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We give some refinements to the previous results of Lelong, Avanissian,
Arsove and ours, concerning the subharmonicity of separately subharmonic
functions.

1. Introduction. It is well-known that a separately subharmonic func-
tion need not be subharmonic, see Wiegerinck [1], Theorem, p. 770, and
also Wiegerinck and Zeinstra [2], Theorem 1, p. 246. On the other hand,
Lelong [3], Théorème 1 bis, p. 315, and Avanissian [4], Théorème 9, p. 140,
see also [5], Proposition 3, p. 24, and [6], Theorem, p. 31, showed that
a separately subharmonic function is subharmonic provided it is locally
bounded above. According to Arsove [7], Theorem 1, p. 622, it is sufficient
to suppose that the function has locally an L1-integrable majorant. Later
we gave the following improvement:

Theorem ([8], Theorem 1, p. 69). Let Ω be a domain in Rm+n,
m,n ≥ 2. Let u : Ω → [−∞,+∞) be such that

(a) for each y ∈ Rn the function

Ω(y) ∋ x 7→ u(x, y) ∈ [−∞,+∞)

is subharmonic,

(b) for each x ∈ Rm the function

Ω(x) ∋ y 7→ u(x, y) ∈ [−∞,+∞)

is subharmonic,
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(c) for some p > 0 there is a function v ∈ Lploc(Ω) such that u ≤ v.

Then u is subharmonic in Ω.

Our proof was based on a generalized mean value inequality for subhar-
monic functions, see [9], Lemma, p. 172 (for absolute values of harmonic
functions), [8], Lemma, p. 69, [10], Theorem 1, p. 19, [11], Theorem, p. 188,
and the references therein, see also [12], pp. 349, 350. For a different proof,
based on distribution theory, see [13], Theorem 1.1, pp. 79 – 81.

Observe that still further improvements exist. Armitage and Gardiner
gave a result [14], Theorem 1, pp. 255, 256, which includes all previous
related results and which is even close to being sharp. With the aid of
quasinearly subharmonic functions it was, however, possible to generalize
and improve their result still slightly further, see [15], Theorem 4.1 and
Corollary 4.5, pp. 8, 9, 13, and [16], Theorem 3.3.1 and Corollary 3.3.3,
pp. e2621, e2622. See also [17], p. 184.

Since the results of Armitage and Gardiner and ours are both somewhat
complicated, it is worthwhile to give further improvements also to the
above concise Theorem. Recall here also that proofs of these newer results
are based on Lelong’s and Avanissian’s result, or on Arsove’s result, or on
the above Theorem.

Our improvement to the above Theorem will be given in Corollary 2. We
begin, however, with Theorem 1 and Theorem 2, where we generalize our
previous results [18], Theorem 3.1, Corollary 3.2, Corollary 3.3, pp. 58, 59,
61 – 63, and [16], Theorem 3.2.2, Corollary 3.2.4, Corollary 3.2.5, pp. e2620,
e2621, by replacing, among others, the previously used quasinearly subhar-
monic n.s. (quasinearly subharmonic in the narrow sense) functions with
quasinearly subharmonic functions.

The methods and ideas of the proofs have their roots already in [8] and
[18], see also [19] and [20]. The proofs are rather simple, especially when
compared with the proofs of the already cited older results.

For the notation and the definitions used, see e.g. [19, 20, 18, 15, 21, 16,
12], and [22, 6] and [23]. For the convenience of the reader we, nevertheless,
recall here some of definitions used below.

Let D be a domain in RN , N ≥ 2. An upper semicontinuous function
u : D → [−∞,+∞) is subharmonic if for all BN (x, r) ⊂ D,

u(x) ≤ 1

νN rN

∫
BN (x,r)

u(y) dmN (y).
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The function u ≡ −∞ is considered subharmonic.
We say that a function u : D → [−∞,+∞) is nearly subharmonic, if u

is Lebesgue measurable, u+ ∈ L1
loc(D), and for all BN (x, r) ⊂ D,

u(x) ≤ 1

νN rN

∫
BN (x,r)

u(y) dmN (y).

Observe that in the standard definition of nearly subharmonic functions
one uses the slightly stronger assumption that u ∈ L1

loc(D), see e.g. [6],
p. 14. However, our above, slightly more general definition seems to be
more practical. See [18], pp. 51, 52, and [16], pp. e2613, e2614.

Proceeding as in [6], proof of Theorem 1, pp. 14, 15, (and referring also
to [18], Proposition 2.1 and Proposition 2.2, pp. 54, 55, or [16], Proposi-
tion 1.5.1 and Proposition 1.5.2, p. e2615) one gets:

Lemma. Let D be a domain in RN , N ≥ 2. Let u : D → [−∞,+∞)
be Lebesgue measurable. Then u is nearly subharmonic in D if and only
if there exists a function u∗, subharmonic in D such that u∗ ≥ u and
u∗ = u almost everywhere in D. Here u∗ is the lowest upper semicontinu-
ous majorant of u:

u∗(x) = lim sup
x′→x

u(x′).

u∗ is called the regularized subharmonic function to u.

We say that a Lebesgue measurable function u : D → [−∞,+∞) is
K-quasinearly subharmonic, if u+ ∈ L1

loc(D) and if there is a constant K =

= K(N, u,D) ≥ 1 such that for all x ∈ D and r > 0 such that BN (x, r) ⊂
⊂ D, one has

uM (x) ≤ K

νN rN

∫
BN (x,r)

uM (y) dmN (y)

for all M ≥ 0, where uM := max{u,−M} + M . A function u : D →
[−∞,+∞) is quasinearly subharmonic, if u is K-quasinearly subharmonic
in D for some K ≥ 1.

Observe that a function u : D → [−∞,+∞) is 1-quasinearly subhar-
monic if and only if it is nearly subharmonic.
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2. Results. In the proofs below we need the following result:

Proposition ([18], Proposition 3.1, pp. 57, 58, and [16], Proposi-
tion 3.2.1, p. e2620). Let Ω be a domain in Rm+n, m,n ≥ 2, and let
K1,K2 ≥ 1. Let u : Ω → [−∞,+∞) be a Lebesgue measurable function
such that

(a) for each y ∈ Rn the function

Ω(y) ∋ x 7→ u(x, y) ∈ [−∞,+∞)

is K1-quasinearly subharmonic,

(b) for almost every x ∈ Rm the function

Ω(x) ∋ y 7→ u(x, y) ∈ [−∞,+∞)

is K2-quasinearly subharmonic,

(c) there exists a non-constant permissible function ψ : [0,+∞) →
[0,+∞) such that ψ ◦ u+ ∈ L1

loc(Ω).

Then u is 4m+nνm+nK1K2

νm νn
-quasinearly subharmonic in Ω.

For the definition of permissible functions, see [19], p. 159, [20], p. 231,
232, [18], p. 54, [16], p. e2615, and [21], Lemma 1 and Remark 1, pp. 92,
93. We list here only some examples of permissible functions: ψ1(t) = tp,
p > 0, and ψ2(t) = c tpα[log(δ + tpγ)]β , c > 0, 0 < α < 1, δ ≥ 1, β, γ ∈ R
such that 0 < α+β γ < 1, and p ≥ 1. Also functions of the form ψ3 = ϕ◦φ,
where ϕ : [0,+∞) → [0,+∞) is a concave surjection whose inverse ϕ−1

satisfies the ∆2-condition and φ : [0,+∞) → [0,+∞) is an increasing,
convex function satisfying the ∆2-condition, are permissible. Recall that
a function φ : [0,+∞) → [0,+∞) satisfies the ∆2-condition, if there is a
constant C = C(φ) ≥ 1 such that φ(2t) ≤ C φ(t) for all t ∈ [0,+∞).

The following result improves [18], Theorem 3.1, pp. 58, 59, and [16],
Theorem 3.2.2, p. e2620:

Theorem 1. Let Ω be a domain in Rm+n, m,n ≥ 2, and let K ≥ 1.
Let u : Ω → [−∞,+∞) be a Lebesgue measurable function such that

(a) for each y ∈ Rn the function

Ω(y) ∋ x 7→ u(x, y) ∈ [−∞,+∞)

is 1-quasinearly subharmonic,
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(b) for almost every x ∈ Rm the function

Ω(x) ∋ y 7→ u(x, y) ∈ [−∞,+∞)

is K-quasinearly subharmonic,

(c) there exists a non-constant permissible function ψ : [0,+∞) →
[0,+∞) such that ψ ◦ u+ ∈ L1

loc(Ω).

Then u is K-quasinearly subharmonic in Ω.
Proof. By the above Proposition u is quasinearly subharmonic and

thus locally integrable in Ω.
Take M ≥ 0 arbitrarily, and write uM := max{u,−M}+M . It remains

to show that for all (a, b) ∈ Ω and R > 0 such that Bm+n((a, b), R) ⊂ Ω,

uM (a, b) ≤ K

νm+nRm+n

∫
Bm+n((a,b),R)

uM (x, y)dmm+n(x, y).

To see this, we just proceed in the following standard way, see e.g. [6],
proof of Theorem a), pp. 32, 33:

K

νm+nRm+n

∫
Bm+n((a,b),R)

uM (x, y)dmm+n(x, y) =

=
νn

νm+nRm+n

∫
Bm(a,R)

[(R2− | x− a |2)
n
2 ×

× K

νn(R2− | x− a |2)
n
2

∫
Bn(b,

√
R2−|x−a|2)

uM (x, y)dmn(y)]dmm(x) ≥

≥ νn
νm+nRm+n

∫
Bm(a,R)

(R2− | x− a |2)
n
2 uM (x, b)dmm(x) ≥ uM (a, b).

Above we have used, in addition to the fact that, for almost every x ∈ Rm,
the functions uM (x, ·) are K-quasinearly subharmonic, also the following
lemma. (Observe that the proof of the Lemma, see [6], proof of Theo-
rem 2 a), p. 15, works also in our slightly more general situation.)

Lemma ([6], Theorem 2 a), p. 15). Let v be nearly subharmonic (in
the generalized sense, defined above) in a domain U of RN , N ≥ 2, ψ ∈
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∈ L∞(RN ), ψ ≥ 0, ψ(x) = 0 when | x |≥ α and ψ(x) depends only on | x |.
Then ψ⋆v ≥ v and ψ⋆v is subharmonic in Uα, provided

∫
ψ(x)dmN (x) =

= 1, where Uα = {x ∈ U : BN (x, α) ⊂ U}.

Corollary 1 ([18], Corollary 3.1, p. 59, and [16], Corollary 3.2.3,
pp. e2620, e2621). Let Ω be a domain in Rm+n, m,n ≥ 2. Let u : Ω →
[−∞,+∞) be a Lebesgue measurable function such that

(a) for each y ∈ Rn the function

Ω(y) ∋ x 7→ u(x, y) ∈ [−∞,+∞)

is nearly subharmonic,

(b) for almost every x ∈ Rm the function

Ω(x) ∋ y 7→ u(x, y) ∈ [−∞,+∞)

is nearly subharmonic,

(c) for some p > 0 there is a function v ∈ Lploc(Ω) such that u ≤ v.

Then u is nearly subharmonic in Ω.

Then an improvement to [18], Corollary 3.2 and Corollary 3.3, p. 61,
and [16], Corollary 3.2.4 and Corollary 3.2.5, p. e2621:

Theorem 2. Let Ω be a domain in Rm+n, m,n ≥ 2, and let K1,K2 ≥
≥ 1. Let u : Ω → [−∞,+∞) be such that

(a) for each y ∈ Rn the function

Ω(y) ∋ x 7→ u(x, y) ∈ [−∞,+∞)

is K1-quasinearly subharmonic, and, for almost every y ∈ Rn, sub-
harmonic,

(b) for each x ∈ Rm the function

Ω(x) ∋ y 7→ u(x, y) ∈ [−∞,+∞)

is upper semicontinuous, and, for almost every x ∈ Rm, K2-
quasinearly subharmonic,
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(c) there exists a non-constant permissible function ψ : [0,+∞) →
[0,+∞) such that ψ ◦ u+ ∈ L1

loc(Ω).

Then for each (a, b) ∈ Ω,

lim sup
(x,y)→(a,b)

u(x, y) ≤ K1K2 u
+(a, b).

Proof. By [18], Lemma, pp. 59, 60, u is measurable. By the above
Proposition u and thus also u+ are quasinearly subharmonic and thus
locally bounded above. Clearly u+ satisfies the assumptions of the theorem.
It is sufficient to show that for any (a, b) ∈ Ω,

lim sup
(x,y)→(a,b)

u+(x, y) ≤ K1K2 u
+(a, b).

Take (a, b) ∈ Ω and R1 > 0 and R2 > 0 arbitrarily such that
Bm(a,R1) ×Bn(b,R2) ⊂ Ω. Choose an arbitrary λ ∈ R such that
u+(a, b) < λ. Since u+(a, ·) is upper semicontinuous, we find R′

2,
0 < R′

2 < R2, such that

1

νnR′n
2

∫
Bn(b,R′

2)

u+(a, y)dmn(y) < λ.

Using the fact that, for almost every y ∈ Rn, the function u+(·, y), is
subharmonic, we get

1

νmrm

∫
Bm(a,r)

u+(x, y)dmm(x) → u+(a, y) as r → 0.

Since u+ is locally bounded above, one can use Lebesgue Dominated Con-
vergence Theorem. Thus we find R′

1, 0 < R′
1 < R1, such that

1

νnR′n
2

∫
Bn(b,R′

2)

[
1

νmR′m
1

∫
Bm(a,R′

1)

u+(x, y)dmm(x)]dmn(y) < λ.

Choose r1, 0 < r1 < R′
1, and r2, 0 < r2 < R′

2, arbitrarily. Then for
each (x, y) ∈ Bm(a, r1) ×Bn(b, r2),
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u+(x, y) ≤ K1

νm(R′
1 − r1)m

∫
Bm(x,R′

1−r1)

u+(ξ, y)dmm(ξ) ≤

≤ K1

νm(R′
1 − r1)m

∫
Bm(x,R′

1−r1)

[
K2

νn(R′
2 − r2)n

∫
Bn(y,R′

2−r2)

u+(ξ, η)dmn(η)

]
dmm(ξ) ≤

≤ K2

νn(R′
2 − r2)n

∫
Bn(y,R′

2−r2)

[
K1

νm(R′
1 − r1)m

∫
Bm(x,R′

1−r1)

u+(ξ, η)dmm(ξ)

]
dmn(η) ≤

≤
(

R′
1

R′
1 − r1

)m (
R′

2

R′
2 − r2

)n
K1K2

1

νnR′n
2

×

×
∫

Bn(b,R′
2)

[
1

νmR′m
1

∫
Bm(a,R′

1)

u+(ξ, η)dmm(ξ)

]
dmn(η) <

<

(
R′

1

R′
1 − r1

)m (
R′

2

R′
2 − r2

)n
K1K2 λ .

Sending then r1 → 0, r2 → 0, one gets

lim sup
(x,y)→(a,b)

u+(x, y) ≤ K1K2 λ ,

concluding the proof.

Corollary 2. Let Ω be a domain in Rm+n, m,n ≥ 2. Let u : Ω →
[−∞,+∞) be such that

(a) for each y ∈ Rn the function

Ω(y) ∋ x 7→ u(x, y) ∈ [−∞,+∞)

is nearly subharmonic, and, for almost every y ∈ Rn, subharmonic,

(b) for each x ∈ Rm the function

Ω(x) ∋ y 7→ u(x, y) ∈ [−∞,+∞)

is upper semicontinuous, and, for almost every x ∈ Rm, (nearly)
subharmonic,

(c) for some p > 0 there is a function v ∈ Lploc(Ω) such that u ≤ v.

Then u is upper semicontinuous and thus subharmonic in Ω.
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Proof. It is easy to see that for each M ≥ 0, the function uM :=
:= max{u,−M} +M satisfies the assumptions of Theorem 2. Thus uM is
upper semicontinuos. Since by Corollary 1, uM is anyway nearly subhar-
monic, it is in fact subharmonic. Using then e.g. [6], a), p. 8, one sees that
u is subharmonic and thus also upper semicontinuos.

Remark. Observe that Corollary 2 is partially related to the result [6],
Proposition 2, pp. 34, 35: Though our assumptions are slightly stronger,
our proof is, on the other hand, different and shorter.
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[22] Brelot M. Éléments de la Théorie Classique du Potentiel. — Centre de
Documentation Universitaire, Paris, 1969 (Third Edition).

[23] Armitage D.H., Gardiner S. J. Classical Potential Theory. — Springer-
Verlag, London, 2001.


