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For the fixed membrane eigenvalues, G. Pólya and M. Schiffer [3] showed
that the sum of the first n reciprocal eigenvalues is minimal for the disk
among all domains which are images of the unit disk under normalized
conformal mappings. The aim of this paper is an analogous result for doubly
connected domains.

1. Introduction. Let D ⊂ R2 be a bounded doubly connected domain.
We consider the following eigenvalue problem

∆u+ λu = 0 in D
u = 0 on ∂D. (1)

It is well-known that there exists an infinity of eigenvalues with finite
multiplicity [1, 2]

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . .

Each eigenvalue is counted as many times as its multiplicity. For the cor-
responding eigenfunctions

u1, u2, u3, . . .

hold ∫
D

uiuj dAz = δij , i, j = 1, 2, . . . . (2)
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For simply connected planar domains with the maximal conformal ra-
dius 1 it was proven by G. Pólya and M. Schiffer [3] that for the eigenvalues
of (1) for any n holds

n∑
k=1

1

λk
≥

n∑
k=1

1

λ
(o)
k

, (3)

where λ(o) are the eigenvalues of the unit disc.
Many authors dealt with this problem among others J. Hersch, C. Ban-

dle, R. Laugesen and C. Morpurgo [1, 4, 2, 5, 6]. A new approach to this
problem was introduced in [5]. The main idea is to use the Green’s function
with Dirichlet boundary conditions for the variational characterization.

For the free membrane eigenvalues (3) was proven in [7, 8]. In [6] a
sharper of (3) is given for a simply connected domain with maximal con-
formal radius 1. The aim of this paper is to prove such an inequality for
doubly connected domains in the plane. Let f(z) =

∑∞
−∞ anz

n be an uni-
valent conformal mapping in the annulus U1R with f(U1R) = D, then the
main result is the following

n∑
j=1

1

λj
≥

n∑
j=1

1

λ
(o)
j

∫
U1R

u
(o)
j

2
|f ′(z)|2 dAz =

=

n∑
j=1

1

λ
(o)
j

∫
U1R

u
(o)
j

2
∞∑

n=−∞
n2|an|2|z|2n−2 dAz ≥ |a1|2

n∑
j=1

1

λ
(o)
j

with equality if and only if f(z) = a0z + a1z, where here are λ
(o)
j the

eigenvalues of the annulus and u
(o)
j are the eigenfunctions. According to

[5] we consider also
∞∑
j=1

1

λ2j

and can see that the annulus is a minimizer among all doubly connected
domains with the same modulus.

2. Annulus. By the Riemann mapping theorem, all simply connected
domains with more than one boundary point are conformally equivalent
to each other. An ideal standard domain in this situation is the interior
of a circle because all eigenfunction are known. It is well-known that no
exact equivalent of the Riemann mapping theorem holds in the multiply
connected case and that any doubly connected domain can be conformally
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mapped onto an annulus UrR = {r < |z| < R}. The ratio of the radii R/r
is called the modulus of the doubly connected domain and two doubly
connected domains are conformally equivalent if and only if the modulus
is the same. We choose for doubly connected domains the standard domain
U1R. The eigenfunctions of (1) for the annulus U1R are(

AmnJn(dmnr) +BmnYn(dmnr)

)
sinnφ,(

AmnJn(dmnr) +BmnYn(dmnr)

)
cosnφ,

for n,m = 0, 1, . . . , where Jn and Yn are Bessel functions of the first and
second type, respectively [9, 10], d2mn are the eigenvalues and Amn, Bmn
are appropriate coefficients such that (2) is realized. This is mentioned
in [11, p. 91] without any details. A complete discussion of (1) for the
annulus seems not appear in the literature although the structure of the
eigenfunctions is used often. We will give some of the essential details here.
In order to see this we recognize that for the annulus U1R an infinity set
of eigenfunctions un and eigenvalues λn exists with finite multiplicity sat-
isfying (1). Let G(z, ζ) be Green’s function of the Laplacian with Dirichlet
boundary conditions. It is a classical result that the Green’s function of the
annulus is given by ϑ-functions [12]. The eigenvalue problem (1) is equiv-
alent to the eigenvalue problem of the integral equation with the Green’s
function as the kernel and from this follows that all eigenfunctions un are
in C2(U1R) because Green’s function of the annulus satisfies all needed
conditions [13] and therefore we obtain

un(r, φ) =
an0
2

+
∞∑
j=1

anj cos jφ+ bnj sin jφ, for 1 < r < R, 0 ≤ φ ≤ 2π,

where the Fourier series converges for all r. It is

anj(r) =
1

2π

∫ 2π

0

un(r, φ) cos jφ dφ, j = 0, 1, . . . ,

bni(r) =
1

2π

∫ 2π

0

un(r, φ) sin iφ dφ, i = 1, 2, . . . ,

from which we see (anj(rφ))rr = 1
2π

∫ 2π

0
(un(r, φ))rr cos jφ dφ and an ana-

log for bni. In the case D = U1R we have for (1)

r2urr + uφφ + rur + λr2u = 0.
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Multiplying by cos jφ or sin iφ, we obtain after integration with respect to
φ from 0 to 2π

r2(anj)rr + r(anj)r + anj(r
2λ− j2) = 0, 1 < r < R, j = 0, 1, . . . ,

r2(bni)rr + r(bni)r + bni(r
2λ− i2) = 0, 1 < r < R, i = 1, 2, . . . ,

anj(1) = anj(R) = 0, bni(1) = bni(R) = 0,

where we have used integration by parts for the calculation of∫ 2π

0
uφφ cos jφdφ.

The differential equation above is Bessel’s equation and the general
solution is given as a linear combination of the Bessel functions Jj(r

√
λ),

Yj(r
√
λ) [9, 10] and it follows from the boundary conditions in (1)

AmnJn(dmn) +BmnYn(dmn) = 0, AmnJn(dmnR) +BmnYn(dmnR) = 0,

with d2mn = λ must be chosen to make the eigenfunctions vanish for
r = 1, r = R. A consequence of the existence of the set of eigenfunctions is
that a set of solutions dmn exists. What is left is to show the orthogonality
condition (2). For the same eigenvalue it follows from the orthogonality
of the trigonometrical functions and for different eigenvalues from a well-
known property of two solutions of Bessel’s equation. What we need in the
following is that for every eigenvalue either the eigenfunction is ra-
dial or the sum of the square of the two eigenfunctions belonging
to the same eigenvalue is radial.

3. The sum of all reciprocal eigenvalues. The eigenvalue problem
of the fixed membrane (1) in a doubly connected domain D in the plane
is conformally equivalent to the following problem in the annulus U1R =
= {z : 1 < |z| < R} with an appropriate R

∆u+ λu|f ′(z)|2 = 0 in U1R ,

u
∣∣
∂U1R

= 0 ,∫
U1R

uiuj |f ′(z)|2 dAz = δij , i, j = 1, 2, . . . ,

where f(z) maps U1R ontoD, ui denote the eigenfunctions and δij the Kro-
necker delta. We use the same notation for the transplanted eigenfunctions.
The eigenfunctions {uj}∞1 of (1) are the eigenfunctions of the Green’s func-
tion of the domain D and now it follows that G(z, ζ)|f ′(z)||f ′(ζ)|, where
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G(z, ζ) denotes Green’s function of the annulus U1R, has the eigenfunction
{uj |f ′(z)|}∞1 and following [5] we have

Theorem 1. Let G(z, ζ) be the Green’s function of the annulus U1R and
let f(z) maps U1R conformally onto the bounded doubly connected domain
D with the eigenvalues λ1, λ2, . . . , then

∞∑
j=1

1

λ2j
=

∫
U1R

∫
U1R

G2(z, ζ)|f ′(z)|2|f ′(ζ)|2 dAz dAζ . (4)

The proof of the next lemma runs analogous to the proof of Lemma 2.2
in [5].

Lemma 1. G2(z, ζ) is positive definite, that is∫
U1R

∫
U1R

G2(z, ζ)h(z)h(ζ) dAz dAζ ≥ 0

for all h ∈ C2(U1R) ∩ C(U1R) and equality holds if and only if h ≡ 0.

Taking h ≡ |f ′(z)|2 we obtain from the proof the following corollary.

Corollary 1. Under the assumptions of Theorem 1 holds∫
U1R

∫
U1R

G2(z, ζ)|f ′(z)|2|f ′(ζ)|2 dAz dAζ =

∞∑
j=1

∫
U1R

(∇Gj)2dA

λ
(o)
j

with
Gj(ζ) =

∫
U1R

G(z, ζ)u
(o)
j |f ′(z)|2 dAz,

where u(o)j , λ
(o)
j denote the eigenfunctions and eigenvalues of the annulus

U1R.

The next lemma follows by the same method as in [5].

Lemma 2. Let f(z) =
∑∞
n=−∞ anz

n be an univalent conformal map-
ping in U1R with f(U1R) = D. For a radial eigenfunction u(o)j , we have for
any conformal mapping,∫

U1R

(∇Gj)2dA ≥ −|a1|4

λ
(o)
j

+
2|a1|2

λ
(o)
j

∫
U1R

u
(o)
j

2
|f ′(z)|2dA =

|a1|4

λ
(o)
j

+

+
2|a1|2

λ
(o)
j

∫
U1R

u
(o)
j

2( ∞∑
n=2

n2|an|2|z|2n−2 +
∞∑
n=1

n2|a−n|2|z|2(−n−1)
)
dA ≥ |a1|4

λ
(o)
j

.
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Let u(o)j and u
(o)
j+1 be the eigenfunctions belonging to the same eigenvalue

λ
(o)
j , such that (u

(o)
j )2 + (u

(o)
j+1)2 is radial. Then∫

U1R

(∇Gj)2dA+

∫
U1R

(∇Gj+1)2 dA ≥

≥ −2|a1|4

λ
(o)
j

+
2|a1|2

λ
(o)
j

∫
U1R

(u
(o)
j

2
+ u

(o)
j+1

2
)|f ′(z)|2 dA =

2|a1|4

λ
(o)
j

+
2|a1|2

λ
(o)
j

×

×
∫
U1R

(u
(o)
j

2
+ u

(o)
j+1

2
)
( ∞∑
n=2

n2|an|2|z|2n−2 +
∞∑
n=1

n2|a−n|2|z|2(−n−1)
)
dA ≥

≥ 2|a1|4

λ
(o)
j

.

Equality occurs in both inequalities if and only if f(z) = a0 + a1z.

The main result of this chapter is the following theorem.

Theorem 2. Let D be a doubly connected bounded domain in the plane
with the fixed membrane eigenvalues λ1, λ2, . . . and let f(z) =

∑∞
−∞ anz

n

be an univalent conformal mapping in U1R with f(U1R) = D. Then

∞∑
j=1

1

λ2j
≥ −|a1|4

∞∑
j=1

1

λ
(o)
j

2 + 2|a1|2
∫
U1R

∞∑
j=1

u
(o)
j

2
(z)

λ
(o)
j

2

( ∞∑
n=2

n2|an|2|z|2n−2 +

+
∞∑
n=1

n2|a−n|2|z|2(−n−1)

)
dAz ≥ |a1|4

∞∑
j=1

1

λ
(o)
j

2 .

Equality occurs if and only if f(z) = a0 + a1z.

We give two different proofs of this theorem. The first proof follows
[5] and used Corollary 1 and Lemma 2. The second proof used only
Theorem 1 and Lemma 1 and is much more elementary. This proof runs
in the following way. We have with Lemma 1∫

U1R

∫
U1R

G2(z, ζ)h(z)h(ζ) dAz dAζ ≥ 0
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and obtain using h = |f ′(z)|2 − |a1|2∫
U1R

∫
U1R

G2(z, ζ)
(
|f ′(z)|2 − |a1|2

)(
|f ′(ζ)|2 − |a1|2

)
dAz dAζ =

=

∫
U1R

∫
U1R

G2(z, ζ)|f ′(z)|2|f ′(ζ)|2 dAz dAζ +

+ |a1|4
∫
U1R

∫
U1R

G2(z, ζ) dAz dAζ −

−2 |a1|2
∫
U1R

∫
U1R

G2(z, ζ)|f ′(z)|2 dAz dAζ ≥ 0 .

It follows with Theorem 1
∞∑
j=1

1

λ2j
≥ −|a1|4

∞∑
1

1

λ
(o)
j

2 + 2|a1|2
∫
U1R

|f ′(z)|2
∫
U1R

G2(z, ζ) dAζdAz .

The function
∫
U1R

G2(z, ζ)dAζ is a radial function in U1R because the
Green’s function of the annulus is radial which follows from the uniqueness
of the Green’s function, another argument is given by (4) and

∫
U1R

G2(z, ζ) dAζ =
∞∑
j=1

u
(o)
j

2
(z)

λ
(o)
j

2 .

This makes the proof complete.

4. The sums of finite many reciprocal eigenvalues. The goal of
this chapter is an result analogous to the inequality given by G. Pólya
and M. Schiffer. We give first two lemmas and follow the main ideas in
[7, 6]. We remind that G(z, ζ)|f ′(z)||f ′(ζ)|, where G(z, ζ) denotes Green’s
function of the annulus U1R, has the eigenfunctions {uj |f ′(z)|}∞j=1 and
following [7] we obtain a variational characterization for the eigenvalue λn
of the domain D.

Lemma 3.

max

∫
U1R

∫
U1R

G(z, ζ)|f ′(z)|h(z)|f ′(ζ)|h(ζ) dAz dAζ =
1

λn
,

where the maximum is taken over all h ∈ L2(U1R) with
∫
U1R

h2dA = 1 and
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∫
U1R

uj(z)|f ′(z)|h(z)dAz = 0, j = 1, 2, . . . , n− 1.

Equality occurs if h = un|f ′(z)|.

From this lemma follows easily

Lemma 4.
n∑
1

1

λj
= max

Ln

n∑
i=1

∫
U1R

∫
U1R

G(z, ζ)|f ′(z)|hi(z)|f ′(ζ)|hi(ζ) dAz dAζ ,

where {hi}ni=1 is a basis of Ln with
∫
U1R

hihjdAz = δij and Ln ranges over
all n-dimensional subspace of L2(U1R). Equality occurs for Ln = {u :
u =

∑n
i=1 ciui|f ′(z)|}.

Now we are in a position to prove the main theorem.

Theorem 3. Let D be a doubly connected domain in the plane with the
eigenvalues {λj}∞j=1. Then, for any n ≥ 1, we have

n∑
j=1

1

λj
≥

n∑
j=1

1

λ
(o)
j

∫
U1R

u
(o)
j

2
|f ′(z)|2dAz =

=

n∑
j=1

1

λ
(o)
j

∫
U1R

u
(o)
j

2
∞∑

n=−∞
n2|an|2|z|2n−2 dAz ≥ |a1|2

n∑
j=1

1

λ
(o)
j

.

Equality occurs for f(z) = a0 + a1z.
Proof. We will see that a set of functions {hj}nj=1 exists with∫

U1R
hihj |f ′(z)|2 dA = δij and

hj =

j∑
i=1

cjiu
(o)
i , cii ̸= 0, i = 1, 2, . . . , n,

where we have replaced hi|f ′(z)| instead of hi in Lemma 4.
First we show that a set of functions {hj}nj=1 exists with the

orthogonality conditions mentioned above. We choose h1 = c11u
(o)
1

with
∫
U1R

h1|f ′(z)|2dA = 1 and h2 = c21u
(o)
1 + c22u

(o)
2 with∫

U1R
h2h1|f ′(z)|2dA = 0 and

∫
U1R

h22|f ′(z)|2dA = 1. In this way follows



56 B. Dittmar

the existence of a set of functions {hj}nj=1 with the orthogonality condi-
tions mentioned above. In order to see that cii ̸= 0, i = 1, 2, . . . , n, we
conclude by induction. It is evident that c11 ̸= 0. A consequence of c22 = 0
would be c11 = 0 that such also c22 ̸= 0 . We assume that cjj ̸= 0,
j = 1, 2, . . . , k − 1 and ckk = 0 and it would follow that hk is a linear
combination of the functions h1, h2, . . . , hk−1 and from the orthogonality
conditions it follows hk ≡ 0. This is the contradiction.

Consider the matrix

Cn = (cij)
n
i,j=1, cij = 0 , i < j .

Cn is regular because cii ̸= 0 for all i . With C−1
n = Dn = (dij)

n
i,j=1,

dij = 0 , i < j , we obtain

u
(o)
k =

k∑
i=1

dkihi . (5)

In the following we need

bjk =

∫
U1R

hju
(o)
k |f ′(z)|2 dA .

Hence

bjk =

∫
U1R

hju
(o)
k |f ′(z)|2dA =

∫
U1R

hj(

k∑
i=1

dkihi)|f ′(z)|2dA = dkj (6)

caused by the orthogonality conditions.
We have using Lemma 4 with hi|f ′(z)| instead of hi

n∑
j=1

1

λj
≥

n∑
i=1

∫
U1R

∫
U1R

G(z, ζ)|f ′(z)|2hi(z)|f ′(ζ)|2hi(ζ) dAz dAζ

and as a consequence of the Hilbert–Schmidt theorem∫
U1R

∫
U1R

G(z, ζ)|f ′(z)|2hj(z)|f ′(ζ)|2hj(ζ) dAz dAζ =

∞∑
k=1

b2jk

λ
(o)
k

from which follows
n∑
j=1

1

λj
≥

n∑
j=1

∞∑
k=1

b2jk

λ
(o)
k

≥
n∑
k=1

1

λ
(o)
k

n∑
j=1

b2jk =
n∑
k=1

1

λ
(o)
k

∫
U1R

u
(o)
k

2
|f ′(z)|2 dA ,
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because ∫
U1R

u
(o)
k

2
|f ′(z)|2 dA =

k∑
j=1

d2kj =

k∑
j=1

b2jk.

The last identity is a consequence of (5) and (6). This finishes the proof.
The identity given in the theorem follows from the structure of the eigen-
functions.

Remarks. 1. Theorem 3 contains the inequality

n∑
j=1

1

λj
≥ |a1|2

n∑
j=1

1

λ
(o)
j

,

which was proved by R. Laugesen and C. Morpurgo [14]. The proof closely
follows J. Hersch [15].

2. Let Φ(a) be convex and increasing for a ≥ 0. Then a general ma-
jorization result of Hardy, Littlewood and Pólya [16] gives that

n∑
j=1

Φ

(
1

λj

)
≥

n∑
j=1

Φ

(
|a1|2

λ
(o)
j

)
.

For Φ(x) = x2 this contains a weaker version of Theorem 2.
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