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In this article, it is considered the question of analyzing the behaviour
of an algebroid function near a singularity. This is an old question, going
back to Puiseux, Cramer and others. Here it is considered the problem of
estimating the length of the algebraic cycles of the branches of an algebroid
function at an algebraic singularity in terms of the data relative to the
coefficients Ak (z) of the equation defining the algebroid function. A further
question considered is the value distribution of an algebroid function near
an essential singularity, we prove in this direction the corresponding result
to the Casoratti–Weierstrass Theorem. The final aim should be the Great
Picard Theorem for algebroid functions.

1. Introduction. An algebroid function w = f (z) of order n is a
multivalued function, which we shall assume to be defined in the entire
plane C, given by an equation of the form

F (w, z) = An (z)wn +An−1 (z)wn−1 + · · · +A0 (z) = 0 , (1)

where A0 (z) , A1 (z) , . . . , An (z) are meromorphic functions with no com-
mon zeros or poles and F (w, z) is irreducible, that is, it cannot be decom-
posed as a product

F (w, z) = F1 (w, z) F2 (w, z) ,

where F1 (w, z), F2 (w, z) are two non-constant functions of the same kind.
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In this way we obtain a n-valued meromorphic function w (z) out-
side the critical points where An (z) has a zero or one of the Ai (z),
i = 1, 2, . . . , n has a pole and also outside those points where the so-
called discriminant of F (w, z) vanishes where two or more of the n roots
wi (z) of the equation (1) are equal.

The algebroid functions are a natural extension of meromorphic func-
tions and have been thoroughly studied, see K.Hensel and Landsberg [1].
Here we shall allow the coefficients Ai (z) to have isolated essential singu-
larities, this case has not been so much considered, we shall mention here
the works of G. Remoundos [2, 3]. We shall be interested in the behaviour
of these functions near the singularities.

We shall call algebroid functions with essential singularities those func-
tions obtained in this way, that is, those given by an irreducible equation
of the form (1) , where the coefficients Ai (z) might have isolated essential
singularities. In this article, we shall be concerned with the behaviour of
algebroid functions, allowing essential singularities, near a singularity, in
particular we shall prove the corresponding Casoratti–Weierstrass Theo-
rem.

2. The discriminant of an algebroid function. Let z = α be a
regular point for the coefficients Ai (z), i = 1, 2, . . . , n , of the equation (1)
and assume that An (z) does not vanish at this point, then we get in a small
neighbourhood of this particular point n roots w1 (z) , w2 (z) , . . . , wn (z) of
the equation. We shall call the symmetric function D (z) of the wi’s defined
by

D (z) =
∏
i ̸=j

(wi (z) − wj (z)) ,

the discriminant of the algebroid function. It turns out that at a reg-
ular point, D (z) vanishes if and only if two or more roots w1 (z),
w2 (z) , . . . , wn (z) are equal.

In Hensel und Landsberg [1], it is shown that if in addition to the
above condition about the regularity of the coefficients, we also assume
that D (z) ̸= 0, then the n roots wi (z), i = 1, 2, . . . , n are analytic near α,
that is, then they can be expanded as a power series of z − α

wi (z) =

∞∑
n=0

ani (z − α)
n
.

If the coefficients Ai (z), i = 1, 2, . . . , n, are all of them meromorphic,
the function D (z) is itself also meromorphic, the possible zeros or poles of
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D (z) are among the zeros of the functions wi (z)−wj (z) , i ̸= j , and the
poles of wi (z). In the case of analytic coefficients Ai (z), the zeros of the
wi (z)−wj (z) are zeros of D (z), in the general case of meromorphic Ai (z),
these zeros might compensate with the poles of other wi (z) − wj (z) .

The discriminant can also be expressed as

D (z) = F ′
1w (w1 (z) , z)F ′

1w (w2 (z) , z) . . . F ′
1w (wn (z) , z) ,

where we are considering the normalized equation

F1 (w, z) = wn +
An−1 (z)

An (z)
wn−1 + · · · +

A0 (z)

An (z)
= 0 , (2)

instead of (1) .
In general, the Ai (z) might be allowed to have essential singularities,

in this case the discriminant might also have essential singularities.

3. The branches of an algebroid function. Let us assume first
a point z = α where there is no essential singularity for any coefficient
Ai (z) of the equation (1). Since the singularities are isolated points it is
clear that the solutions wi (z) of this equation near z = α are the same as
those of the normalized equation (2) .

Let w1 (z),w2 (z) , . . . , wn (z) be the solutions of this equation for a fixed
z in a punctured disc D∗ (α, r) where there is no other singularity for
any of the coefficients Ai (z) . In Hensel und Landsberg [1], making use
of a method which goes back originally to Newton and was used later
by De Gua, Puisseux and Cramer, is given the following description of the
solutions which we shall call, in general, branches of the algebroid function
in D∗ (α, r) .

Let us set ζ = z − α and be

A0 (ζ) = a0ζ
ρ0 + b0ζ

ρ0+1 + . . .

A1 (ζ) = a1ζ
ρ1 + b0ζ

ρ1+1 + . . .

. . . . . . . . . . . . . . . . . . . . .

An (ζ) = anζ
ρn + b0ζ

ρn+1 + . . .

then the solutions wi (z) = ui (ζ) of the algebroid function are of the form

ui (ζ) = e0iζ
ϵ0i + e1iζ

ϵ1i + . . . , i = 1, 2, . . . , n

where for each fixed i the exponents can be increasing integral numbers,
i.e. ϵ0i < ϵ1i < ϵ2i < . . . or an increasing sequence of rational numbers
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with only a finite number of non-integral terms and common denominator
a ∈ N, that is,

p0i
ai

<
p1i
ai

<
p2i
ai

< . . .

where ai, pji ∈ Z.
The sequences of exponents ϵ0i, ϵ1i, ϵ2i, . . . are obtained in the following

way.
Let us consider the quotients

ϵ = −ρl − ρg
l − g

, l, g = 1, 2, . . . , n ,

so that
ρg + gϵ = ρl + lϵ = γ ,

and
ρk + kϵ ≥ γ , k = 1, 2, . . . , n .

In this way, one obtains a number ν of ϵ′s which is less or equal than
n, say, ϵ0, ϵ′0, . . . , ϵ

ν)
0 , These are all the possible exponents ϵ0i and for each

of these exponents ϵj)0 there are nj possible initial coefficients e0i which
will be the solutions of a polynomial equation

φj (e) = anje
nj + · · · + a0 = 0 ,

in such a way that ∑
j

nj = n ,

so that for the ν exponents ϵ0, ϵ′0, . . . , ϵ
ν)
0 , there are n =

∑
j

nj possible

initial terms and, in fact, it is shown that for each of these possible initial
terms there is one and only one power series which is a solution of (1),
that is, the n branches at α of the algebroid function are obtained in this
way.

Let us call u (ζ) one of this branches and set

u (ζ) = e0ζ
ϵ + e1ζ

ϵ + . . .

the corresponding power series expansion in the variable ζ. A necessary
and sufficient condition in order that among the exponents ϵ0, ϵ1, . . . some
of them are proper fractions, is that the corresponding
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ϵ = −ρl − ρg
l − g

=
p

s
, (3)

be a proper fraction, that is, s > 1 .
In general, it can be proved that for the local power expansion of one

of the branches u (ζ), there are a finite number of terms containing powers
ζ

p
a , a > 1, with exponents p/a , which are proper fractions and the remain-

ing terms containing integral powers of ζ. The finite sum uirreg (ζ) of the
first above mentioned terms is called the irregular part of u (ζ), whereas
the sum ureg (ζ) of the remaining ones is called the regular part, so that
we have

u (ζ) = uirreg (ζ) + ureg (ζ) ,

where

uirreg (ζ) = e0ζ
p0
a + · · · + enζ

pn
a

ureg (ζ) = en+1ζ
mn+1 + en+2ζ

mn+2 + . . .

with integral numbers mk .
When a = 1, that is, there is no irregular part, then we get a uniform

branch in a disc D (α, r) .
When a > 1, we get a cycle u1, u2, . . . , ua

u1 = e0ζ
p0
a + e1ζ

pn
a + . . .

u2 = e0ωζ
p0
a + e1ωζ

pn
a + . . .

. . . . . . . . . . . . . . . . . . . . .

ua = e0ω
a−1ζ

p0
a + e1ω

a−1ζ
pn
a + . . .

where the exponent ϵ0 = p0
a is given by (3) and the number ω is an a-th-

root of unity.
Now for each ϵ0 = p0

a , the corresponding coefficient e0 is obtained as
one of root of a polynomial equation

φ (e) = cke
k + ck−1e

k−1 + · · · + c0 ,

which will have multiplicity λ0, where 1 ≤ λ0 ≤ k ≤ n .
Now we have obtained the first term e0ζ

ϵ0 of u (ζ) and introducing a
new variable u′ instead of u by the relation

u (ζ) = e0ζ
ϵ0 + u′ ,
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we shall arrive at a new equation of the same type as (1)

1F (u′, ζ) = F (e0ζ
ϵ0 + u′, ζ)

= A1
0 (ζ) +A1

1 (ζ)u′ + · · · +A1
n (ζ) (u′)

n
,

and apply to 1F (u′, ζ) the same procedure as we did with F (u, ζ) and
obtain the exponent

ϵ1 = −e
′
t − e′r
t− r

=
q

s1
,

and the coefficient e1 as a solution of a polynomial equation

φ1 (e) = 0 ,

of a certain multiplicity λ1, which will satisfy the relation

λ1 ≤ s1 ≤ λ0 ≤ s0 ,

as proved in Hensel and Landsberg [1], where λ0, s0 are the λ and s ob-
tained for the original F and λ1, s1 are the corresponding numbers for
1F .

Proceeding in this way we shall obtain the sequences of exponents and
coefficients ϵ0, ϵ1, ϵ2, . . . , e0, e1, e2 . . . and simultaneously the sequences
λ0, λ1, λ2, . . . , s0, s1, s2, . . . satisfying

s0 ≥ λ0 ≥ s1 ≥ λ1 ≥ s2 ≥ λ2 ≥ . . . ,

in particular, we conclude sk+1 ≤ sk so that from a certain term onwards
the sequence {sk} must be constant and, in fact, it is shown in [1] that
sk = 1 from a certain point onwards, say for k ≥ τ.

From the above considerations we obtain that the order a of the cycle
is given by

a = m.c.m {s0, s1, . . . , sτ−1} , (4)

where sτ = 1 for k ≥ τ .
Next we describe some particular cases,
I) Let us assume that e0 is a simple root of the coefficient equation

φ0 (e) = 0 ,

that is, λ0 = 1, in this case we must have

1 = s1 = s2 = . . .
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and as a consequence of (4) we deduce that a = s0, that is, s0 is the order
of the corresponding cycle.

We also consider the following case,
II) Let now λ0 = 2 , that is, e0 is a root of order two of the coefficient

equation φ0 (e) = 0 , then we obtain from (4)

s1 = 1 or 2.

In the case s1 = 1, we deduce again from (4) that a = s0 , so that we
have again a cycle of order s0 .

In the case s1 = 2 , then we can consider two subcases, namely that s0
be an even or an odd number.

II1) If s0 is even then a is again equal s0 , that is, the order of the cycle
is again s0 .

II2) If s0 is an odd number, we can consider in its turn two possibilities,
namely, either s1 = 1 where again a = s0 and a cycle of order s0 occurs at
z = α or s1 = 2 , where a cycle of order a = 2s0 occurs at z = α.

In general, it follows from the above considerations that if λk is the
multiplicity of ek, for some k = 0, 1, . . . the order of the cycle will be less
or equal than

s0 · s1 · . . . · sk · λk! , (5)

in particular for k = 0, we obtain
Theorem 1. For k = 0 , the order of the corresponding cycle should be

less or equal than (s0 · λ0) ! .
A natural question arises,
Problem 1. Is the estimate (5) optimal or we can improve the upper

bound for the order of a cycle given the numbers s0, λ0 ?
A related and more general question is the following,
Problem 2. Given n ∈ N and n1, n2, . . . , nk ∈ N such that n1 + n2 +

+ · · · + nk = n and let α ∈ C, can we construct an algebroid function
w = w (z) of order n, such that at z = α presents k cycles of orders
n1, n2, . . . , nk .

4. Essential singularities. Casoratti–Weierstrass theorem. Now
we shall allow the equation

F (w, z) = An (z)wn +An−1 (z)wn−1 + · · · +A0 (z) = 0 ,
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to have coefficients with isolated singularities. Exactly as we did in the
previous case, we can assume the equation to be normalized, that is,
An (z) ≡ 1 .

Let z = α be an essential singularity for some coefficient Ak (z) and
let w1 (z) , . . . , wn (z) be the branches of the algebroid function in a punc-
tured disc D∗ (α, r), where there is no other essential singularity of the
coefficients.

The following relations hold

n∑
i=1

wi (z) = An−1 (z) ,

n∑
i,k=1

wi (z)wk (z) = An−2 (z) ,

. . . . . . . . . . . . . . . . . . . . .

w1 (z)w2 (z) . . . wn (z) = (−1)
n
A0 (z) . (6)

First of all we consider the question whether in these circumstances the
image of such punctured disc, that is

n∪
i=1

wi (D∗ (α, r)) , (7)

should be an unbounded set. This fact follows inmediately from the rela-
tions (6) . In fact, if the set (7) were a bounded set then the coefficients
Ak (z), k = 1, . . . , n− 1 , should be bounded in D∗ (α, r) and as a conse-
quence α would be a removable singularity for all of them, what is contrary
to our hypothesis.

The next result is the Casoratti–Weierstrass Theorem for algebroid
functions.

Theorem 2. (Casoratti–Weierstrass Theorem for algebroid
functions). For every punctured disc D∗ (α, r) of an essential singularity
z = α of an algebroid function w = w (z), the set

n∪
i=1

wi (D∗ (α, r))

is a dense set in C .
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Proof. We proceed in a similar way to the case of analytic functions
around an isolated singularity. Let us assume that the set

n∪
i=1

wi (D∗ (α, r)) ,

were not a dense set in C and let β ∈ C, ϵ > 0, such that

n∪
i=1

wi (D∗ (α, r)) ∩D (β, ϵ) = ϕ ,

then we consider the algebroid function G (w, z) = 0, such that its roots
wGi (z) are related to those wi (z) = wFi (z) of our original algebroid equa-
tion F (w, z) = 0 by

wGi (z) =
1

wi (z) − β
, i = 1, 2, . . . , n ,

or equivalently

wi (z) =
1

wGi (z)
+ β ,

that is, these functions wGi (z) should satisfy the equation(
1

w
+ β

)n
+An−1 (z)

(
1

w
+ β

)n−1

+ · · · +A0 (z) = 0 ,

which can be rewritten in the form

1

wn
+Bn−1 (z)

1

wn−1
+ · · · +B0 (z) = 0 ,

or equivalently

B0 (z)wn +B1 (z)wn−1 + · · · + 1 = 0 ,

whence we obtain

G (w, z) = wn +AGn−1 (z)wn−1 + · · · +AG0 (z) = 0 ,

where
AGk (z) =

Bk (z)

B0 (z)
, k = 1, 2, . . . , n− 1 , AGn (z) ≡ 1 .
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Since the coefficients AGk (z) can be obtained as symmetric functions of
the roots wGi (z) and these are bounded functions in D∗ (α, r), we would
conclude that these coefficeints should also be bounded in D∗ (α, r) .

In principle, the coefficients AGk (z) = Bk(z)
B0(z)

might have poles, that is,
the zeros of B0 (z) might accumulate at α , but from the boundedness
of these coefficients, this possibility is excluded, so that α should be an
isolated singularity of AGk (z) and by the boundeness this singularity is re-
movable. But if the coefficients AGk (z) are analytic at α, then the solutions
wGi (z) must be of the form

wGi (z) =
∑
l=l0

ail (z − α)
l
a ,

with l0 ≥ 0, where if a is bigger than one, these roots are grouped in cycles
as described in section 3 and for a = 1 we get a local uniform branch.

It is clear that in this case the branches

wi (z) =
1

wGi (z)
+ β ,

might only present at α a pole as singularity and therefore the coefficients

Ak (z) , k = 1, 2, . . . , n− 1 ,

might also have at most a pole as singularity at α, what is in contradiction
with our hypothesis. q.e.d.

5. The Picard theorems for algebroid functions. Let again α be
an essential singularity of an algebroid function what is equivalent to the
fact that α is an essential singularity of at least one of the coefficients. We
can assume again that the equation of the algebroid function is normalized,
that is,

F (w, z) = wn +An−1 (z)wn−1 + · · · +A0 (z) = 0 .

In the previous section, we have proved the Casoratti–Weierstrass The-
orem which states that the union

n∪
i=1

wi (D∗ (α, ϵ)) ,
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is dense in Ĉ for every ϵ > 0, where the w′
is are the branches of the

algebroid function.
A further natural question is whether the Great Picard Theorem also

holds for algebroid functions. We do not have a proof of this theorem for
algebroid functions. Next, we present some particular simple cases.

I) The most simple examples of a proper algebroid function is given by
the equation

F (w, z) = wn +A (z) = 0 ,

where A (z) vanishes at least at some point z = β.
In this case the branches wi (z) are given by

wi (z) =
√
−A (z) ,

where for each i = 1, 2, . . . , n , we get one of the n-th roots of A (z).
If z = α is an essential singularity of A (z), by the classical Great Picard

Theorem for meromorphic functions, given a punctured disc D∗ (α, r), ev-
ery value w is assumed by A (z) infinitely often except for at most one
exceptional value b. From this fact, it follows that the set

n∪
i=1

wi (D∗ (α, ϵ)) ,

contains every value of Ĉ except at most the n-th roots of −b , and every
non-exceptional value is assumed infinitely often.

II) A more general equation which can also be dealt with following an
argument of Songmin Wang [4], is

F (w, z) = wn + cn−1w
n−1 + · · · +Aj (z)wj + · · · + c0 = 0 , (8)

that is, the equation where all the coefficients are constant except the j-th
coefficient Aj (z) which, we assume to present an essential singularity at
z = α .

With this hypothesis, the function Aj (z) assumes every value b infinite-
ly many times in a punctured disc D∗ (α, ϵ) , with at most two exceptional
values. On the other hand, for those z satisfying the equation

Aj (z) = b ,

(8) is equivalent to

wn + cn−1w
n−1 + · · · + bwj + · · · + c0 = 0 , (9)
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so that every value w in
n∪
i=1

wi (D∗ (α, ϵ)), is assumed infinitely many times

except at most 2n exceptional points, namely the roots of the equation (9),
when b is an exceptional value of Aj (z) at α .

III) If we allow more than one Aj (z) to be non-constant, then we are
not able, by simple considerations, to obtain similar conclusions. In fact,
let us consider the simplest case, that is, a trinomial

F (w, z) = w2 +A1 (z)w +A0 (z) = 0 , (10)

where one of the coefficients, say A0 (z) , presents an essential singularity
at z = α and where the other coefficient A1 (z) is not a constant function
but it might show a regular behaviour at z = α .

The solutions of this equation are given by

w1,2 (z) =
−A1 (z) ±

√
A2

1 (z) − 4A0 (z)

2
,

i.e. these are the branches of the algebroid function.
In order to have a proper algebroid function given by the equation (10),

the discriminant
∆ (z) = A2

1 (z) − 4A0 (z) ,

should vanish at some point β, which should be a branch point of the
algebroid function.

In this case, we do not know whether the Great Picard Theorem holds.
The point z = α is an essential singularity of ∆ (z) and as a consequence
assumes every value of Ĉ infinitely often with at most one exception and
therefore the function

L (z) =
√

∆ (z) ,

has two branches L1 (z) , L2 (z) and the set

L1 (D∗ (α, r)) ∪ L2 (D∗ (α, r)) ,

contains every value of Ĉ and every value is assumed infinitely many times
except at most one exceptional value. However we cannot say anything
about the values assumed by the original branches

w (z) = −A1 (z)

2
+
L (z)

2
.
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6. The work of Remoundos. In this section we recall and pay atten-
tion to the work of the greek mathematician G. Remoundos, who worked
extensively on the theory of algebroid functions. In particular, he proved
the following extension of Picard Theorem in the plane,

Theorem (G. Remoundos). An algebroid function of algebraic order
k and finite order of growth assumes every value of Ĉ infinitely many times
except at most 2k exceptional values.

This theorem follows straightaway from the Second Main Theorem
(SMT) of the value distribution theory of algebroid functions developed
by H. L. Selberg. In fact, let us recall the SMT for algebroid functions,

Theorem (H. L. Selberg). Let w (z) be an algebroid function of order
k in the plane and a1, . . . , aq, q ≥ 2k, different values in Ĉ, then the
following inequality holds

(q − 2k)T (r, w) ≤

≤ N (r, a1) + · · · +N (r, aq) −NRam (r, P ) +NRam (r, w) + S (r, w) ,

this inequality is known as the Fundamental Inequality of the value distri-
bution of algebroid functions.

The terms NRam (r, P ) , NRam (r, w) are indicators of the ramifications
of P and w respectively and are positive terms and S (r, w) is an error term,
negligible compared with T (r, w), that is,

S (r, w) = o (T (r, w)) , r → ∞ .

The SMT together with Selberg Ramification Theorem, namely the
estimate of the ramification term NRam (r, w)

NRam (r, w) ≤ 2kT (r, w) + o (T (r, w)) ,

yields the deficiency relation for algebroid functions∑
ν

δ (aν , w) ≤ 2k , (11)

where the definition of the deficiency δ (a,w) for algebroid functions is
analogous as in the plane

δ (a,w) = 1 − lim sup
r→∞

N (r, w)

T (r, w)
.
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We conclude from the deficiency relation (11) that at most 2k values
a, can be assumed a finite number of times and we see that the Picard
Theorem of Remoundos follows from the deficiency relation for algebroid
functions.

As for the Big Picard Theorem for algebroid functions near an essen-
tial singularity z = α , G. Remoundos asserts in the introduction of his
Mémoire [3] of 1927 in the "Memorials of the Sciences de Mathématiques"
and promises that this result would appear in in the same journal further
on. However this is not the case.
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théorème de M. Picard dans la direction de M. Landau // Annals Scien-
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