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We get an integral estimate for Riesz measures of subharmonic functions in
the n-dimensional unit ball, which grow near some subset of the boundary
sphere at most as a given function.

1. Introduction. It is well known (see, for example, [1]) that the Riesz

measure µ =
1

2π
△v of any bounded from above subharmonic function v(z)

in the unit disk satisfies the following inequality∫
|λ|<1

(1 − |λ|)µ(dλ) <∞. (1)

Actually, it is a subharmonic analog of the classical Blaschke condition for
zeros of bounded analytic functions.

The estimate (1) has a lot of generalizations for analytic and subhar-
monic functions growing near the boundary of the unit disk (see [2 — 6])
or its part (see [7 — 10]). In particular, in [7] the corresponding bound was
obtained for Riesz measures of subharmonic functions growing polynomi-
ally near some compact subset E on the unit circle. Clearly, such bound
depends on thinness of E.
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In the paper [9] we investigated the case of subharmonic function in
the unit disk growing near E as an arbitrary function φ. Instead of (1) we
obtained the inequality∫

ψ(ρ(λ))(1 − |λ|)µ(dλ) <∞ (2)

under some condition connected functions ψ, φ and the set E. We also
proved that this conditions are optimal, in a sense.

In the given paper we extend our results to subharmonic functions in
the unit ball B ⊂ Rn, n > 2.

2. Main results. Suppose E = E ⊂ ∂B, φ : R+ → R+ be a mono-
tonically decreasing continues function, φ(t) → ∞ as t → 0. For z ∈ B
put ρ(z) = dist(z, E), F (t) = m{ζ ∈ ∂B : ρ(ζ) < t}, where m(dζ) is the
normalized (n− 1)-dimensional Lebesgue measure on ∂B. In other words,

the usual Lebesgue measure on ∂B is σnm(dζ), where σn =
nπ

n
2

Γ(n2 + 1)
is

the area of unit sphere in Rn.
We prove the following theorem.

Theorem 1. Let v(z) be a subharmonic function in B, v ̸≡ −∞, and

v(z) 6 φ(ρ(z)) (3)

for all z ∈ B. If ∫ 2

0

φ(s)dF (s) <∞, (4)

then the Riesz measure µ =
△v

(n− 1)σn
of the function v satisfies the con-

dition ∫
B

(1 − |λ|)µ(dλ) <∞. (5)

In the case when condition (4) is invalid, the integral (5) may be diver-
gent. However we control the growth of µ in this case too.

Theorem 2. Suppose φ, ψ are absolutely continues positive functions
on (0, 2), φ(t) monotonically decreases and ψ(t) monotonically increases,
φ(t) → +∞ as t→ +0, ψ(t) → 0 as t→ +0. Let∫ 1

0

(−φ′(t))ψ(t)F (t)dt <∞. (6)
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If a subharmonic function v(z) satisfies (3) in B, then the bound∫
B

ψ(kρ(λ))(1 − |λ|)µ(dλ) <∞, (7)

is valid for its Riesz measure µ with the constant k = k(n).

On the other hand, we get

Theorem 3. Let φ, ψ be the same as above, and, moreover, the function
φ(1/t) be log-convexity. If∫ a

0

(−φ′(t))ψ(t)F (t)dt = ∞, (8)

then the Riesz measure µ0 of the subharmonic function v0(x) = φ(ρ(x))
satisfies the condition∫

B

ψ(ρ(λ))(1 − |λ|)µ0(dλ) = ∞.

Remark. The function v0(x) is subharmonic. Indeed, the function
− log ρ(x) = supζ∈E{− log |x− ζ|} is subharmonic in Rn\E. The superpo-
sition of convex and subharmonic is a subharmonic function as well.

Example 1. Let m(E) > 0. In this case limt→0 F (t) = m(E). For small
ε > 0 we have

m(E)

∫ ε

0

(−φ′(t))ψ(t)dt 6
∫ ε

0

(−φ′(t))ψ(t)F (t)dt 6

6 2m(E)

∫ ε

0

(−φ′(t))ψ(t)dt.

Hence the condition (6) has the form∫ 1

0

(−φ′(t))ψ(t)dt <∞.

In particular, one can put φ(t) = t−q, ψ(t) = tq+ε for all ε > 0. Inequality
(7) is valid with k = 1.
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Example 2. Let E be a union of N points. Then the set Et = {ζ ∈
∈ ∂B : ρ(ζ) < t} for small t is a union of N hats {ζ ∈ ∂B : |ζ − ζj | < t}.
Hence, for small t we have

Nc(n)tn−1 6 F (t) = m(Et) 6 NC(n)tn−1.

Since condition (6) has the form∫ 1

0

(−φ′(t))ψ(t)tn−1dt <∞,

we can take φ(t) = t−q, ψ(t) = tq−n+1+ε for arbitrary ε > 0.

So, in the case of exponential functions φ and ψ one can see certain
relations between growth of these functions and thinness of E.

Definition. Suppose E is a compact subset of Rn, N(E, ε) is the min-
imal number of the balls of radius ε covering E. The upper and lower
Minkowski’s dimension for the set E are the numbers

æ(E) = limε→0
logN(E, ε)

log 1/ε
, æ(E) = limε→0

logN(E, ε)

log 1/ε
.

Theorem 4 (was proved in [8] for n = 2). Suppose v is a subharmonic
function in B such that v(x) 6 ρ−q(x) for all x ∈ B. Then for any ε > 0
its Riesz measure µ satisfies the condition∫

B

ρ(λ)q−n+æ(E)+1+εµ(dλ) <∞.

Also, for v(x) = ρ−q(x) we have∫
B

ρ(λ)q−n+æ(E)+1−εµ(dλ) = ∞.

3. Proofs. Proofs of Theorems 1 — 4 use the next Lemmas.

Lemma 1. Suppose ν is a finite Borel measure on X, g(x) is a Borel
function on X, φ(t) is a Borel function on R. Then∫

X

φ(g(x))ν(dx) =

∫
R
φ(s)H(ds),

with H(s) = ν{x : g(x) < s}.
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The lemma immediately reduces to the case of probability measure ν,
i.e., such that ν(X) = 1. In this case the Lemma is well-known (see., for
example. [11, formula (15.3.1)]).

For y0 ∈ ∂B and t > 0 put

L(y0, t) = {y ∈ ∂B : |y − y0| < t}.

Lemma 2. The harmonic measure ωL(y0,t)(x) of the set L(y0, t) with
respect to B satisfies the condition

inf
x∈B:|x−y0|=t

ωL(y0,t)(x) = C > 0, t 6 t0.

The constants C, t0 depend only on n.

Remark. This property of harmonic measure in the case n = 2 was
observed in [7].

Proof. For x ∈ B, |x − y0| = t, put x∗ =
x

|x|
, s = |x∗ − x|. Note that

s = 1 − |x| 6 |y0 − x| = t. Let y be an arbitrary point of L(y0, t). In the
triangle with vertexes in x, x∗, y the angle in x∗ is acute, hence,

|x− y|2 6 |x∗ − y|2 + |x∗ − x|2 = |x∗ − y|2 + s2.

Moreover, if y ∈ L(x∗, 3s), then |x− y|2 6 10s2. Therefore,

ωL(y0,t)(x) =

∫
L(y0,t)

1 − |x|2

|y − x|n
m(dy) >

> s

∫
L(y0,t)∩L(x∗,3s)

m(dy)

|y − x|n
> 1

10n/2
· m(L(y0, t) ∩ L(x∗, 3s))

sn−1
.

Next, show that for t 6 t(n) we will obtain

m(L(y0, t) ∩ L(x∗, 3s)) > C1(n)sn−1. (9)

Indeed,
|x∗ − y0| 6 |x∗ − x| + |x− y0| = s+ t .

In the case |y0 − x∗| > 2s put

ŷ = x∗ + 2s
y0 − x∗

|y0 − x∗|
, y∗ =

ŷ

|ŷ|
.
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Also, note that |ŷ− x∗| = 2s, |ŷ− y0| = |y0 − x∗| − 2s. Consider the right-

angled triangles with vertexes in
(

0,
y0 + x∗

2
, x∗
)

and
(

0,
y0 + x∗

2
, ŷ

)
.

We have ∣∣∣∣y0 + x∗

2

∣∣∣∣2 = 1 −
∣∣∣∣y0 − x∗

2

∣∣∣∣2 ,
|ŷ|2 =

∣∣∣∣y0 + x∗

2

∣∣∣∣2 +

∣∣∣∣ |y0 − x∗|
2

− 2s

∣∣∣∣2 =

= 1 −

[(
|y0 − x∗|

2

)2

−
(
|y0 − x∗|

2
− 2s

)2
]

=

= 1 − 2s(|y0 − x∗| − 2s).

Let t <
1

8
. Then |y0 − x∗| 6 2t <

1

4
. We get

|y∗ − ŷ| = 1 − |ŷ| = 1 −
√

1 − 2s(|y0 − x∗| − 2s) < 2s(|y0 − x∗| − 2s) <
s

2
.

We claim that L(y∗, s2 ) ⊂ L(y0, t) ∩ L(x∗, 3s). Indeed, for any y such that
|y − y∗| < s

2
we have

|y − y0| 6 |y − y∗| + |y∗ − ŷ| + |ŷ − y0| < s
2 + s

2 + t+ s− 2s = t ,

|y − x∗| 6 |y − y∗| + |y∗ − ŷ| + |ŷ − x∗| < s
2 + s

2 + 2s = 3s .

Thus in this case L(y∗, s2 ) ⊂ L(y0, t) ∩ L(x∗, 3s).
Investigate the case |y0 − x∗| 6 2s. Consider the triangle with vertexes

in x, x∗, y0. The angle α in x∗ is acute. Hence we have

t2 = |y0 − x|2 6 |y0 − x∗|2 + |x∗ − x|2 6 5s2, s > t√
5
.

On other hand, for small t the angle α is close to
π

2
, hence we can suppose

cosα 6 1

8
and

t2 = |x∗ − y0|2 + s2 − 2 cosα|x∗ − y0|s > |x∗ − y0|2 +
s2

2
.
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Therefore, |x∗ − y0| 6
3t√
10

. Consider ŷ =
x∗ + y0

2
. We have |ŷ − x∗| =

= |ŷ − y0| =
|x∗ − y0|

2
6 3t

2
√

10
. Put y∗ =

ŷ

|ŷ|
. Consider the rectangular

triangle with vertexes in 0, ŷ, y0. We get

|y∗ − ŷ| = 1 − |ŷ| = 1 −
√

1 − |x∗ − y0|2

4
6 |x∗ − y0|2

4
6 9t2

40
.

Now, if |y − y∗| < s
2 , then we have

|y − y0| 6 |y − y∗| + |y∗ − ŷ| + |ŷ − y0| <
s

2
+

9t2

40
+

3t

2
√

10
< t

for small t and

|y − x∗| 6 |y − y∗| + |y∗ − ŷ| + |ŷ − x∗| <

<
s

2
+

9t2

40
+

3t

2
√

10
6 s

2
+

9s2

8
+

3s

2
√

2
< 3s .

Therefore in this case L(y∗, s2 ) ⊂ L(y0, t) ∩ L(x∗, 3s) too.
If we project L(y∗, s2 ) on the hyperplane l that tangent to B in the

point y∗, then for all y, y′ ∈ L(y∗, s2 ) and small s 6 t we get

|y − y′| 6 3

2
|Prly − Prly

′|.

Hence PrlL(y∗, s2 ) contains an (n− 1)-dimensional ball B′ with radius
s

3
.

Thus, for small t we have

m
(
L
(
y∗,

s

2

))
> m(B′) >

(s
3

)n−1

.

This implies (9). The proof is complete.

Let
G(z, λ) =

1

|z − λ|n−2
− h(z, λ), z ∈ Ω, λ ∈ Ω, (10)

be the Green function for the Laplace operator in Ω ⊂ Rn, h(z, λ) be

harmonic in z ∈ Ω and continues in z ∈ Ω such that h(ζ, λ) =
1

|ζ − λ|n−2

for ζ ∈ ∂Ω. Note that G(z, λ) = G(λ, z), ∀z, λ ∈ Ω (see [1]).
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The connected component of the set {z ∈ B : ρ(z) > t} that contains
the point 0 we denote by Ωt.

Lemma 3. There are t0 = t0(n) > 0 and β = β(n) ∈ (1,+∞) such
that

GΩt(0, λ) > n− 2

2
(1 − |λ|), ∀t 6 t0, ∀λ ∈ Ωβt.

Proof. Clearly,

1 + (n− 2)(1 − s) 6 s−(n−2) 6 1 + (n− 1)(1 − s), (11)

for all s ∈ (1 − t0, 1). The left inequality is true for all 0 < s < 1. For
λ ∈ ∂Ωt we have t = ρ(λ) > 1 − |λ|. Hence for |λ| > 1 − t with t 6 t0 we
get

1 + (n− 2)(1 − |λ|) 6 1

|λ|n−2
6 1

(1 − t)n−2
6 1 + (n− 1)t, (12)

the left inequality is true for all |λ| < 1.
Suppose λ ∈ ∂Ωt. If |λ| = 1, then h(0, λ) = 1. If |λ| < 1 then ρ(λ) = t.

Hence for some ζ ∈ ∂B we have |ζ − λ| = t. Using lemma 2, we get
ωL(ζ,t)(λ) > C. If Et = {ζ ∈ ∂B : ρ(ζ) < t} then for such λ we have

ωEt(λ) > ωL(ζ,t)(λ) > C.

Thus for each λ ∈ ∂Ωt we get

h(0, λ) 6 1 +
(n− 1)t

C
ωEt(λ) .

By maximum principle, this inequality holds for all λ ∈ Ωt. If the inequality

ωEt(λ) 6 C(n− 2)

2(n− 1)
· 1 − |λ|

t
, (13)

holds for some β <∞ and all λ ∈ Ωβt, then for such λ we have

GΩt(0, λ) =
1

|λ|n−2
− h(0, λ) >

> 1 + (n− 2)(1 − |λ|) −
[
1 +

n− 2

2
(1 − |λ|)

]
=
n− 2

2
(1 − |λ|).

and the proof will be completed.
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We have

ωEt(λ) =

∫
ζ∈Et

1 − |λ|2

|ζ − λ|n
m(dζ) =

= (1 − |λ|2)

∫
ζ∈Et

m(dζ)

[(1 − |λ|)2 + 2(1 − cos γ)|λ|]n/2
,

with the angle γ between the vectors ζ and
λ

|λ|
.

For t < 1
4 we have 1

2 < |λ| < 1, hence we get

ωEt(λ) 6 (1 − |λ|)21+n/2
∫
ζ∈Et

m(dζ)

[2(1 − cos γ)]n/2
.

Find a low bound of the angle γ. Take ζ ′ ∈ E such that |ζ ′ − ζ| < t. We
have

γ > 2 sin
γ

2
= (2 − 2 cos γ)

1
2 =

∣∣∣∣ λ|λ| − ζ

∣∣∣∣ ,∣∣∣∣ λ|λ| − ζ

∣∣∣∣ > |λ− ζ ′| −
∣∣∣∣λ− λ

|λ|

∣∣∣∣− |ζ ′ − ζ| > βt− (1 − |λ|) − t > (β − 2) t.

If β′ = β − 2 > 0, we get γ > β′t. To prove (13) it is sufficient to check
that the integrals∫

ζ∈Et

m(dζ)

[2(1 − cos γ)]n/2
6
∫
ζ:γ>β′t

m(dζ)

[2(1 − cos γ)]n/2

are less than
(n− 2)C

22+n/2(n− 1)t
for a suitable β.

Take the spherical coordinate system θ1, . . . , θn−1 on ∂B such that
γ = θ1 ∈ (0, π), θ2, . . . , θn−2 ∈ (0, π), θn−1 ∈ [0, 2π]. Using inequations

sin θ1 6 2 sin
θ1
2

, 0 6 sin θi 6 1, θi ∈ [0, π], i = 2, . . . , n− 2, we get∫
ζ:γ>β′t

m(dζ)

[2(1 − cos γ)]n/2
=

=
1

σn

∫
· · ·
∫
θ1>β′t

sinn−2 θ1 sinn−3 θ2 . . . sin θn−2

(2 sin θ1
2 )n

dθ1 . . . dθn−1 6

6 πn−2

2σn

∫ π

β′t

dθ1

(sin θ1
2 )2

6 πn−2

2σn
π2

∫ π

β′t

dθ1
θ21

<
πn

2σnβ′t
.

Thus, for sufficiently large β we obtain the required estimate. The proof is
complete.
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Lemma 4. For all x ∈ B and τ ∈ [0, 1] we have ρ(x) 6 2ρ(τx).

Proof. The ball with the center at the point τx and radius 1 − τ |x|
is contained in B and touches it at the point

x

|x|
. Hence for each point

ζ ∈ ∂B\ x
|x|

we have |ζ − τx| > 1 − τ |x|. Therefore, ρ(τx) > 1 − τ |x|. This

implies that

ρ(x) 6 ρ(τx) + |τx− x| 6 ρ(τx) + 1 − τ |x| 6 2ρ(τx).

The proof is complete.

The proof of Theorem 1. Using Lemma 1 with the measure m(dζ),
we get ∫

∂B

φ(ρ(y))m(dy) =

∫ ∞

0

φ(s)dF (s) <∞.

Hence the function φ(ρ(y)) is integrable on ∂B. Consider the harmonic
function

U(x) =

∫
∂B

1 − |x|2

|y − x|n
φ(ρ(y))m(dy).

For each ζ ∈ ∂B\E we have

lim
x→ζ

U(x) > φ(ρ(ζ)).

Therefore,

lim
x→ζ

(v(x) − U(x)) 6 lim
x→ζ

φ(ρ(x)) − φ(ρ(ζ)) = 0. (14)

Let Ωt be the connected component of the set {x ∈ B : ρ(x) > t} contain-
ing 0 and z ∈ ∂Ωt\∂B. Then ρ(z) = t and for some point ζ ∈ E we have
|z − ζ| = t. Also, we have v(z) 6 φ(ρ(z)) = φ(t). Using Lemma 2, we get
ωL(ζ,t)(z) > C. Since the inequality φ(ρ(y)) > φ(t) holds for y ∈ L(ζ, t),
it follows that

U(z) =

∫
∂B

1 − |z|2

|z − y|n
φ(ρ(y))m(dy) >

> φ(t)

∫
L(ζ,t)

1 − |z|2

|z − y|n
m(dy) > v(z)ωL(ζ,t)(z) > Cv(z).
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Consequently,

lim
x→z

[
v(x) − U(x)

C

]
6 v(z) − U(z)

C
6 0.

If we combine this inequality with (14) and the maximum module principle,
we obtain that the function max{1, C−1}U(x) is the harmonic majorant
for v in Ωt. Hence the Green representation is true for v(x). So, we have

v(x) = ut(x) −
∫
∂Ωt

GΩt(x, y)µ(dy), x ∈ Ωt,

with the Riesz measure µ for v and the least harmonic majorant ut(x) for
v in Ωt (see. [1]).

First consider the case v(0) ̸= −∞. Using Lemma 3 for t 6 t0, we get∫
Ωβt

(1−|λ|)µ(dλ) 6 2

n− 2

∫
Ωt

GΩt(0, λ)µ(dλ) =
2

n− 2
(ut(0)−v(0)) . (15)

Since

ut(0) 6 max{1, C−1}U(0) = max{1, C−1}
∫
∂B

φ(ρ(y))m(dy) <∞,

we see that the right-hand side of inequality (15) is bounded uniformly for
t ∈ (0, 1).

Note that
∪
t∈(0,1) Ωβt = B. Therefore, (15) implies (5).

If v(0) = −∞, we can replace the function v(x) by the function v1(x)
that equals v(x) for |x| > 1

2 and harmonic in the ball |x| < 1
2 with the

values v(x) on the sphere |x| = 1
2 . According to [12, Cor. 3.2.5], the function

v1(x) is subharmonic in B. Clearly, v1(0) ̸= −∞. Since the Riesz measure
µ1 for the function v1 is equal to the measure µ for |x| > 1

2 , the difference
between integrals∫

Ωt

(1 − |λ|)µ(dλ) and
∫
Ωt

(1 − |λ|)µ1(dλ)

is bounded. If the first integral is uniformly bounded for t → 0, then
the second integral is uniformly bounded too. Finally note that the
condition (4) holds for the function v1(z) 6 φ1(ρ(z)), with φ1(t) =
= max{φ(t), φ( 1

2 )}. The proof in complete.
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The proof of Theorem 2. Consider the harmonic function

Vt(x) =

∫
∂B

1 − |x|2

|x− y|n
min{φ(ρ(y)), φ(t)}m(dy), x ∈ B . (16)

The function Vt(x) is continues in B. Note that

lim
x→y∈∂B

Vt(x) = φ(t) for ρ(y) < t

and
lim

x→y∈∂B
Vt(x) = φ(ρ(y)) for ρ(y) ≥ t.

Let Ωt be the same as in the proof of the previous theorem, z ∈ ∂Ωt ∩B.
arguing as in the proof of the previous theorem, we get ωL(ζ,t)(z) > C for
some ζ ∈ E, where C is the constant from Lemma 2. Since ρ(y) < t for
y ∈ L(ζ, t), we get

Vt(z) >
∫
L(ζ,t)

1 − |z|2

|z − y|n
φ(t)m(dy) = φ(t)ωL(ζ,t)(z) > Cφ(t) > Cv(z).

For z ∈ ∂Ωt ∩ ∂B we have Vt(z) = φ(ρ(z)) , therefore,

lim
x→z

v(x) 6 lim
x→z

φ(ρ(x)) = φ(ρ(z)) = Vt(z).

By the maximum principle,

v(x) 6 max{1, C−1}Vt(x)

for all x ∈ Ωt. Applying the Green formula for v(x) in Ωt, we get the
inequality ∫

Ωt

GΩt(0, λ)µ(dλ) 6 max{1, C−1}Vt(0) − v(0) . (17)

Arguing as in the proof of the previous theorem, we may suppose v(0) ̸=
̸= −∞.

Furthermore,

Vt(0) =

∫
{y∈∂B:ρ(y)<t}

φ(t)m(dy) +

∫
{y∈∂B:ρ(y)>t}

φ(ρ(y))m(dy).
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Applying Lemma 1 with g(y) = ρ(y) and

H(s) = m{y ∈ ∂B : ρ(y) < s} −m{y ∈ ∂B : ρ(y) < t} = F (s) − F (t),

we get

Vt(0) = φ(t)F (t) +

∫ 2

t

φ(s)dF (s) = φ(2) +

∫ 2

t

(−φ′(s))F (s)ds. (18)

Note that F (2) = 1. By Lemma 4, if x ∈ B and ρ(x) > 2t, then the
whole segment [0, x] is is contained in the set {x : ρ(x) > t}, hence,
{x : ρ(x) > 2t} ⊂ Ωt. Let β > 2. By Lemma 3,∫

{λ∈B:ρ(λ)>2βt}
(1 − |λ|)µ(dλ) 6

∫
Ωβt

(1 − |λ|)µ(dλ) 6

6 2

n− 2

∫
Ωβt

GΩt(0, λ)µ(dλ) 6 2

n− 2

∫
Ωt

GΩt(0, λ)µ(dλ).

Combining the latter inequality with (17), (18), we get∫
{λ∈B:ρ(λ)>2βt}

(1 − |λ|)µ(dλ) 6

6 const + max{1, C−1} 2

n− 2

∫ 2

t

(−φ′(s))F (s)ds. (19)

Put k =
1

2β
< 1. Apply Lemma 1 to the restriction of the measure

(1 − |λ|)µ(dλ) on the set {λ ∈ B : ρ(λ) > ε}. We get∫
{λ∈B:ρ(λ)>ε}

ψ(kρ(λ))(1 − |λ|)µ(dλ) =

∫ 2

ε

ψ(kt)dH̃(t), (20)

with

H̃(t) =

∫
{λ∈B:ε<ρ(λ)<t}

(1 − |λ|)µ(dλ) =

=

∫
{λ∈B:ρ(λ)>ε}

(1 − |λ|)µ(dλ) −
∫
{λ∈B:ρ(λ)>t}

(1 − |λ|)µ(dλ).
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Taking into account that ρ(λ) < 2 for all λ ∈ B and integrating by parts,
we have∫ 2

ε

ψ(kt)dH̃(t) = −
∫ 2

ε

ψ(kt)d

(∫
{λ:ρ(λ)>t}

(1 − |λ|)µ(dλ)

)
=

= ψ(kε)

∫
{λ:ρ(λ)>ε}

(1 − |λ|)µ(dλ)+

+ k

∫ 2

ε

ψ′(kt)

(∫
{λ:ρ(λ)>t}

(1 − |λ|)µ(dλ)

)
dt. (21)

Note that the set {t ∈ [0, 1]; µ{λ : ρ(λ) = t} > 0} is at most countable.
Hence we can replace {λ : ρ(λ) > t} by {λ : ρ(λ) > t} in the previous
formula. Moreover, we may suppose that µ{λ : ρ(λ) = ε} = 0, therefore
we replace {λ : ρ(λ) > ε} by {λ : ρ(λ) > ε}. Let us check that the integral

∫ 2

ε

ψ′(kt)

(∫
{λ:ρ(λ)>t}

(1 − |λ|)µ(dλ)

)
dt =

=
1

k

∫ k2

kε

ψ′(t)

(∫
{λ:ρ(λ)>2βt}

(1 − |λ|)µ(dλ)

)
dt (22)

is bounded from above uniformly in ε > 0. Indeed, by (19), integral (22)
is bounded from above by

const

∫ 2k

kε

ψ′(t)dt+ max{1, C−1} 2

n− 2

∫ 2k

kε

ψ′(t)

∫ 2

t

(−φ′(s))F (s) ds dt.

Note that∫ 2k

kε

ψ′(t)dt = ψ(2k) − ψ(kε) → ψ(2k) при ε→ 0,

and∫ 2k

kε

ψ′(t)

∫ 2

t

(−φ′(s))F (s) ds dt = ψ(2k)

∫ 2

2k

(−φ′(s))F (s) ds−

− ψ(kε)

∫ 2

kε

(−φ′(s))F (s) ds+

∫ 2k

kε

ψ(t)(−φ′(t))F (t) dt.
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The first integral from the right-hand side does not depends on ε, the
second one is negative. Taking into account the condition (6), we get that
the latter integral is bounded from above uniformly on ε. Therefore, the
same is valid for integral (22).

Hence for each η > 0, for all sufficiently small ε, and for all δ < ε we
have

(ψ(kε) − ψ(kδ))

∫
{λ:ρ(λ)>ε}

(1 − |λ|)µ(dλ) 6

6 k

∫ ε

δ

ψ′(kt)

∫
{λ:ρ(λ)>t}

(1 − |λ|)µ(dλ)dt < η.

Here we use that the value
∫
{λ:ρ(λ)>t}(1 − |λ|)µ(dλ) is monotonically de-

creases with the growth of t.
Put δ → 0. We obtain that the summand

ψ(kε)

∫
{λ:ρ(λ)>ε}

(1 − |λ|)µ(dλ)

is arbitrarily small. Therefore the integral (21) is uniformly bounded.
Hence the integral (7) is finite. The proof is complete.

The proof of Theorem 3. Let Ωt be the same as in the previous
proofs. According to the Green representation for the function v0(z) in Ωt,
we get

φ(1) = φ(ρ(0)) = ũt(0) −
∫
Ωt

GΩt(0, λ)µ0(dλ), (23)

with the least harmonic majorant ũt(z) for v0(z) in Ωt. Let Vt(x) be
harmonic function defining by equality (16). By the maximum principle,
Vt(x) 6 φ(t) in B. Since v0(x) = φ(t) on the ∂Ωt ∩ B and Vt(ζ) = v0(ζ)
for ζ ∈ ∂B such that ρ(ζ) > t, we see that v0(x) > Vt(x) in ∂Ωt. Hence
ũt(x) > Vt(x) in Ωt. According to (18), we get

ũt(0) > Vt(0) = φ(2) +

∫ 2

t

(−φ′(s))F (s)ds. (24)

Combining (23) and (24), we obtain∫ 2

t

(−φ′(s))F (s)ds 6 φ(1) − φ(2) +

∫
Ωt

GΩt(0, λ)µ0(dλ),
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where GΩt is the Green function on Ωt. Note that

GΩt(0, λ) =
1

|λ|n−2
− ht(0, λ),

where ht(0, λ) ≥ 1 is the solution of the Dirichlet’s problem in Ωt with the
value |λ|2−n on ∂Ωt. Using (11), we get

GΩt(0, λ) 6 (n− 1)(1 − |λ|), |λ| > 1 − t0.

Thus, we get∫ 2

t

(−φ′(s))F (s)ds 6

6 φ(1) − φ(2) + (n− 1)

∫
Ωt\{λ:|λ|61−t0}

(1 − |λ|)µ0(dλ)+

+

∫
{λ:|λ|<1−t0}

1

|λ|n−2
µ0(dλ).

By the Green representation in the ball B′ = {λ : |λ| < 1 − t0} we have

φ(1) = v0(0) = û(0) −
∫
B′

(|λ|2−n − (1 − t0)2−n)µ0(dλ),

where û(z) is the least harmonic majorant for v0(z) in B′, and |λ|2−n−(1−
−t0)2−n is the Green function for B′ at the point ζ = 0. Since û(z) ≤ φ(t0),
the integral ∫

B′
|λ|2−nµ0(dλ)

is finite. Hence we obtain for t < t0∫ 2

t

(−φ′(s))F (s)ds 6 const + (n− 1)

∫
{λ:ρ(λ)>t}

(1 − |λ|)µ0(dλ). (25)

On the other hand, using equations (20) and (21) with k = 1 and rejecting
nonnegative summand, we get for all small ε∫

{λ∈B:ρ(λ)>ε}
ψ(ρ(λ))(1 − |λ|)µ0(dλ) >

>
∫ 2

ε

ψ′(t)

(∫
{λ:ρ(λ)>t}

(1 − |λ|)µ0(dλ)

)
dt.
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By inequality (25), we get∫
{λ∈B:ρ(λ)>ε}

ψ(ρ(λ))(1 − |λ|)µ0(dλ) >

> const + (n− 1)−1

∫ 2

ε

ψ′(t)

∫ 2

t

(−φ′(s))F (s) ds dt.

Finally, we claim that the expression∫ 2

ε

ψ′(t)

∫ 2

t

(−φ′(s))F (s) ds dt =

=

∫ 2

ε

ψ(t)(−φ′(t))F (t) dt− ψ(ε)

∫ 2

ε

(−φ′(t))F (t) dt (26)

unbounded as ε→ 0.
Indeed, in the converse case, the integral∫ 2

0

ψ′(t)

∫ 2

t

(−φ′(s))F (s) ds dt

is finite. Hence for all sufficiently small ε and for all δ < ε we have

1 >

∫ ε

δ

ψ′(t)

∫ 2

t

(−φ′(s))F (s) ds dt > (ψ(ε) − ψ(δ))

∫ 2

ε

(−φ′(s))F (s) ds.

Passing to a limit as δ → 0, we get the inequality

ψ(ε)

∫ 2

ε

(−φ′(s))F (s) ds < 1.

Therefore, we see that the integral∫ 2

0

ψ(t)(−φ′(t))F (t) dt

is finite. This contradiction concludes the proof.

The proof of Theorem 4. Using Theorems 2 and 3 (conditions (6)
and (8), respectively) we get that it is sufficiently to prove convergence of
the integral ∫ 1

0

trF (t) dt (27)
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for r > æ(E) − n and its divergence for r < æ(E) − n.
If r + n > æ(E), then take δ < r + n − æ(E). By the definition,

there is a covering of the set E by at most tδ−(r+n) sets L(ζj , t), ζj ∈ E.
Clearly, the sets L(ζj , 3t) overlap the set Et = {ζ ∈ ∂B : ρ(ζ) 6 t}. Since
m(L(ζj , 3t)) ≤ C(n) (3t)n−1, we get

F (t) = m(Et) 6 C(n) tδ−(r+n)(3t)n−1.

Hence integral (27) converges.
Conversely, let r + n < æ(E). Consider a finite covering of the set E

by sets L(ζj , t/2), j = 1, . . . , n, ζj ∈ E. Rejecting sequentially some of the
points ζj , we may suppose that there is a set A ⊂ {ζ1, ζ2, . . . , ζn} such that

|ζk − ζj | ≥
t

2
for all ζk, ζj ∈ A and

∪
ζj∈A

L(ζj , t) ⊃
n∪
j=1

L(ζj , t/2) ⊃ E.

Therefore the number of points in A is at least N(E, t). By definition of
æ(E), we have for sufficiently small t

N(E, t) > t−(r+n).

On the other hand, the sets L(ζj , t/4), ζj ∈ A, are mutually disjoint. Hence,

F (t) = m(Et) >
N∑
k=1

m(L(ζ ′k, t/4)) = NC(n)

(
t

4

)n−1

> C(n)41−nt−r−1

for small t. Consequently, the integral (27) diverges. The proof is complete.
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