УДК 517.5

V.S. Shpakivskyi, T.S. Kuzmenko

(Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev)
(Ivan Franko Zhytomyr State University)

Monogenic functions of double variable

shpakivskyi@mail.ru
kuzmenko.ts@mail.ru
Dedicated to memory of Professor Promarz M. Tamrazov

We establish a constructive description of twice-monogenic functions of double variable by means twice-differentiable functions of real variable.

Встановлено конструктивний опис двічі моногенних функцій подвійної змінної за допомогою двічі диференційовних функцій дійсної змінної.

1. Introduction. An effectiveness of analytic function methods applicable for researching plane potential fields inspires developing similar methods for other models of mathematical physics. In this paper we develop such methods for the wave equation

$$
\begin{equation*}
\frac{\partial^{2} F}{\partial x^{2}}-\frac{\partial^{2} F}{\partial y^{2}}=0 \tag{1}
\end{equation*}
$$

Let $\mathbb{P}:=\left\{x+j y: j^{2}:=1, x, y \in \mathbb{R}\right\}$ be the algebra of double numbers over the field of real numbers \mathbb{R} (see, e. g., $[1$, p. 52$]$). In the algebra \mathbb{P} there exists a basis $\left\{I_{1}, I_{2}\right\}$ such that $I_{1}^{2}=I_{1}, I_{2}^{2}=I_{2}, I_{1} I_{2}=0$ and $I_{1}+I_{1}=1$. In this case,

$$
\begin{equation*}
1=I_{1}+I_{2}, \quad j=I_{1}-I_{2} \tag{2}
\end{equation*}
$$

and obviously, $z=x+j y=(x+y) I_{1}+(x-y) I_{2}$. Algebraic operations with double numbers are defined by the usual way, and the division is defined for all elements of \mathbb{P} except the set of zero divisors $\{x+j y: y= \pm x\}$.

In many papers (see, e. g., $[1-7]$) differentiable functions in \mathbb{P} are studied, and their physical applications are considered. In this paper, in contrast to previous papers, we consider the differentiable functions in the sense of Gâteaux that is more weak assumption a priori.
2. Monogenic functions of double variable. We associate the set $D_{z}:=\{z=x+j y:(x, y) \in D\}$ in the plane \mathbb{P} with a set D of the twodimensional real space \mathbb{R}^{2}.

We say that a continuous function $\Phi: D_{z} \rightarrow \mathbb{P}$ is monogenic in a domain D_{z} if Φ is differentiable in the sense of Gateaux in every point of D_{z}, i. e. if for every $z \in D_{z}$ there exists an element $\Phi^{\prime}(z) \in \mathbb{P}$ such that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0+0}(\Phi(z+\varepsilon h)-\Phi(z)) \varepsilon^{-1}=h \Phi^{\prime}(z) \quad \forall h \in \mathbb{P} \tag{3}
\end{equation*}
$$

Theorem 1. Let $u(x, y), v(x, y)$ be differentiable functions in a domain $D \subset \mathbb{R}^{2}$. A function $\Phi: D_{z} \rightarrow \mathbb{P}$ of the form

$$
\begin{equation*}
\Phi(z)=u(x, y)+j v(x, y) \tag{4}
\end{equation*}
$$

is monogenic in a domain D_{z} if and only if the following conditions are fulfilled in D:

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=\frac{\partial v}{\partial x} . \tag{5}
\end{equation*}
$$

The conditions (5) are analogous to the Cauchy - Riemann conditions.
It is easy see that all elementary functions introduced in the paper [5, p. 64] are monogenic.

Let Γ be a Jordan rectifiable curve in the plane \mathbb{R}^{2}. For a function $\Phi: \Gamma_{z} \rightarrow \mathbb{P}$ of the form (4) we define an integral along the curve Γ_{z} by the equality

$$
\begin{equation*}
\int_{\Gamma_{z}} \Phi(z) d z:=\int_{\Gamma} u d x+v d y+j \int_{\Gamma} v d x+u d y . \tag{6}
\end{equation*}
$$

The following analogue of the Cauchy theorem is proved in a such way as in the complex analysis (see, e.g., [8, p. 88]).

Theorem 2. Suppose that a domain D is bounded by a closed Jordan rectifiable curve Γ, and the functions $u(x, y), v(x, y)$ are continuously differentiable in D. Suppose also that a function $\Phi: D_{z} \rightarrow \mathbb{P}$ of the form (4) is monogenic in the domain D_{z} and continuous in the closure \bar{D}_{z}. Then

$$
\int_{\Gamma_{z}} \Phi(z) d z=0 .
$$

It is easy to prove the following analogue of Morera theorem for functions taking values in the algebra \mathbb{P}.

Theorem 3. If a function $\Phi: D_{z} \rightarrow \mathbb{P}$ is continuous in a simply connected domain D_{z} and satisfies the equality

$$
\begin{equation*}
\int_{T_{z}} \Phi(z) d z=0 \tag{7}
\end{equation*}
$$

for every triangle $T_{z} \subset D_{z}$, then Φ is monogenic in the domain D_{z}.
3. Relation between twice-monogenic functions and the wave equation. Twice continuously differentiable solutions of the equation (1) are called wave functions. Denote by $C^{2}(D)$ the set of all twice continuously differentiable functions in a domain D. We say that $\Phi: D_{z} \rightarrow \mathbb{P}$ is a twice-monogenic function if the Gateaux derivative Φ^{\prime} is continuous and differentiable in the sense of Gateaux in the domain D_{z}.

The next theorem follows from the conditions (5).
Theorem 4. Let a function of the form (4) be twice-monogenic in a domain D_{z}, and $u, v \in C^{2}(D)$. Then u and v are wave functions in D.

Two wave functions $u(x, y), v(x, y)$ is called conjugate if they are related by the conditions (5).

Theorem 5. Let $u(x, y)$ be a wave function in a simple connected domain D. Then there exist one (accurate to a real constant) wave function $v(x, y)$ conjugate to $u(x, y)$ in the domain D.

Proof. Consider the integral

$$
\begin{equation*}
v_{0}(x, y)=\int_{z_{0}}^{z} \frac{\partial u}{\partial y} d x+\frac{\partial u}{\partial x} d y \tag{8}
\end{equation*}
$$

where $z_{0}:=z_{0}+j y_{0}$ is a fixed point and $z=x+j y$ is an arbitrary point in D_{z}.

Since $u(x, y)$ is a wave function, then $\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y}\right)$. Therefore, the integral (8) does not depend on the way of integration and is a function of the point z only. Taking it into account, in the following equalities the integral is taken from z to $z+h$ along the segment on which $d y=0$:

$$
\frac{\partial v_{0}}{\partial x}=h^{-1} \lim _{h \rightarrow 0}\left[v_{0}(x+h, y)-v_{0}(x, y)\right]=h^{-1} \lim _{h \rightarrow 0} \int_{z}^{z+h} \frac{\partial u}{\partial y} d x=\frac{\partial u}{\partial y}
$$

The equality $\frac{\partial v_{0}}{\partial y}=\frac{\partial u}{\partial x}$ can be proved similarly.
Thus, $v_{0}(x, y)$ is a wave function conjugate to $u(x, y)$, and $v(x, y)=$ $=v_{0}(x, y)+C$ with a real constant C.
4. Constructive description of twice-monogenic functions. Now we construct a representation of any twice-monogenic function using two differentiable functions of a real variable.

Note that the sets $\mathcal{I}_{1}:=\left\{\lambda_{1} I_{1}: \lambda_{1} \in \mathbb{R}\right\}, \mathcal{I}_{2}:=\left\{\lambda_{2} I_{2}: \lambda_{2} \in \mathbb{R}\right\}$ are maximal ideals in the algebra \mathbb{P}. Consider the linear functionals f_{1} and f_{2} defined on \mathbb{P}, whose kernel is the ideals \mathcal{I}_{1} and \mathcal{I}_{2}, respectively:

$$
\begin{array}{ll}
f_{1}\left(I_{1}\right)=0, & f_{1}\left(I_{2}\right)=1, \\
f_{2}\left(I_{1}\right)=1, & f_{2}\left(I_{2}\right)=0 .
\end{array}
$$

Therefore, $f_{1}(z)=x-y, f_{2}(z)=x+y$. It is obvious that $f_{1}(\alpha)=f_{2}(\alpha)=$ $=\alpha$ for all $\alpha \in \mathbb{R}$. Note that the functionals f_{1}, f_{2} are continuous and multiplicative.

A domain D is called convex in the direction of the straight line L, if it contains each segment that connects two points of D and is parallel to the straight line L.

In the case where a segment l is parallel to a straight line L in \mathbb{R}^{2}, we shall say that the segment l_{z} is parallel to the straight line L_{z} in \mathbb{P}.

Denote by L^{1} and L^{2} the straight lines $y=x$ and $y=-x$, respectively. For $z_{1}, z_{2} \in \mathbb{P}$ and $z_{1} \neq z_{2}$, denote by $\left[z_{1} z_{2}\right]$ the segment connecting the points z_{1} and z_{2}.

Lemma. 1) Let a domain $D \subset \mathbb{R}^{2}$ be convex in the direction of the straight line L^{1} and a function of the form (4) be twice-monogenic in D_{z}, and $u, v \in C^{2}(D)$. If the points $z_{1}, z_{2} \in D_{z}$ are such that the segment $\left[z_{1} z_{2}\right]$ is parallel to L_{z}^{1}, then $\Phi\left(z_{2}\right)-\Phi\left(z_{1}\right) \in \mathcal{I}_{1}$.
2) Let a domain $D \subset \mathbb{R}^{2}$ be convex in the direction of the straight line L^{2} and a function of the form (4) be twice-monogenic in D_{z}, and $u, v \in C^{2}(D)$. If the points $z_{1}, z_{2} \in D_{z}$ are such that the segment $\left[z_{1} z_{2}\right]$ is parallel to L_{z}^{2}, then $\Phi\left(z_{2}\right)-\Phi\left(z_{1}\right) \in \mathcal{I}_{2}$.

Proof. Consider the case 1) of Lemma. In this case there exists a real number λ such that $z_{2}=z_{1}+2 \lambda I_{1}$ and $\left[z_{1} z_{2}\right]$ is completely contained in D. Since $\left\{I_{1}, I_{2}\right\}$ is a basis in \mathbb{P}, the following decomposition is true:

$$
\Phi\left(z_{1}\right)-\Phi\left(z_{2}\right)=\alpha I_{1}+\beta I_{2},
$$

where $\alpha, \beta \in \mathbb{R}$.

To complete the proof, it is sufficient to show that $\beta=0$. Using the equalities (2), we have:

$$
\begin{gathered}
\Phi\left(z_{1}\right)-\Phi\left(z_{2}\right)=\Phi\left(z_{1}\right)-\Phi\left(z_{1}+2 \lambda I_{1}\right)=u\left(x_{1}, y_{1}\right)+j v\left(x_{1}, y_{1}\right)- \\
-u\left(x_{1}+\lambda, y_{1}+\lambda\right)-j v\left(x_{1}+\lambda, y_{1}+\lambda\right)=\alpha I_{1}+\beta I_{2}=\frac{1}{2}(\alpha+\beta)+\frac{1}{2} j(\alpha-\beta),
\end{gathered}
$$

whence we obtain the system of equations

$$
\left\{\begin{align*}
u\left(x_{1}, y_{1}\right)-u\left(x_{1}+\lambda, y_{1}+\lambda\right) & =\frac{1}{2}(\alpha+\beta) \tag{9}\\
v\left(x_{1}, y_{1}\right)-v\left(x_{1}+\lambda, y_{1}+\lambda\right) & =\frac{1}{2}(\alpha-\beta)
\end{align*}\right.
$$

Since the integral (8) does not depend on a way of integration but depend on the endpoint only, and since $u(x, y), v(x, y)$ are conjugate wave functions, we obtain

$$
v\left(x_{1}, y_{1}\right)-v\left(x_{1}+\lambda, y_{1}+\lambda\right)=-\int_{z_{1}}^{z_{1}+2 \lambda I_{1}} \frac{\partial u}{\partial y} d x+\frac{\partial u}{\partial x} d y
$$

Since $d x=d y$ along the segment $\left[z_{1} z_{2}\right]$, then

$$
\begin{gather*}
v\left(x_{1}, y_{1}\right)-v\left(x_{1}+\lambda, y_{1}+\lambda\right)=-\int_{z_{1}}^{z_{1}+2 \lambda I_{1}} \frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial x} d x= \\
=-\int_{z_{1}}^{z_{1}+2 \lambda I_{1}} d u=-u\left(x_{1}+\lambda, y_{1}+\lambda\right)+u\left(x_{1}, y_{1}\right) \tag{10}
\end{gather*}
$$

It follows from the equality (10) and the system of equation (9) that

$$
\alpha+\beta=\alpha-\beta
$$

whence $\beta=0$. The statement 1) of Lemma is proved. The statement 2) is similarly proved.

Let a domain $D \subset \mathbb{R}^{2}$ be convex in the directions of the straight lines L_{1} and L_{2}. Then $\Delta_{1}:=f_{1}\left(D_{z}\right), \Delta_{2}:=f_{2}\left(D_{z}\right)$ are intervals on the real axis. Consider the linear operators A_{1} and A_{2} that assign the functions
$F_{1}: \Delta_{1} \rightarrow \mathbb{R}$ and $F_{2}: \Delta_{2} \rightarrow \mathbb{R}$, respectively, to every twice-monogenic function $\Phi: D_{z} \rightarrow \mathbb{P}$ by the formulas $F_{1}\left(t_{1}\right):=f_{1}(\Phi(z))$ and $F_{2}\left(t_{2}\right):=$ $:=f_{2}(\Phi(z))$, where $t_{1}:=f_{1}(z)=x-y$ and $t_{2}:=f_{2}(z)=x+y$.

It follows from Lemma that the values $F_{1}\left(t_{1}\right), F_{2}\left(t_{2}\right)$ do not depend on a choice of a point z for which $f_{1}(z)=t_{1}$ or $f_{2}(z)=t_{2}$.

Theorem 6. Let a domain $D \subset \mathbb{R}^{2}$ be convex in the directions of the straight lines L_{1} and L_{2}. Then every twice-monogenic in D_{z} function of the form (4) with $u, v \in C^{2}(D)$ can be represented in the form

$$
\begin{equation*}
\Phi(z)=F_{1}\left(t_{1}\right) I_{2}+F_{2}\left(t_{2}\right) I_{1} \tag{11}
\end{equation*}
$$

where $F_{1}\left(t_{1}\right)$ and $F_{2}\left(t_{2}\right)$ are certain twice-differentiable functions on the intervals Δ_{1} and Δ_{2}, respectively.

Proof. Let a function Φ have the form

$$
\begin{equation*}
\Phi(z)=U(x, y) I_{1}+V(x, y) I_{2} \tag{12}
\end{equation*}
$$

Acting by the linear functionals f_{1}, f_{2} on the equality (12), we obtain

$$
\begin{aligned}
& f_{1}(\Phi(z))=F_{1}\left(t_{1}\right)=V(x, y) \\
& f_{2}(\Phi(z))=F_{2}\left(t_{2}\right)=U(x, y)
\end{aligned}
$$

From these equalities and the equality (12) we obtain the representation (11). It remains to prove the twice-differentiability of functions $F_{1}\left(t_{1}\right)$ and $F_{2}\left(t_{2}\right)$.

From the representation (11) we obtain the equalities

$$
\begin{equation*}
F_{1}\left(t_{1}\right)=u(x, y)-v(x, y), \quad F_{2}\left(t_{2}\right)=u(x, y)+v(x, y) \tag{13}
\end{equation*}
$$

Since the functions u, v are twice-differentiable in D, the functions $F_{1}\left(t_{1}\right), F_{2}\left(t_{2}\right)$ are also twice-differentiable on the intervals Δ_{1}, Δ_{2}, respectively, due to the equalities (13). Theorem is proved.

Passing in the equality (11) to the basis $\{1, j\}$, we obtain the wave functions in the domain D :

$$
u(x, y)=\frac{1}{2}\left(F_{1}\left(t_{1}\right)+F_{2}\left(t_{2}\right)\right), \quad v(x, y)=\frac{1}{2}\left(F_{2}\left(t_{2}\right)-F_{1}\left(t_{1}\right)\right)
$$

that coincides with the well-known general solution of the wave equation (see, e. g., [9, p. 51]).

Note that the equality (11) can be rewritten as

$$
\Phi(z)=A_{1}(\Phi(z)) I_{2}+A_{2}(\Phi(z)) I_{1}
$$

Let $\Pi_{z}:=\left\{z \in \mathbb{P}: f_{1}(z)=\Delta_{1}\right\} \cap\left\{z \in \mathbb{P}: f_{2}(z)=\Delta_{2}\right\}$. The next theorem follows directly from the equality (11), where the right-hand part is a monogenic function in the rectangular domain Π_{z}.

Theorem 7. Let a domain $D \subset \mathbb{R}^{2}$ be convex in the directions of the straight lines L_{1} and L_{2}. Then every twice-monogenic in D_{z} function of the form (4) with $u, v \in C^{2}(D)$ can be extended to a function monogenic in the domain Π_{z}.

References

[1] Lavrentev M. A., Shabat B. V. Hydrodynamics problems and their mathematical models. - Moscow: Nauka, 1973. - 416 p. (in Russian).
[2] Vignaux J. C., Durañona Y., Vedia A. Sobre la teoria de las funciones de una variable compleja hiperbolica // Univ. Nac. La Plata. Publ. Fac. Ci. fis. mat. - 1935. - 104. - P. 139-183.
[3] Motter A. E., Rosa M. A. F. Hyperbolic calculus // Adv. in Appl. Clifford Algebras. - 1998. - 8, № 1. - P. 109-128.
[4] Kisil V. V., Biswas D. Elliptic, parabolic and hyperbolic analytic function theory-0: geometry of domains // Trans. of Institute of Mathematics, National Academy of Sciences of Ukraine. - 2004. - 1, № 3. - P. 100-118.
[5] Boccaletti D. etc. The mathematics of Minkowski space-time and an introduction to commutative hypercomplex numbers. - Springer, 2006. 181 p.
[6] Libine M. Hyperbolic Cauchy integral formula for the split complex numbers. - arXiv:0712.0375v1 [math-ph] 3 Dec 2007.
[7] Pavlov D. G., Kokarev S. S. h-holomorphic functions of the double variable and their applications // Hypercomplex numbers in geometry and physics. - 2010. - 7, № 1. - C. 44-77 (in Russian).
[8] Shabat B. V. Introduction to complex analysis. - Part 1. - Moscow: Nauka, 1976. - 320 p. (in Russian).
[9] Tikhonov A. N., Samarskii A. A. Equations of mathematical physics. Moscow: Nauka, 1977. - 736 p. (in Russian).

