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We establish integral theorems for monogenic functions taking values in an
infinite-dimensional commutative Banach algebra associated with spatial
potential solenoid fields symmetric with respect to an axis. We establish
also integral theorems for monogenic functions taking values in a topolog-
ical vector space being an expansion of the mentioned algebra. We discuss
some open problems.

1. Introduction. A spatial potential solenoid field symmetric with
respect to the axis Ox is described in its meridian plane xOr in terms of
the axial-symmetric potential φ and the Stokes flow function ψ satisfying
the following system of equations

r
∂φ(x, r)

∂x
=
∂ψ(x, r)

∂r
, r

∂φ(x, r)

∂r
= −∂ψ(x, r)

∂x
. (1)

Under the condition that there exist continuous second-order partial
derivatives of the functions φ(x, r) and ψ(x, r), the system (1) implies the
equation

r∆2φ(x, r) +
∂φ(x, r)

∂r
= 0 (2)
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for the axial-symmetric potential and the equation

r∆2ψ(x, r) − ∂ψ(x, r)

∂r
= 0 (3)

for the Stokes flow function, where ∆2 :=
∂2

∂x2
+

∂2

∂r2
.

An effectiveness of analytic function methods in the complex plane for
researching plane potential fields inspires developing analogous methods
for spatial fields. The problem to develop such methods for spatial potential
solenoid fields was posed by M.A. Lavrentyev [1, pp. 205, 18].

Being the first head of the Department of Complex Analysis and Po-
tential Theory of the Institute of Mathematics of the National Academy
of Sciences of Ukraine, Professor P.M. Tamrazov concerned very close-
ly to developing an algebraic-analytic approach to principal equations of
mathematical physics. Moreover, the mentioned approach were essentially
developed thanking his support.

This approach means a finding of commutative Banach algebra such
that differentiable in the sense of Gateaux functions with values in this
algebra have components satisfying the given equation with partial deriva-
tives. Such algebras are constructed for the biharmonic equation and the
three-dimensional Laplace equation and elliptic equations degenerating on
an axis that describe axial-symmetric potential fields (see [2 — 7]).

We proved in the papers [4, 6] that in a domain convex in the direction
of the axis Or the functions φ and ψ can be constructed by means compo-
nents of principal extensions of holomorphic functions of complex variable
into a corresponding domain of a special two-dimensional vector manifold
in an infinite-dimensional commutative Banach algebra.

In such a way for solutions of the system (1) we obtained integral ex-
pressions which were generalized for domains of general form (see [6, 8]).
Using integral expressions for solutions of the system (1), in the papers [6,
9 — 12] we developed methods for solving boundary problems for axial-
symmetric potentials and Stokes flow functions that have various applica-
tions in the mathematical physics. In particular, the developed methods
are applicable for solving a boundary problem about a streamline of the
ideal incompressible fluid along an axial-symmetric body (see [6, 13]).

In this paper, we establish integral theorems for monogenic functions
associated with solutions of the equations (1) — (3) and discuss some open
problems for the mentioned functions.
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2. An infinite-dimensional commutative Banach algebras asso-

ciated with spatial potential fields. Let H := {a =
∞∑
k=1

akek : ak ∈ R,
∞∑
k=1

|ak| <∞} be a commutative associative Banach algebra over the field

of real numbers R with the norm ∥a∥H :=
∞∑
k=1

|ak| and the following mul-

tiplication table for elements of the basis {ek}∞k=1:

ene1 = en, emen =
1

2

(
em+n−1 + (−1)n−1em−n+1

)
∀ m ≥ n ≥ 1 .

The algebra H was offered by I. P. Mel’nichenko [14] for describing spatial
axial-symmetric potential fields.

As in the papers [4, 6], consider a comlexification

HC := H⊕ iH ≡ {c = a+ ib : a, b ∈ H}

of the algebra H, where i is the imaginary unit of the algebra of complex

numbers C. Meanwhile, the norm of element g :=
∞∑
k=1

cke2k−1 ∈ HC is

given by means the equality ∥g∥HC :=
∞∑
k=1

|ck|.

3. Monogenic and analytic functions taking values in the alge-
bra HC. Below, we shall consider functions given in domains of the plane
µ := {ζ = xe1 + re2 : x, r ∈ R} and the linear manifold M := {ζ =
= xe1 + yie1 + re2 : x, y, r ∈ R} containing the plane µ and the complex
plane C.

We say that a continuous function Φ : Q → HC is monogenic in a
domain Q ⊂ M (or Q ⊂ µ) if Φ is differentiable in the sense of Gateaux in
every point of Q, i.e. if for every ζ ∈ Q there exists an element Φ′(ζ) ∈ HC
such that

lim
ε→0+0

(Φ(ζ + εh) − Φ(ζ)) ε−1 = hΦ′(ζ) (4)

for all h ∈ M (or h ∈ µ , respectively).
A function Φ : Q → HC is analytic in a domain Q ⊂ M (or Q ⊂ µ) if

in a certain neighborhood of every point ζ0 ∈ Q it can be represented in
the form of the sum of convergent power series

Φ(ζ) =
∞∑
k=0

ck (ζ − ζ0)k, ck ∈ HC . (5)
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It is obvious that an analytic function Φ : Q → HC is monogenic in the
domain Q and its derivative Φ′(ζ) is also monogenic in Q.

Below, we establish sufficient conditions for a monogenic function
Φ : Q → HC to be analytic in a domain Q ⊂ M.

However, it remains unknown whether every function Φ : Q → HC
monogenic in a domain Q is analytic in this domain in both cases Q ⊂ M
and Q ⊂ µ.

In what follows, the variables x, y, r are real and ζ̃ := xe1 + yie1 + re2.
Associate with a set Q ⊂ R3 the set Qζ̃ := {ζ̃ = xe1 + yie1 + re2 :

(x, y, r) ∈ Q} in M.
Now, let Qζ̃ be a domain in M. Consider the decomposition

Φ(ζ̃) =
∞∑
k=1

Uk(x, y, r) ek , (6)

of a function Φ : Qζ̃ → HC with respect to the basis {ek}∞k=1, where the
functions Uk : Q→ C are differentiable in the domain Q, i.e.

Uk(x+ ∆x, y + ∆y, r + ∆r) − Uk(x, y, r) =

=
∂Uk(x, y, r)

∂x
∆x+

∂Uk(x, y, r)

∂y
∆y +

∂Uk(x, y, r)

∂r
∆r+

+ o
(√

(∆x)2 + (∆y)2 + (∆r)2
)
, (∆x)2 + (∆y)2 + (∆r)2 → 0 ,

for all (x, y, r) ∈ Q .
A proof of following theorem is similar to the proof of Theorem 4.1 [7].

Theorem 1. Let a function Φ : Qζ̃ → HC be continuous in a domain
Qζ̃ ⊂ M and the functions Uk : Q→ C from the decomposition (6) be dif-
ferentiable in Q. In order that the function Φ be monogenic in the domain
Qζ̃ , it is necessary and sufficient that the conditions

∂Φ

∂y
= i

∂Φ

∂x
,

∂Φ

∂r
=
∂Φ

∂x
e2 . (7)

be satisfied in Qζ̃ and the following relations be fulfilled in Q:

∞∑
k=1

∣∣∣∣∂Uk(x, y, r)

∂x

∣∣∣∣ <∞, (8)
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lim
ε→0+0

∞∑
k=1

∣∣∣∣∣ Uk(x+ εh1, y+ εh2, r+ εh3)−Uk(x, y, r)− ∂Uk(x, y, r)

∂x
εh1−

(9)

−∂Uk(x, y, r)

∂y
εh2 − ∂Uk(x, y, r)

∂r
εh3

∣∣∣∣ ε−1 = 0 ∀h1, h2, h3 ∈ R .

4. Integral theorems for monogenic functions taking values in
the algebra HC . In the paper [15] for functions differentiable in the sense
of Lorch in an arbitrary convex domain of commutative associative Banach
algebra, some properties similar to properties of holomorphic functions
of complex variable (in particular, the integral Cauchy theorem and the
integral Cauchy formula, the Taylor expansion and the Morera theorem)
are established. The convexity of the domain in the mentioned results from
[15] is withdrawn by E. K. Blum [16].

Below we establish similar results for monogenic functions Φ : Qζ̃ → HC
given only in a domain Qζ̃ of the linear manifold M instead of domain
of whole algebra HC. Let us note that a priori the differentiability of
the function Φ in the sense of Gateaux is a restriction weaker than the
differentiability of this function in the sense of Lorch.

In the case where Γ is a Jordan rectifiable curve in R3 we shall say that
Γζ̃ is also a Jordan rectifiable curve. For a continuous function Ψ : Γζ̃ → HC
of the form (6), where (x, y, r) ∈ Γ and Uk : Γ → C, we define an integral
along the curve Γζ̃ with dζ̃ := e1dx+ ie1dy + e2dr by the equality∫

Γζ̃

Ψ(ζ̃)dζ̃ :=
∞∑
k=1

ek

∫
Γ

Uk(x, y, r)dx+ i
∞∑
k=1

ek

∫
Γ

Uk(x, y, r)dy+

+
∞∑
k=1

e2ek

∫
Γ

Uk(x, y, r)dr (10)

in the case where the series on the right-hand side of the equality are
elements of the algebra HC.

Theorem 2. Let Φ : Qζ̃ → HC be a monogenic function in a domain Qζ̃
and the functions Uk : Q→ C from the decomposition (6) be continuously
differentiable in Q. Then for every closed Jordan rectifiable curve Γζ̃ ⊂ Qζ̃
homotopic to a point in Qζ̃ , the following equality holds:∫

Γζ̃

Φ(ζ)dζ = 0 . (11)
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Proof. Using the Stokes formula and the equalities (7), we obtain the
equality ∫

∂△ζ̃

Φ(ζ)dζ = 0 (12)

for the boundary ∂△ζ̃ of every triangle △ζ̃ such that △ζ̃ ⊂ Qζ̃ . Now, we
can complete the proof similarly to the proof of Theorem 3.2 [16].

For functions Φ : Qζ̃ → HC the following Morera theorem can be
established in the usual way.

Theorem 3. If a function Φ : Qζ̃ → HC is continuous in a domain Qζ̃
and satisfies the equality (12) for every triangle △ζ̃ such that △ζ̃ ⊂ Qζ̃ ,
then the function Φ is monogenic in the domain Qζ̃ .

For ζ̃ we shall also use a notation of the form ζ̃ = ze1 + re2, where
z := x+ iy . Let τ := te1 + r2e2 , where t ∈ C and r2 ∈ R. Generalizing a
resolvent resolution (cf. the equality (2.9) in [6]), we obtain

(
τ − ζ̃

)−1
=

1√(
t− z − i(r − r2)

)(
t− z + i(r − r2)

)
(
e1+

+2
∞∑
k=2

(√(
t− z − i(r − r2)

)(
t− z + i(r − r2)

)
− (t− z)

r − r2

)k−1

ek

)
,

r − r2 ̸= 0 , t ̸∈ s[z − i(r − r2), z + i(r − r2)] ,

(13)

where s[z − i(r − r2), z + i(r − r2)] is the segment connecting the points

z− i(r− r2) and z+ i(r− r2), and
√(

t− z − i(r − r2)
)(
t− z + i(r − r2)

)
is that continuous branch of the analytic function

H(t) =
√(

t− z − i(r − r2)
)(
t− z + i(r − r2)

)
outside of s[z− i(r−r2), z+ i(r−r2)] for which H(z+a) > 0 for all a > 0.
Thus, for every ζ̃ the element

(
τ − ζ̃

)−1 exists for all τ ̸∈ S(ζ̃) := {τ =
= te1 + r2e2 : Re t = x, |Im t− y| ≤ |r2 − r|} .

Now, the next theorem can be proved similarly to Theorem 5 [17].
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Theorem 4. Suppose that Q is a domain convex in the direction of
the axis Or. Suppose also that Φ : Qζ̃ → HC is a monogenic function in
the domain Qζ̃ and the functions Uk : Q → C from the decomposition
(6) are continuously differentiable in Q. Then for every point ζ̃ ∈ Qζ̃ the
following equality is true:

Φ(ζ̃) =
1

2πi

∫
Γζ̃

Φ(τ)
(
τ − ζ̃

)−1
dτ , (14)

where Γζ̃ is an arbitrary closed Jordan rectifiable curve in Ωζ̃ , which sur-
rounds once the set S(ζ̃) and is homotopic to the circle {τ = te1 + r2e2 :
|t− x− iy| = R, r2 = r} contained completely in Ωζ̃ .

Using the formula (14), we obtain the Taylor expansion of monogenic
function Φ : Qζ̃ → HC in the usual way (see., for example, [18, p. 107])
in the case where the conditions of Theorem 4 are satisfied. Thus, in this
case, Φ : Qζ̃ → HC is an analytic function. In addition, in this case, an
uniqueness theorem for monogenic functions can also be proved in the
same way as for holomorphic functions of the complex variable (cf. [18,
p. 110]).

Thus, the following theorem is true:

Theorem 5. Let Φ : Qζ̃ → HC be a continuous function in a domain Qζ̃
and the functions Uk : Q→ C from the decomposition (6) be continuously
differentiable in Q. Then the function Φ is monogenic in Qζ̃ if and only if
one of the following conditions is satisfied:

(I) the conditions (7) are satisfied in Qζ̃ and the relations (8), (9) are
fulfilled in Q;

(II) the function Φ satisfies the equality (12) for every triangle △ζ̃ such
that △ζ̃ ⊂ Qζ̃ ;

(III) the function Φ is analytic in the domain Qζ̃ .

5. Relations between monogenic functions and axial-symmet-
ric potential fields. Let us consider principal extensions of holomorphic
functions of complex variable into corresponding domains of the manifold
M and describe its relations to solutions of the system (1).

For a domain D ⊂ R2 we consider the congruent domain Dz := {z =
= x+ iy : (x, y) ∈ D} in the complex plane C .

Let Dz be a bounded domain symmetric with respect to the real axis
and convex in the direction of the imaginary axis. Therefore, there exists
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a real function y(x) on the segment [b1, b2] such that {t = x + y(x) :
x ∈ [b1, b2]} = {t ∈ ∂Dz : Im t ≥ 0}, where by b1 and b2 we have denoted
the points at which the boundary ∂Dz crosses the real axis.

Using the equality (13), we obtain explicitly the principal extension
ΦF of holomorphic function F : Dz → C into the domain Ωζ̃ := {ζ̃ =
= xe1 + yie1 + re2 : x ∈ (b1, b2), |y| + |r| < y(x)} (cf. [19, p. 165]):

ΦF (ζ̃) :=
1

2πi

∫
γ

(te1−ζ̃)−1 F (t) dt ≡ e1
2πi

∫
γ

F (t)√
(t− z − ir)(t− z + ir)

dt+

+
1

πi

∞∑
k=2

ek

∫
γ

F (t)√
(t− z − ir)(t− z + ir)

×

×

(√
(t− z − ir)(t− z + ir) − (t− z)

r

)k−1

dt =:

=:

∞∑
k=1

Vk(x, y, r) ek ∀ ζ̃ = xe1 + yie1 + re2 ∈ Ωζ̃ : r ̸= 0, (15)

where γ is an arbitrary closed rectifiable Jordan curve in Dz which em-
braces the segment s[z − ir, z + ir] that is the spectrum of element ζ̃.

The equality (15) generalizes a representation of the principal extension
of function F into the domain Dζ := {ζ = xe1 + ye2 : x+ iy ∈ Dz} ⊂ µ
congruent to Dz that was obtained in the papers [4, 6].

It is follows from Theorem 18 [4] (see also Theorem 2.6 [6]) that the
first and the second components of the function (15) generate the solutions
φ and ψ of the system (1) in the domain D by the formulas

φ(x, r) = V1(x, 0, r) , ψ(x, r) =
r

2
V2(x, 0, r) . (16)

Moreover, the functions (16) are solutions of equations (2) and (3) in D,
respectively.

In the following theorem we establish a representation of monogenic
functions Φ : Ωζ̃ → HC via principal extensions of holomorphic functions
of complex variable.

Theorem 6. Let Φ : Ωζ̃ → HC be a monogenic function in Ωζ̃ and
the functions Uk : Ω → C from the decomposition (6) be continuously
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differentiable in Ω. Then Φ is expressed in the form

Φ(ζ̃) =
∞∑
k=1

ΦUk
(ζ̃) ek , (17)

Proof. Note that we consider Dz as a subset of the domain Ωζ̃ . There-
fore, it follows from the first of equalities (7) that the functions Uk are
holomorphic in Dz for k = 1, 2, . . . . Now, to complete the proof it is
enough to substitute the expression (6) into the equality (14), where we
set Γζ̃ = γ and γ is the same as in the equality (15).

It follows from Theorem 6 that every monogenic function Φ : Ωζ̃ → HC
generates a set of solutions of the system (1) in D that correspond to the
functions ΦUk

from (17) by the formulas of the form (16).
In the papers [4, 6], for every monogenic function Φ : Dζ → HC given

in a domain Dζ of the plane µ, we obtained a representation of the form

Φ(ζ) = ΦU1(ζ) + Φ0(ζ) ∀ ζ ∈ Dζ ,

where Φ0 : Dζ → I0 is a monogenic function taking values in the maximal
ideal

I0 :=

{ ∞∑
k=1

ckek ∈ HC :
∞∑
k=1

(−1)k (Re c2k−1 − Im c2k) = 0,

∞∑
k=1

(−1)k (Re c2k + Im c2k−1) = 0

}
of the algebra HC.

At the same time, it remains unknown whether every monogenic func-
tion Φ : Dζ → HC can be represented in the form (17).

It remains also unknown a constructive description of monogenic func-
tions Φ0 : Dζ → I0 by means of holomorphic functions of the complex vari-
able. (Let us note that constructive descriptions of similar kinds was ob-
tained for monogenic functions taking values in certain finite-dimensional
commutative algebras, cf. [7, 20].)

6. Monogenic functions in a topological vector space H̃C con-
taining the algebra HC . Let us generalize the relation (16) between
solutions of the system (1) and monogenic functions for domains of more
general form.
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With this purpose, let us insert the algebra HC in the topological vector

space H̃C := {g =
∞∑
k=1

ckek : ck ∈ C} with the topology of coordinate-wise
convergence.

Note that H̃C is not an algebra because the product of elements g1, g2 ∈
∈ H̃C is defined not always. But for each g =

∞∑
k=1

ckek ∈ H̃C and ζ̃ =

= ze1 + re2, one can define the product

gζ̃ ≡ ζ̃g :=

(
c1z −

c2
2
r

)
e1 +

(
c2z +

(
c1 −

c3
2

)
r

)
e2+

+
∞∑
k=3

(
ckz +

1

2

(
ck−1 − ck+1

)
r

)
ek .

We shall consider functions Φ : Qζ̃ → H̃C for which the functions
Uk : Q → C in the decomposition (6) are differentiable in the domain
Q. Such a function Φ is continuous in Qζ̃ and, therefore, we call Φ a
monogenic function in Qζ̃ if Φ′(ζ) ∈ H̃C in the equality (4).

The next theorem is similar to Theorem 1, where the necessary and
sufficient conditions for a function Φ : Qζ̃ → HC to be monogenic include
additional relations (8), (9) conditioned by the norm of absolute conver-
gence in the algebra HC.

Theorem 7. Let a function Φ : Qζ̃ → H̃C be of the form (6) and the
functions Uk : Q → C be differentiable in Q. In order that the function
Φ be monogenic in the domain Qζ̃ , it is necessary and sufficient that the
conditions (7) be satisfied in Qζ̃ .

For a continuous function Ψ : Γζ̃ → H̃C of the form (6), we define an
integral along a Jordan rectifiable curve Γζ̃ by the equality (10) in the case
where the series on the right-hand side of this equality are elements of the
space H̃C.

In the next theorem, for the sake of simplicity, we suppose that the
curve Γζ̃ is the piece-smooth edge of a piece-smooth surface. In this case the
following statement is a result of the Stokes formula and the equalities (7).

Theorem 8. Suppose that Φ : Qζ̃ → H̃C is a monogenic function in
a domain Qζ̃ and the functions Uk : Q → C from the decomposition (6)
are continuously differentiable in Q. Suppose also that Σ is a piece-smooth
surface in Q with the piece-smooth edge Γ. Then the equality (11) holds.
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Let us define the product gh ≡ hg for each g =
∞∑
k=1

ckek ∈ H̃C and

h =
∞∑
k=1

tkek ∈ HC in the case where the sequence {ck}∞k=1 is bounded:

gh ≡ hg :=

(
c1t1 −

1

2

∞∑
k=2

(−1)k cktk

)
e1+

+

(
c2t1 +

(
c1 −

c3
2

)
t2 −

1

2

∞∑
k=3

(
ck−1 − ck+1

)
tk

)
e2+

+

∞∑
m=3

(
cmt1+

1

2

m−1∑
k=2

(
cm−k+1−(−1)k cm+k−1

)
tk+

(
c1−(−1)m c2m−1

)
tm−

−1

2

∞∑
k=m+1

(
ck−m+1 − (−1)m ck+m−1

)
tk

)
em .

In the case where Γ is a piece-smooth curve (or Σ is a piece-smooth
surface) in R3 we shall say that Γζ̃ is also a piece-smooth curve (or Σζ̃ is
also a piece-smooth surface, respectively).

The next theorem can be proved similarly to Theorem 5 [17].

Theorem 9. Suppose that Q is a domain convex in the direction of
the axis Or. Suppose also that Φ : Qζ̃ → H̃C is a monogenic function in
the domain Qζ̃ , and the functions Uk : Q → C from the decomposition
(6) are continuously differentiable and form an uniformly bounded family
in Q. Then for every point ζ̃ ∈ Qζ̃ the equality (14) holds, where Γζ̃ is a
piece-smooth curve that surrounds once the set S(ζ̃) and, in addition, Γζ̃
and the circle {τ = te1 + r2e2 : |t − x − iy| = R, r2 = r} are edges of a
piece-smooth surface Σζ̃ contained completely in Ωζ̃ .

In what follows, D is such a bounded domain in R2 that the domain
Dz is simply connected and symmetric with respect to the real axis but is
not convex in the direction of the imaginary axis, generally speaking.

Now, let Ωζ̃ ⊂ M be the domain that contains the segments
s[xe1 + re2, x+ ir], s[xe1 + re2, x− ir] for every ζ = xe1 + re2 ∈ Dζ .

For every ζ̃ = ze1 + re2 ∈ Ωζ̃ with r ̸= 0, we fix an arbitrary Jordan
rectifiable curve γ[z− ir, z+ ir] in Dz which connects the points z− ir and
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z+ ir. Let
√

(t− z − ir)(t− z + ir) be that continuous branch of the ana-
lytic function H(t) =

√
(t− z − ir)(t− z + ir) outside of the cut along

γ[z − ir, z + ir] for which H(z + a) > 0 for all a > max
τ∈γ[z−ir,z+ir]

Re(τ − z).

For every function F : Dz → C holomorphic in the domain Dz we
obtain the equality (15), where γ is an arbitrary closed rectifiable Jordan
curve in Dz which embraces γ[z − ir, z + ir].

It is follows from Theorems 3.2 [6] that the first and the second com-
ponents of the function (15) generate the solutions φ and ψ of the system
(1) in the domain D by the formulas (16). In addition, the functions (16)
are solutions of equations (2) and (3) in D, respectively.

On the contrary, it is follows from Theorems 3.4, 3.5 [6] that every axial-
symmetric potential and every Stokes flow function can be represented in
the domain D by the formulas (16).

Note that the functions Vk : Q → C from the decomposition (15) are
infinitely differentiable but do not form an uniformly bounded family in
Q, generally speaking. At the same time, the equality (14) holds for every
function (15) and Γζ̃ = γ.

Furthermore, the equality (14) holds for every monogenic function
Φ : Ωζ̃ → H̃C in the case where Γζ̃ is an arbitrary closed Jordan recti-
fiable curve, which surrounds the point ζ̃ and lies in the intersection of
the domain Ωζ̃ and the plane {ζ̃ + te1 : t ∈ C}.

At the same time, it is an open problem: to describe closed curves Γζ̃ for
which the equality (14) holds for every monogenic function Φ : Qζ̃ → H̃C.
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omogene, cu coeficienţi constanţi de ordin oarecare // Studii şi Cercetǎri
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