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We obtained a constructive description of monogenic functions taking val-
ues in the three-dimensional commutative harmonic semi-simple algebra
by means of holomorphic functions of the complex variable. We proved
that the mentioned monogenic functions have the Gateaux derivatives of
all orders.

1. Introduction. Analytic function methods in the complex plane
for plane potential fields inspire searching analogous effective methods for
spatial potential fields.

Apparently, W. Hamilton (1843) made the first attempts to construct
an algebra associated with the three-dimensional Laplace equation(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u(x, y, z) = 0 (1)

in that sense that components of hypercomlex functions satisfy Eq. (1) but
the Hamilton’s quaternions form a noncommutative algebra.

C. Segre [1] constructed an algebra of commutative quaternions that
can be considered as a two-dimensional commutative semi-simple algebra
over the field of complex numbers. For functions taking values in the Segre
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algebra some analogues of results of the classic theory of analytic functions
of complex variable are established (see, for example, [2, 3]).

Commutative associative algebras in which there exist three linearly
independent elements e1, e2, e3 satisfying the equality

e21 + e22 + e23 = 0 (2)

are considered in the papers [4 — 9]. Such algebras are called harmonic
(cf. [4, 7, 8]). We say also that such a triad {e1, e2, e3} is harmonic.

I. P. Mel’nichenko [6] noticed that functions differentiable doubly in the
sense of Gateaux form the largest class of functions Φ satisfying identically
the equalities(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Φ(ζ) = Φ′′(ζ) (e21 + e22 + e23) = 0 , (3)

where Φ′′ is the Gateaux second derivative of the function Φ, and he proved
that there exists a three-dimensional harmonic algebra over the field of
complex numbers only.

All three-dimensional harmonic algebras with unit are found in the
paper [7], and all harmonic bases in these algebras are described in the
monograph [8].

S.A. Plaksa and V. S. Shpakivskyi [9] obtained a constructive de-
scription of monogenic (i.e. continuous and differentiable in the sense of
Gateaux) functions taking values in the three-dimensional harmonic alge-
bra with two-dimensional radical by means of holomorphic functions of
the complex variable. Moreover, the infinite differentiability in the sense
of Gateaux of the mentioned monogenic functions is proved in [9]. Similar
results are established in the paper [10] for monogenic functions taking
values in the three-dimensional harmonic algebra with one-dimensional
radical.

Below, we consider monogenic functions taking values in the three-
dimensional harmonic semi-simple algebra and obtain results similar to
the mentioned results from the papers [9, 10].

2. Preliminaries. Let A1 be a three-dimensional commutative associa-
tive Banach algebra over the field of complex numbers C and let {I1, I2, I3}
be a basis of the algebra A1 with the multiplication table

Ik
2 = Ik, IkIj = 0, k, j = 1, 2, 3, k ̸= j .

Here 1 = I1 + I2 + I3.
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Algebra A1 is harmonic (see [8, p. 38]) because there exist harmonic
bases {e1, e2, e3} in A1. All harmonic bases in A1 are described in Theorem
1.10 [8]. In particular, a basis {e1, e2, e3} is harmonic if decompositions of
its elements with respect to the basis {I1, I2, I3} are of the form

e1 = I1 + I2 + I3,

e2 = n1I1 + n2I2 + n3I3,

e3 = m1I1 +m2I2 +m3I3,

(4)

where nk and mk for k = 1, 2, 3 are complex numbers satisfying the rela-
tions

1 + n21 +m2
1 = 0, 1 + n22 +m2

2 = 0, 1 + n23 +m2
3 = 0,

n1(m2 −m3) + n2(m3 −m1) + n3(m1 −m2) ̸= 0.

Let E3 := {ζ = xe1 + ye2 + ze3 : x, y, z ∈ R} be a linear span in A1

over the field of real numbers R. In what follows, ζ = xe1 + ye2 + ze3 and
x, y, z ∈ R.

Let Ω be a domain in E3. We say that a continuous function Φ : Ω → A1

is monogenic in Ω if Φ is differentiable in the sense of Gateaux in every
point of Ω, i.e. if for every ζ ∈ Ω there exists an element Φ′(ζ) ∈ A1 such
that

lim
ε→0+0

(Φ(ζ + εh) − Φ(ζ)) ε−1 = hΦ′(ζ) ∀h ∈ E3.

Φ′(ζ) is the Gateaux derivative of the function Φ in the point ζ.
Consider the decomposition of a function Φ : Ω → A1 with the respect

to the basis {e1, e2, e3}:

Φ(ζ) =
3∑
j=1

Uj(x, y, z)ej . (5)

If the functions Uj are R-differentiable in ΩR := {(x, y, z) : xe1 + ye2 +
ze3 ∈ Ω} for j = 1, 2, 3, i.e.

Uj(x+△x, y+△y, z+△z)−Uj(x, y, z) =
∂Uj
∂x

∆x+
∂Uj
∂y

∆y+
∂Uj
∂z

∆z+
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+ o
(√

(∆x)2 + (∆y)2 + (∆z)2
)
, (∆x)2 + (∆y)2 + (∆z)2 → 0 ,

then it is follows from Theorem 1.3 [8] that the function Φ is monogenic
in the domain Ω if and only if the following Cauchy – Riemann conditions
are satisfied in Ω:

∂Φ

∂y
=
∂Φ

∂x
e2,

∂Φ

∂z
=
∂Φ

∂x
e3.

It will be shown below that the components U1, U2, U3 of the decompo-
sition (5) of a monogenic function Φ : Ω → A1 are infinitely differentiable
in the domain ΩR.

The algebra A1 has three maximal ideals

Ik := {ζ =
3∑

j=1, j ̸=k

αkjIj , αkj ∈ C}, k = 1, 2, 3.

The radical of algebra A1 consists only of the zero element. Thus, A1

is a semi-simple algebra (see [11, p.133]).
Consider three linear functionals fk : A1 → C for k = 1, 2, 3 such that

fk(Ik) = 1, fk(Ij) = 0, j = 1, 2, 3, k ̸= j. (6)

It follows from (6) that the maximal ideal Ik is the kernel of functional
fk for k = 1, 2, 3. It is well known [11, p.135] that fk are multiplicative
functionals for all k = 1, 2, 3 .

From equations (4) and (6) we obtain the following relations:

fk(ζ) = fk(xe1 + ye2 + ze3) = x+ nky +mkz := ξk, k = 1, 2, 3.

It follows from the equality

ζ−1 =
1

ξ1
I1 +

1

ξ2
I2 +

1

ξ3
I3 . (7)

that the element ζ = x + ye2 + ze3 ∈ E3 is invertible in A1 if and only if
ξk ̸= 0 for k = 1, 2, 3.

It follows from the equality (7) that noninvertible elements form three
straight line in E3:

Lk : {te∗k : e∗k := (RenkImmk − ImnkRemk)e1 − Immke2+

+Imnke3 , t ∈ R}, k = 1, 2, 3.
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The straight lines L1, L2 and L3 have at least one common point 0 but
two of them may coincide. For example, for the harmonic basis

e1 = 1, e2 = iI1, e3 = iI2 − iI3. (8)

we have the equality L1 = {te3 : t ∈ R}, L2 = L3 = {te2 : t ∈ R}.

3. An auxiliary affirmations. We say that a domain Ω ⊂ E3 is
convex in the direction of the straight line L if Ω contains every segment
which is parallel to L and connects two points ζ1 , ζ2 ∈ Ω.

Lemma 1. Let a domain Ω ⊂ E3 be convex in the direction of the
straight line Lk for some k ∈ {1, 2, 3} and Φ : Ω → A1 be a monogenic
function in Ω. If ζ1, ζ2 ∈ Ω and ζ2 − ζ1 ∈ Lk then

Φ(ζ2) − Φ(ζ1) ∈ Ik. (9)

The relations (9) is proved in a such way as in the proof of Lemma 2.1
[12] where you must take Ω, Lk, fk instead of Ωζ , L, f , respectively.

Note that the condition of convexity of Ω in the direction of the line
Lk is essential for the truth of Lemma 1. We show it in an example, where
we construct both a domain Ω which is not convex in the direction of L1

and a monogenic function Φ : Ω → A1 for which the relation (9) is not
satisfied for some ζ1, ζ2 ∈ Ω such that ζ2 − ζ1 ∈ L1.

Example 1. Consider the harmonic basis (8). In this case L1 = {te3 :
t ∈ R} and ξ1 = x+ iy. Consider a domain Ω which is the union of sets

Ω1 := {xe1 + ye2 + ze3 ∈ E3 : |ξ1| < 2, 0 < z < 2,−π/4 < arg ξ1 < 3π/2},

Ω2 := {xe1 + ye2 + ze3 ∈ E3 : |ξ1| < 2, 2 ≤ z ≤ 4, π/2 < arg ξ1 < 3π/2},

Ω3 := {xe1 + ye2 + ze3 ∈ E3 : |ξ1| < 2, 4 < z < 6, π/2 < arg ξ1 < 9π/4}.

and is constructed similarly to the domain Ωζ in Example 2.5 [12]. It is
evident that the domain Ω ⊂ E3 is not convex in the direction of the
straight line L1.

In the domain {ξ1 ∈ C : |ξ1| < 2,−π/4 < arg ξ1 < 3π/2} of the complex
plane let us consider a holomorphic branch H1(ξ1) := ln |ξ1| + i arg ξ1 of
analytic function Ln ξ1 for which H1(1) = 0. In the domain {ξ1 ∈ C :
|ξ1| < 2, π/2 < arg ξ1 < 9π/4} let us consider a holomorphic branch
H2(ξ1) := ln |ξ1| + i arg ξ1 of function Ln ξ1 for which H2(1) = 2πi.
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Consider the extension Φ1 of function H1 into the set Ω1 ∪ Ω2 and the
extension Φ2 of function H2 into the set Ω2 ∪ Ω3 constructed with using
the following formulas:

Φ1(ζ) = H1(ξ1)I1 , Φ2(ζ) = H2(ξ1)I1 ,

where ζ = xe1 + ye2 + ze3.
Inasmuch as Φ1(ζ) ≡ Φ2(ζ) everywhere in Ω2, the function

Φ(ζ) :=

{
Φ1(ζ) for ζ ∈ Ω1 ∪ Ω2,

Φ2(ζ) for ζ ∈ Ω3

is monogenic in the domain Ω. At the same time, for the points ζ1 = e1+e3
and ζ2 = e1 + 5 e3 we have ζ2 − ζ1 ∈ L1 but

Φ(ζ2) − Φ(ζ1) = (H2(1) −H1(1))I1 = 2πiI1 /∈ I1 ,

i.e. the relation (9) is not fulfilled.
Now, let a domain Ω ⊂ E3 be convex in the direction of the straight

line Lk for all k ∈ {1, 2, 3} and Dk := fk(Ω) for k = 1, 2, 3 .
Let Ak be the linear operator which assigns a holomorphic function

Fk : Dk → C to every monogenic function Φ : Ω → A1 by the formula

Fk(ξk) = fk(Φ(ζ)), (10)

where ζ = xe1 + ye2 + ze3 and ξk = fk(ζ) for k = 1, 2, 3. It follows from
Lemma 1 that the value Fk(ξk) does not depend on a choice of a point ζ
for which fk(ζ) = ξk for all k ∈ {1, 2, 3}.

Similar operators A which map monogenic functions taking values in
certain commutative algebras onto holomorphic functions of the complex
variable are explicitly constructed in the papers [9, 13, 14]. Furthermore,
principal extensions of holomorphic functions of the complex variable are
used there as generalized inverse operators A(−1) satisfying the equality
AA(−1)A = A. It was also established for every monogenic function Φ that
values of the monogenic function Φ−A(−1)AΦ belong to a certain maximal
ideal I of given algebra. Finally, after describing all monogenic functions
taking values in the ideal I, constructive descriptions of monogenic func-
tions taking values in the mentioned algebras by means of holomorphic
functions of the complex variable are obtained in the papers [9, 14].
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Note that principal extensions of holomorphic functions of the complex
variable into domains of the linear span E3 ⊂ A1 are explicitly constructed
in Theorem 1.11 [8].

But operators generalized inverse to the operators Ak for k = 1, 2, 3 can
not be expressed in the form of principal extensions of holomorphic func-
tions of the complex variable. Indeed, in the general case, the mentioned
principal extensions are not defined in the domain Ω where monogenic
functions Φ : Ω → A1 are given.

We proceed to constructing operators which are generalized inverse to
the operators Ak for k = 1, 2, 3.

Let Bk be the operator which assigns a function Φk : Ω → A1 to every
holomorphic function Fk : Dk → C by the formula

Φk(ζ) = Fk(ξk)Ik, ξk = fk(ζ) , ∀ ζ ∈ Ω . (11)

Lemma 2. Let a domain Ω ⊂ E3 be convex in the direction of the
straight line Lk for some k ∈ {1, 2, 3} and the function Fk : Dk → C
be holomorphic in the domain Dk. Then the function (11) is monogenic
in the domain Ω, and the Gateaux n-th derivatives Φ

(n)
k are monogenic

functions in Ω for any n.

Proof. Let h := h1e1 + h2e2 + h3e3 ∈ E3 be an arbitrary nonzero
element. Denote η := fk(h1e1 + h2e2 + h3e3) = h1 + nkh2 +mkh3, where
nk and mk are the coefficients of the decomposition (4). It is follows from
this denotation and the decomposition (4) that ηIk = hIk.

We find the limit

lim
ε→0+0

Φk(ζ + εh) − Φk(ζ)

ε
= Ik lim

ε→0+0

Fk(ξk + εη) − Fk(ξk)

ε
=

= ηIk lim
ε→0+0

Fk(ξk + εη) − Fk(ξk)

εη
= hIkF

′
k(ξk) = hΦ′

k(ζ),

where Φ′
k(ζ) = F ′

k(ξk)Ik.
Thus, the function (11) is monogenic in the domain Ω. In a similar

way we establish that the Gateaux n-th derivatives Φ
(n)
k are monogenic

functions in Ω for any n. The lemma is proved.

It follows from Lemma 2 that the operator Bk is generalized inverse to
the operator Ak for all k = 1, 2, 3.
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3. A constructive description of monogenic functions taking
values in the algebra A1. The following analogue of Theorem 1 [9] (see
also Theorem 2.4 [8]) holds true for monogenic functions Φ : Ω → A1.

Theorem 1. Let a domain Ω ⊂ E3 be convex in the direction of
the straight line Lk for all k ∈ {1, 2, 3}. Then every monogenic function
Φ : Ω → A1 can be expressed in the form

Φ(ζ) = BkAkΦ(ζ) + Φ0k(ζ), k = 1, 2, 3 ,

where Φ0k(ζ) is a monogenic in Ω function taking values in the ideal Ik.
Proof. Consider the function Φ01 = Φ − BkAkΦ which is monogenic

in Ω due to Lemma 2. Taking into account the equalities (10), (11), (6),
we obtain

f1(Φ01(ζ)) = f1(Φ(ζ) −BkAkΦ(ζ)) = f1(Φ(ζ)) − f1(BkAkΦ(ζ)) =

= F1(ξ1) − F1(ξ1) = 0.

Thus, Φ01(ζ) ∈ I1. The theorem is proved.

The following theorem describes all monogenic functions taking values
in the ideals Ik , k = 1, 2, 3.

Theorem 2. Let a domain Ω ⊂ E3 be convex in the direction of
the straight line Lk for all k ∈ {1, 2, 3}. Then every monogenic function
Φ0k : Ω → Ik can be expressed in the form

Φ0k(ζ) =

3∑
j=1, j ̸=k

Fj(ξj)Ij ∀ ζ ∈ Ω , k = 1, 2, 3,

where ξj = fj(ζ) and Fj is a function holomorphic in the domain Dj.
Proof. Inasmuch as Φ0k is a monogenic function taking values in the

ideal Ik,

Φ0k(ζ) =
3∑

j=1, j ̸=k

Vj(x, y, z)Ij , (12)

where Vj : ΩR → C.
Acting onto the equality (12) by the operator Aj with j = 1, 2, 3, j ̸= k,

and taking into account the equalities (10), (6), we obtain the equality
AjΦ0k = Vj . At the same time, AjΦ0k is a function Fj holomorphic in
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the domain Dj due to the definition of the operator Aj . The theorem is
proved.

It follows from Theorem 1, Theorem 2 and the equality (11) that in an
arbitrary domain Ω convex in the direction of the straight line Lk for all
k ∈ {1, 2, 3}, every monogenic function Φ(ζ) can be explicitly constructed
with using three holomorphic functions in the form:

Φ(ζ) = F1(ξ1)I1 + F2(ξ2)I2 + F3(ξ3)I3, (13)

where ξj = fj(ζ) and Fj is a function holomorphic in the domain Dj for
j = 1, 2, 3.

A similar result is established for analytic functions of a bicomplex
variable in any domain of the Segre algebra without an assumption about
convexity of domain in the direction of any straight lines (see, for example,
[2, 3]). In contrast to it, the condition of convexity of Ω in the direction of
the straight line Lk for all k ∈ {1, 2, 3} is essential for monogenic functions
Φ : Ω → A1 to be represented in the form (13) as it follows from Example 1.

The following statement follows from the equality (13) because its right-
hand part is a monogenic function in the domain ∆ := {ζ = xe1+ye2+ze3 :
fk(ζ) ∈ Dk, k = 1, 2, 3}.

Theorem 3. Let a domain Ω ⊂ E3 be convex in the direction of the
straight line Lk for all k ∈ {1, 2, 3} and a function Φ : Ω → A1 be mono-
genic in Ω. Then Φ can be continued to a function monogenic in the do-
main ∆.

The following statement is true for monogenic functions in an arbitrary
domain Ω.

Theorem 4. For every monogenic function Φ : Ω → A1 in an arbitrary
domain Ω, the Gateaux n-th derivatives Φ(n) are monogenic functions in
Ω for any n.

Proof. Consider a ball f ⊂ Ω with the center in an arbitrary point
ζ0 = x0e1 + y0e2 + z0e3 ∈ Ω. Inasmuch as f is a convex set, in the
neighbourhood f of the point ζ0 we have the equality (13). Now, the
statement of theorem follows from Lemma 2.

Now, we can state that every monogenic function Φ : Ω → A1 satisfies
the equalities (3) in Ω due to Theorem 4 and the equality (2), i.e. the
components U1, U2, U3 from (5) satisfy the three-dimensional Laplace
equation in the domain ΩR .
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