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We get an integral estimate for Riesz measures of subharmonic functions in
the n-dimensional unit ball, which grow near some subset of the boundary
sphere at most as a given function.

1. Introduction. It is well known (see, for example, [1]) that the Riesz

1
measure u = — Aw of any bounded from above subharmonic function v(z)

T
in the unit disk satisfies the following inequality
[ = u@y <. )
|Al<1

Actually, it is a subharmonic analog of the classical Blaschke condition for
zeros of bounded analytic functions.

The estimate (1) has a lot of generalizations for analytic and subhar-
monic functions growing near the boundary of the unit disk (see [2 — 6])
or its part (see [7 — 10]). In particular, in [7] the corresponding bound was
obtained for Riesz measures of subharmonic functions growing polynomi-
ally near some compact subset E on the unit circle. Clearly, such bound
depends on thinness of E.
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In the paper [9] we investigated the case of subharmonic function in
the unit disk growing near E as an arbitrary function ¢. Instead of (1) we
obtained the inequality

/ B(pO))(1 = A(d) < o0 @)

under some condition connected functions ¥, ¢ and the set £. We also
proved that this conditions are optimal, in a sense.

In the given paper we extend our results to subharmonic functions in
the unit ball B C R™, n > 2.

2. Main results. Suppose E = E C 9B, ¢: R" — RT be a mono-
tonically decreasing continues function, ¢(t) — oo as ¢ — 0. For z € B
put p(z) = dist(z, E), F(t) = m{¢ € 0B : p(¢) < t}, where m(d() is the
normalized (n — 1)-dimensional Lebesgue measure on dB. In other words,
the usual Lebesgue measure on 9B is o,,m(d(), where o, = % is

2
the area of unit sphere in R™.

We prove the following theorem.

Theorem 1. Let v(2) be a subharmonic function in B, v Z —oo, and
v(2) < ¢(p(2)) 3)
forall z € B. If

2
/0 (3)dF(s) < oo, (4)

then the Riesz measure p = of the function v satisfies the con-

Av
(n—1)o,

/ (1~ ADp(dN) < oo. (5)
B

dition

In the case when condition (4) is invalid, the integral (5) may be diver-
gent. However we control the growth of p in this case too.

Theorem 2. Suppose p, Y are absolutely continues positive functions
on (0,2), ¢(t) monotonically decreases and 1)(t) monotonically increases,
o(t) = 400 ast — 40, P(t) — 0 as t — +0. Let

/0 (— (D) F(£)dt < oo. (6)
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If a subharmonic function v(z) satisfies (3) in B, then the bound

/B B(Ep(N)(1 — A(dN) < oo, (7)

is valid for its Riesz measure p with the constant k = k(n).
On the other hand, we get

Theorem 3. Let ¢, ¥ be the same as above, and, moreover, the function
©(1/t) be log-convexity. If

then the Riesz measure po of the subharmonic function vo(z) = p(p(x))
satisfies the condition

/B B(oO)(1 — A po(dA) = oc.

Remark. The function vo(z) is subharmonic. Indeed, the function
—log p(z) = sup¢ep{—log |z — (|} is subharmonic in R"\E. The superpo-
sition of convex and subharmonic is a subharmonic function as well.

Example 1. Let m(E) > 0. In this case lim; o F(t) = m(FE). For small
€ > 0 we have

Hence the condition (6) has the form

/0 (— (1)) (t)dt < oo,

In particular, one can put o(t) = t=9, 9(t) = t2+¢ for all £ > 0. Inequality
(7) is valid with k = 1.
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Example 2. Let E be a union of N points. Then the set E; = {¢ €
€ 0B : p({) <t} for small ¢ is a union of N hats {¢ € 9B : | — ¢;| < t}.
Hence, for small ¢t we have

Ne(n)t"t < F(t) = m(E;) < NC(n)t" L

Since condition (6) has the form

/0 (—/ ()Y (Bt < oo,

we can take ¢(t) = t79, (t) =t~ "F1F€ for arbitrary £ > 0.

So, in the case of exponential functions ¢ and v one can see certain
relations between growth of these functions and thinness of E.

Definition. Suppose E is a compact subset of R™, N(FE,¢) is the min-
imal number of the balls of radius € covering E. The upper and lower
Minkowski’s dimension for the set E are the numbers

— logN(E,¢)

log N(E
F(E) = lim. o log N(E;¢)

%(E) :hims—m logl/e

logl/e =

Theorem 4 (was proved in [8] for n = 2). Suppose v is a subharmonic
function in B such that v(z) < p~9(z) for all x € B. Then for any e > 0
its Riesz measure p satisfies the condition

[ oy ) < o,
B
Also, for v(z) = p~%(z) we have

[ ) — o

3. Proofs. Proofs of Theorems 1 — 4 use the next Lemmas.

Lemma 1. Suppose v is a finite Borel measure on X, g(x) is a Borel
function on X, p(t) is a Borel function on R. Then

| elatanwtas) = [ o)),

R
with H(s) = v{z : g(z) < s}.
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The lemma immediately reduces to the case of probability measure v,
i.e., such that v(X) = 1. In this case the Lemma is well-known (see., for
example. [11, formula (15.3.1)]).

For yy € OB and t > 0 put

L(yo,t) ={y € 0B : ly — yo| < t}.

Lemma 2. The harmonic measure wr,y, 1) (x) of the set L(yo,t) with
respect to B satisfies the condition

. =C>0, t <to.
mGB:ﬂgfyo‘:twL(yo’t)(l‘) <to

The constants C, tg depend only on n.

Remark. This property of harmonic measure in the case n = 2 was
observed in [7].

x
Ek s = |z* — x|. Note that
x

s =1—|z| < |yo — x| = t. Let y be an arbitrary point of L(yo,t). In the
triangle with vertexes in x, x*, y the angle in z* is acute, hence,

Proof. For x € B, |x — yo| = t, put z* =

2 —y|* < 2" =y +]a" — 2 = o7 —y|* + 5%

Moreover, if y € L(x*,3s), then |z — y|?> < 10s?. Therefore,

1— |z
I /L( by —z” m(dy) >
Yo,
> s/ m(dy) 1 ) m(L(yo,t) N L(z*, 3s))
L(yo,t)NL(z*,3s) ly — x| 10m/2 o1

Next, show that for ¢ < ¢(n) we will obtain
m(L(yo,t) N L(z*,35)) > C1(n)s" " 9)

Indeed,
|2* —yo| < |z* — x|+ |z —yo| = s +1.

In the case |yo — 2| > 2s put

Yo

lyo — z*|’

o

y=x"+2s

NS
|
=)
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Also, note that |g— z*| = 2s, |y — yo| = |yo — 2*| — 2s. Consider the right-
angled triangles with vertexes in <O, %o 42—33 ,x*) and (0, Jo —|2—x ,g’j)
We have

yo+$*2:1_ yo—a* |’
2 2 ’
2 2
o _ |Yot+z" |lyo — 2|
= — =
9l 5 +‘ 5 s
lyo — =] ’ lyo — =] ’
ey (o))
2 2
=1-2s(|lyo — z*| — 2s).
1
Lett<f.Then\yo—x*\<2t<Z.Weget
RN . . s
=9l =1—= (5l =1— V1 —2s(lyo — 2°[ — 25) < 2s(lyo — 2| —2) < 5.

We claim that L(y*, 5) C L(yo,t) N L(x*,3s). Indeed, for any y such that
ly —y*| < g we have

ly—v*l+ly =gl +—wl< $+5+t+s—2s=t,
ly—y I+ Y =g+ — 2" < §+5+2s=3s.

|y—yo|

<
ly —z*| <

|
Thus in this case L(y*, 5) C L(yo,t) N L(x*, 3s).
Investigate the case |yg — 2*| < 2s. Consider the triangle with vertexes
in x, ¥, yo. The angle « in x* is acute. Hence we have
t
t* = lyo — z> <[yo — &[> + |2* — z|* < 557, z—=.

5>
NG

On other hand, for small ¢ the angle « is close to g , hence we can suppose
1
cosa < 3 and

82

t? = |o* — yo|® + % — 2cos alr* — yo|s = |x* — yo|* + 5
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3t - * ~
Therefore, |[2* — yo| < — . Consider y = T+ Y . We have |y — 2*| =
V10 2
- * - t v .
=1y —1yo| = = 5 Yol < Wik Put y* = % Consider the rectangular
triangle with vertexes in 0, 7, yo. We get
~ ~ [z —yol* _ |o* —wol* _ 98
feyl=1- =1—1/1-— < < —.
ly* =l 9] T ST <70
Now, if [y — y*| < 5, then we have
s 9t? 3t
—yol < |y —y* gl < A ——= <t
[y = ol <ly =y [+ 1y" =¥l + 15— wol R TRy

for small ¢ and

ly—z* [ <|ly—y" |+ |y -yl +[y—2"| <
s 92 3t s 9s? 3s

<+ ——=< o+ — + ——= < 3s.
2 40 2y/10 2 8 22

Therefore in this case L(y*, 5) C L(yo,t) N L(z*, 3s) too.

If we project L(y*,5) on the hyperplane I that tangent to B in the

point y*, then for all y,3" € L(y*, 5) and small s <t we get
/ 3 /
ly =yl < 5Py — Priy'|.

Hence Pr;L(y*, ) contains an (n — 1)-dimensional ball B’ with radius g .

Thus, for small ¢ we have

n(1(r3)) 2> (5)"

This implies (9). The proof is complete.

Let 1
G(z,\) = m — h(z,\), z€Q, A€ Q, (10)
be the Green function for the Laplace operator in Q@ C R™, h(z,A) be
_ 1
harmonic in z € 2 and continues in z € ) such that h(¢,\) = Tz

for ¢ € 9. Note that G(z,\) = G(\, z), Vz, A € Q (see [1]).
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The connected component of the set {z € B : p(z) > t} that contains
the point 0 we denote by €.

Lemma 3. There are tg = to(n) > 0 and § = S(n) € (1,400) such
that

-2
Ga,(0,)) = ”T (1=,  VEt<to, VA€ Qg

Proof. Clearly,
1+ (n—-2)1-5) <s ™2 <14+ (n-1)(1-s), (11)

for all s € (1 — tg,1). The left inequality is true for all 0 < s < 1. For
A € 0 we have t = p(A) > 1 — |A|. Hence for |A| > 1 — ¢ with ¢t < ¢y we
get

1 < 1
AR S T

1+ (n—2)(1-A) < <14 (n— 1), (12)

the left inequality is true for all |A| < 1.

Suppose A € 9. If |A\| = 1, then h(0,A) = 1. If |A| < 1 then p(\) = ¢.
Hence for some ¢ € 9B we have |( — A\| = t. Using lemma 2, we get
wreny(A) = C If By ={¢ € 0B : p(¢) <t} then for such A we have

wWE, ()\) 2 wL(C,t) ()\) 2 C.
Thus for each A € 09, we get

(n—1)t
C

By maximum principle, this inequality holds for all A € €);. If the inequality
C(n—2) 1—|}

h(0,\) <1+

WE, ()\)

<
WE; ()‘) =~ 2(7’L . 1) t ) (13)
holds for some 5 < oo and all A € Qg;, then for such A we have
1
Gq,(0,A) = = h(0,7) >
n—2 n—2
21+ (n=2)1—[A)— |1+ 1 =[AD| = (1= [AD-

and the proof will be completed.
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‘We have

_ 1— A _
WE, ()‘) - /CGE,, |C _ )\|n m(dg) -

o m(d)
= =10 /cE [(T— A2 + 21— cos y) 772

with the angle v between the vectors ¢ and | N

For t < & we have 1 < |A| < 1, hence we get

m(dq)
wr, () < (L= 2t |
cem, [2(1 = cosy)|"/2
Find a low bound of the angle v. Take ¢’ € E such that [’ — (] < t. We

have
1

7228111% = (2—2cosv)2

)

‘AI
> A= A — — = =pt—Q=|A\)=t=(B-2)t.
GimdEn-ct-pe e -az - a- -z -

g =p8-2>0,weget v>= 't Toprove (13) it is sufficient to check
that the integrals

/ W o f ()
cer, 201 =cos N2 7 ez pe [2(1 = cosv)]n/2
(n—2)C
22+n/2(p — 1)t

Take the spherical coordinate system 6;,...,0,_1 on 0B such that
v =10, € (0,7), Oa,...,0,_2 € (0,7), 0,1 € [0,27]. Using inequations

are less than for a suitable S.

0
sin 0y <2sin51, 0<sind; <1,0;, €[0,7],i=2,...,n— 2, we get

/ mdg)
¢: 'y>,8/t [2(1 — cos ’Y)]n/z

/ / n" 260, sin” 30, ...86,_o a0 o o
1..-d0p 1 <
- 2sin g )"

2 db, 2 2 g df, ik
) S s YR < e
20'n Bt (S]n ?1)2 20'n Bt 01 20—?7,5 t

Thus, for sufficiently large 5 we obtain the required estimate. The proof is
complete.

<
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Lemma 4. For all x € B and 7 € [0,1] we have p(x) < 2p(Tz).

Proof. The ball with the center at the point 7z and radius 1 — 7|z

is contained in B and touches it at the point % Hence for each point
x
(e 83\% we have |¢ — 72| > 1 — 7|x|. Therefore, p(72) > 1 — 7|x|. This
x
implies that

pla) < plra) + |72 — 2] < plre) + 1 — rle| < 20(r2).

The proof is complete.

The proof of Theorem 1. Using Lemma 1 with the measure m(d(),
we get

/ mmwwmwy:/wwgﬂmg<al
OB 0

Hence the function ¢(p(y)) is integrable on 9B. Consider the harmonic
function

v = [ L= loF o)) miay).

B ly—z"

For each ¢ € 9B\E we have

lim U(z) = ¢(p(C)).

r—C

Therefore,

lim (v(z) — U(z)) < limp(p(z)) = ¢(p(¢)) = 0. (14)
z—( z—(
Let €2 be the connected component of the set {x € B : p(z) > t} contain-
ing 0 and 2z € 9 \IB. Then p(z) =t and for some point ¢ € E we have
|z — (] = t. Also, we have v(z) < ¢(p(z)) = (t). Using Lemma 2, we get
wr(¢,t)(2) = C. Since the inequality ¢(p(y)) = »(t) holds for y € L((, 1),
it follows that

LR
UE) = [ epwmidy) >

1— 2|2
>ot) [ T ) 2 o(eenicn () > Cola)
L(¢,t) |z —yl



On subharmonic functions in the unit ball ... 69

Consequently,

ii_)mz[v(x)— Uéx)] <v(z) - @ <0.

If we combine this inequality with (14) and the maximum module principle,
we obtain that the function max{1, C~'}U(z) is the harmonic majorant
for v in ;. Hence the Green representation is true for v(x). So, we have

’U(x) = ut(x) - Gﬂt (x,y),u(dy), x € Qy,
0

with the Riesz measure y for v and the least harmonic majorant u(x) for
v in Q (see. [1]).
First consider the case v(0) # —oo. Using Lemma 3 for ¢ < g, we get

| 0=ty < —25 [ Ga,0.0m(@) = = @(0) =) (13

Since

u(0) < max{1,C~}U(0) = max{1,C~"} - p(p(y))m(dy) < oo,

we see that the right-hand side of inequality (15) is bounded uniformly for
t e (0,1).

Note that [, (g 1) 28t = B. Therefore, (15) implies (5).

If v(0) = —o0, we can replace the function v(z) by the function vy (z)
that equals v(z) for |z| > § and harmonic in the ball |z| < 3 with the
values v(z) on the sphere |z| = 1. According to [12, Cor. 3.2.5], the function
v1(x) is subharmonic in B. Clearly, v1(0) # —oo. Since the Riesz measure
p1 for the function vy is equal to the measure p for |z| > %, the difference

between integrals

/ (1- ADu(d)  and / (1= [\ (@)
Qy Qy

is bounded. If the first integral is uniformly bounded for ¢ — 0, then
the second integral is uniformly bounded too. Finally note that the
condition (4) holds for the function vi(z) < ¢1(p(z)), with ¢1(t) =
= max{¢(t), p(3)}. The proof in complete.
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The proof of Theorem 2. Consider the harmonic function

e
Vi) = [ T winfelpt). oObmtan), we B (10)

The function Vi(x) is continues in B. Note that

li = fi
i Vi) =e(t) for ply) <t

and

i Vi(@) = e(p(y) for ply) 2.

Let ©; be the same as in the proof of the previous theorem, z € 9Q; N B.
arguing as in the proof of the previous theorem, we get wy (¢ +)(2) > C for
some ¢ € E, where C is the constant from Lemma 2. Since p(y) < t for
y € L(¢,t), we get

W)z [ EE pman) = ptncn) 2 Colt) 2 Cule)
L(C,t) |z — vl

For z € 09 N OB we have Vi(z) = p(p(z)) , therefore,

Tim o(2) < Tm p(p(x)) = @(p(=)) = Vi(2).

Tz Tz
By the maximum principle,

v(r) < max{1,C~'} Vi(x)
for all x € Q. Applying the Green formula for v(z) in Q;, we get the

inequality

A Ga, (0, \)u(d)\) < max{1,C~ '} V;(0) — v(0). (17)

Arguing as in the proof of the previous theorem, we may suppose v(0) #
# —00.

Furthermore,

Vi(0) = /{ oy £+ /{ oy PP,
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Applying Lemma 1 with g(y) = p(y) and
H(s)=m{y € 9B : p(y) <s} —m{y € 0B : p(y) <t} =F(s) — F(t),

we get

Vi(0) = p(t)F (1) + / (s)AF(s) = p(2) + / (—¢/(s)F(s)ds.  (18)

Note that F'(2) = 1. By Lemma 4, if x € B and p(z) > 2t, then the
whole segment [0, 2] is is contained in the set {x : p(z) > t}, hence,
{z : p(x) > 2t} C Q. Let § > 2. By Lemma 3,

/ (1— AD(dr) < / (1 - ADu(dr) <
{AEB:p(N\)>2p3t} Qg
2 2
< Nu(d)) < (0, Mu(dN).
n—2/QBtG”t(O Ju(dA) n_Q/QtGQ(o Ji(d)

Combining the latter inequality with (17), (18), we get

/ (1= ADu(dN) <
{AEB:p(A)>25t}

< const + max{1, 0*1}% /2(—g0’(s))F(s)ds. (19)

1
Put k& = % < 1. Apply Lemma 1 to the restriction of the measure
(I —|A)u(dX) on the set {A € B : p(A\) > e}. We get

2 ~
/ P(kp(A)(1 = [Au(dA) = / P(kt)dH(t),  (20)
{AeB:p(A\)>e} €

/ (1 - [ADp(dr) =
{AeB:e<p(N)<t}

- / (1~ ADp(dr) — / (1~ [ADu(dh).
{AeB:p(\)>e} {AeB:p(X\) >t}
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Taking into account that p(A) < 2 for all A € B and integrating by parts,
we have

2 _ 2
kt)dH (t) = — kt)d 11—\ d\ =
/5 Bkt (1) / (kL) ( /{A:pw}} D >>

— (k) / (1~ ADp(dr)+
(ip(V) e}

+k/€ W (kt) </{A:p(A)>t}(1—|)\|)u(d>\)> dt. (21)

Note that the set {¢t € [0,1]; u{\ : p(A) =t} > 0} is at most countable.
Hence we can replace {\ : p(A) > t} by {\ : p(A) > ¢} in the previous
formula. Moreover, we may suppose that pu{A : p(A\) = €} = 0, therefore
we replace {\ : p(A) > €} by {A: p(X) > €}. Let us check that the integral

2
| v ( / (1- I/\I)u(d/\)> dt =
€ {X:p(N)>t}

1 k2 .
k /kE v </{>\:p(/\)>2ﬁt}(1 - |>\|)u(d)\)> dt (22)

is bounded from above uniformly in € > 0. Indeed, by (19), integral (22)
is bounded from above by

2k 2k 2
const | v/(£)dt + max{1,C~1}—— /k "0 /t (= () F(s) ds dt.

ke n—2 5
Note that
2k
/ W (B)dt = p(2k) — p(ke) - b(2k)  mpu & — 0,
ke

and

2

/k ¥(t) / (—/ () F(s) ds dt = (2K) / (—'())F(s) ds—

€ k

2 2k
(k) / (= () F(s)ds+ [ w(t)(—o (£)F(2) d.

€ ke
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The first integral from the right-hand side does not depends on ¢, the
second one is negative. Taking into account the condition (6), we get that
the latter integral is bounded from above uniformly on €. Therefore, the
same is valid for integral (22).

Hence for each i > 0, for all sufficiently small €, and for all § < & we
have

(6 (ke) — (ko)) / (1 - ADu(d) <

(np(N)>e}

<k "k 11—\ d\)d .
< /Jwt)/ww}( ADp(dN)d <

Here we use that the value f{/\:p()\)
creases with the growth of t.
Put § — 0. We obtain that the summand

(k) /{ o (L D@

>t}(1 — |A])(dA) is monotonically de-

is arbitrarily small. Therefore the integral (21) is uniformly bounded.
Hence the integral (7) is finite. The proof is complete.

The proof of Theorem 3. Let () be the same as in the previous
proofs. According to the Green representation for the function vy (z) in €,
we get

e(1) = ¢(p(0)) = ue(0) — A Ga, (0, \)po(dX), (23)
with the least harmonic majorant u;(z) for vo(z) in Q. Let Vi(z) be
harmonic function defining by equality (16). By the maximum principle,
Vi(x) < o(t) in B. Since vo(z) = ¢(t) on the 92 N B and V;(¢) = vo(()
for ¢ € OB such that p(¢) > t, we see that vo(z) > Vi(z) in 0€. Hence
up(x) 2 Ve(x) in Q4. According to (18), we get

2
@(0) > Vi(0) = p(2) + / (—/(5))F(s)ds. (24)
Combining (23) and (24), we obtain

2
/t (—/ () F(s)ds < (1) — 0(2) + / G, (0, Mo (dN),

Q¢
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where Gg, is the Green function on 2;. Note that

1
GQZ(O, A) - W - ht(o,)\),

where h:(0, ) > 1 is the solution of the Dirichlet’s problem in €; with the
value |A\|2~™ on 0€);. Using (11), we get

Ga,(0,A) <(n—1A—[A),  [Al=1—to.
Thus, we get

2
/t (—/()) F(s)ds <

<@+ [ P

1
+/ s Mo(dA).
i l<1—to} [AIMT2
By the Green representation in the ball B’ = {\: |A| < 1 -t} we have
P(1) = w0(0) = 7(0) ~ [ (WP = (1= t0)* "ol
where 7(z) is the least harmonic majorant for vy(z) in B’, and [A[>~"—(1—

—t0)?~™ is the Green function for B’ at the point ¢ = 0. Since u(z) < ¢(to),
the integral

A2 o (dA)
B/
is finite. Hence we obtain for ¢ < tg

/t (=¢/(5))F(s)ds < const + (n — 1)/@ oy O PN (25)

On the other hand, using equations (20) and (21) with £ = 1 and rejecting
nonnegative summand, we get for all small ¢

/ Bl (1 = o (dA) >
{\eB:p(N\)>e}

> / (1) ( /{ o0 >\|)M0(d/\)> dt.
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By inequality (25), we get
/ BN~ I\ aoldA) >
{AeB:p(A\)>e}

> const + (n — 1)_1/ w'(t)/t (—¢'(s))F(s)dsdt.

Finally, we claim that the expression

/ ¥(t) / (—/())F(s) dsdt =
= [ v FOd - [ Sarod @0

unbounded as € — 0.
Indeed, in the converse case, the integral

/02 v / () dsdt

is finite. Hence for all sufficiently small ¢ and for all § < ¢ we have

€ 2 2
1> /6 (1) / (—g/(s))F(s) dsdt > ((e) — $(5)) / (—/(5))F(s) ds.

Passing to a limit as § — 0, we get the inequality

2
() / (—/(s))F(s) ds < 1.

Therefore, we see that the integral

2
/0 B(t) (— () F(t) dt

is finite. This contradiction concludes the proof.

The proof of Theorem 4. Using Theorems 2 and 3 (conditions (6)
and (8), respectively) we get that it is sufficiently to prove convergence of
the integral

/ 1 £ (t) dt (27)
0
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for r > &(F) — n and its divergence for r < ®(E) — n.

If r+n > ®(E), then take § < r + n — ®(E). By the definition,
there is a covering of the set E by at most t°~ (") sets L(¢;,t), ¢; € E.
Clearly, the sets L((;,3t) overlap the set £, = {{ € 0B : p(¢) < t}. Since
m(L(¢;,3t)) < C(n) (3t)" 1, we get

F(t) = m(E,) < C(n) t0~ 0+ (34)n 1

Hence integral (27) converges.

Conversely, let r +n < &(F). Consider a finite covering of the set E
by sets L((;,t/2), j =1,...,n, (; € E. Rejecting sequentially some of the
points (;, we may suppose that there is a set A C {(1,(,...,(,} such that

t
[ = Gl = 5 for all ¢, ¢; € A and

U 2.1 _U (G:1/2) >

GEA

Therefore the number of points in A is at least N(E,t). By definition of
2(FE), we have for sufficiently small ¢

N(E,t) >t~
On the other hand, the sets L({;,t/4), (; € A, are mutually disjoint. Hence,

t

F(t) Zm (¢, t/4)) = NC(n) <4) ) > CO(n)4t—mrt
k=1

for small ¢. Consequently, the integral (27) diverges. The proof is complete.
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