(a).

We indicate a simple counterexample.

Example 4.1. Let D = R2 be the plane with coordinates (x1, x2) and
the Euclidean distance. Define the foliation xD as in Example 3.1.

Consider the function

x(x1, x2) =

{
0 if (x1, x2) ∈ Π1,
x1 if (x1, x2) ∈ Π2.

Here at every point a ∈ (∂Π1 ∩ ∂Π2) we have

∂f

∂xD
(a) = 0 ,

however these points are not points of a local extremum.
Concerning setting of this problem and similar questions see [9].
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