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The problem of approximating a function by polynomials having no zeros
on the domain of the function is related to the Riemann Hypothesis. If
the restriction of the function to each of two sets can be so approximated,
we give conditions under which it can be so approximated on the union of
these two sets. This helps to localize the problem.

1. Introduction. The most important value of a polynomial is the val-
ue zero. It is natural to enquire about the possibility of approximating a
given function on a compact set K ⊂ C by polynomials having no zeros on
K. Recently, Johan Andersson [1] has shown the remarkable fact that this
question is equivalent to a question regarding the Riemann zeta-function.
A positive answer to the latter question would generalize the spectacu-
lar universality property of the zeta-function due to Sergei Mikhailovich
Voronin, which is related to the Riemann Hypothesis (see [2]).

If f can be (uniformly) approximated on K by polynomials, then f
necessarily belongs to the class A(K) of continuous functions on K, which
are holomorphic on the interiorKo. Let us say thatK is a set of polynomial
approximation, if every f ∈ A(K) can be approximated by polynomials.
The celebrated theorem of Sergei Nikitovich Mergelyan states that K is a
set of polynomial approximation if and only if C \K is connected.

Let us denote by Ao(K) the set of f ∈ A(K) having no isolated zeros in
Ko. If f ∈ A(K) can be approximated by polynomials which are zero-free

c⃝ P.M. Gauthier, 2013



Zero-free polynomial approximation ... 93

on K, then necessarily f ∈ Ao(K). We shall say that a set of polynomial
approximation K is a set of zero-free polynomial approximation if every
f ∈ Ao(K) can be approximated by polynomials which are zero-free on K.

Suppose K1 and K2 are compact sets of zero-free polynomial approxi-
mation. It is easy to see that their union K1 ∪K2 is also a set of zero-free
polynomial approximation if the two sets are disjoint and, in [2], it is
shown that this is also true if their intersection is at most a singleton. The
main result of the present paper is rather at the opposite extreme. Namely,
we consider the case that the intersection is “ample"in a sense to be now
specified.

For two sets A,B ⊂ C, we denote by d(A,B) the distance between A
and B :

d(A,B) = inf{|a− b| : a ∈ A, b ∈ B}.

Note that we follow the convention that inf R = +∞, so that d(A, ∅) =
= +∞. Let us say that two intersecting sets A and B in C intersect amply
if d(A \B,B \A) > 0.

Our principal result is the following.

Theorem 1. Suppose K1 and K2 are compact sets of zero-free polyno-
mial approximation whose intersection is ample and path-connected. Then,
every function f ∈ Ao(K1 ∪K2) which is zero-free on K1 ∩K2 can be ap-
proximated by polynomials zero-free on K1 ∪K2.

For earlier results on zero-free polynomial approximation, see [1 — 5].
Since our main result concerns zero-free approximation on the union of
two sets, in Section 2, we recall some fundamental theorems regarding
rational approximation on unions and intersections. In Section 3, we state
some basic facts regarding exponentials and logarithms in C . In Section
4, we recall some basic results on exponentials in Banach algebras, which
have as a consequence that approximation by polynomials zero-free on a
compact set K is equivalent to approximation by exponentials eg, with
g ∈ A(K). This allows us to prove Theorem 1 in Section 5. In Section 6,
we give a slight improvement on an interesting recent theorem of Sergey
Khrushchev [5] regarding zero-free approximation. In Section 7, we give
some examples and open problems. Finally, in Section 8, we show that
there is no topological obstruction to zero-free approximation.

It is easy to approximate a function f on a compact set K by poly-
nomials zero-free on K, if f itself is zero-free on K. But our assumption
is minimal, f ∈ Ao(K). Thus, we merely assume that f has no isolated
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zeros on Ko. In particular, f is allowed to have zeros on the boundary
∂K. We formulated (but did not publish) this problem in the 70’s, while
considering the related problem of approximating a function mapping K
to C = C ∪ {∞} by rational functions having no poles on K (see [6]).

Suppose f has no zeros on Ko. If we can uniformly approximate the
identity function, I(z) = z, on K by a function φ ∈ A(K), such that
φ(K) ⊂ Ko, then f ◦ φ approximates f, so our problem is equivalent to
that of approximating f ◦ φ by polynomials zero-free on K. But f ◦ φ has
no zeros on all of K, so we have reduced the problem to one we can solve.
In considering the analogous problem in [6], this led us to consider the
following more interesting variant of the problem of whether there is such
a φ.

For a compact set K, we denote by Aut(K) the family of homeomor-
phisms of K onto itself which are holomorphic on Ko. We say that K is
conformally rigid if the identity I(z) = z is isolated in Aut(K). Thus, K
is conformally rigid if and only if, there is an ϵ > 0, such that φ ∈ Aut(K)
and |I − φ| < ϵ implies φ = I. Conformally rigid compacta might pro-
vide counterexamples to our zero-free polynomial approximation problem.
Dieter Gaier told me that he devoted two years of his life (see [7]) at-
tempting to characterize conformally rigid domains. Gaier’s work relied
on fundamental results of Promarz M. Tamrazov, whom I had the plea-
sure of knowing since 1972; who, with his charming and beautiful wife
kindly received my family in his home in the Soviet era; and to who’s
memory this paper is dedicated with fondness and admiration.

2. Rational approximation. Before undertaking our study of approx-
imation on a compact set K by rational functions having neither poles nor
zeros on K, we recall the classical theory of rational approximation, which
is that of approximation by rational functions having no poles on K (with
no restrictions regarding the zeros of these functions). For the purposes
of the present paper, we are particularly interested in approximation on
unions and intersections of sets on which we can approximate.

For a compact set K ⊂ C, we denote by R(K) the uniform limits on
K of rational functions having no poles on K. Also, we denote by A(K)
the family of continuous complex-valued functions on K which are holo-
morphic on the interior Ko. Obviously, R(K) ⊂ A(K). Let us say that a
compact set K is a set of rational approximation if R(K) = A(K), that
is, if every function plausibly approximable by rational functions is indeed
approximable. One may assume that K ⊂ C . A complete characterization
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of sets of rational approximation was given by Anatoliy Georgievich Vi-
tushkin (see [8]) in terms of continuous analytic capacity. For a Borel set
E ⊂ C , we denote by α(E) the continuous analytic capacity of E.

Theorem 2 (Vitushkin). For an arbitrary compact set K ⊂ C , the
following are equivalent:

(i) K is a set of rational approximation;
(ii) For each z ∈ ∂K, there exists r ≥ 1, such that

lim sup
δ↘0

α(D(z; δ) \Ko)

α(D(z; rδ) \K)
< +∞.

A fundamental problem for many years was to prove the semiadditivity
of continuous analytic capacity. This was finally established by Xavier
Tolsa [9].

Lemma 2. There is an absolute constant C, such that for arbitrary
Borel sets Ei, i ≥ 1 in C ,

α

( ∞∪
i=1

Ei

)
≤ C

∞∑
i=1

α(Ei).

As an application of Lemma 1, we have the following.

Lemma 2. If K1 and K2 are sets of rational approximation, then
K1 ∩K2 is a set of rational approximation.

Proof. We may assume that K ⊂ C . Fix z ∈ ∂(K1 ∪K2) and let r1
and r2 be associated to K1 and K2 respectively according to Theorem 2.
Put r = min r1, r2 and let C be the constant from Lemma 1. Then, by
Theorem 2 and Lemma 1,

lim sup
δ↘0

α(D(z; δ) \ (K1 ∩K2)o)

α(D(z; rδ) \ (K1 ∩K2)
≤

≤ lim sup
δ↘0

C
α(D(z; δ) \Ko

1 )

α(D(z; rδ) \K1)
+ lim sup

δ↘0
C
α(D(z; δ) \Ko

2 )

α(D(z; rδ) \K2)
< +∞.

Thus, by Theorem 2, K1 ∩K2 is a set of rational approximation.
A compact set K ⊂ C is analytically negligible if every continuous

function on C which is holomorphic on an open set V can be approximated
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uniformly on C by functions continuous on C and holomorphic on V ∪K.
The union of two sets of approximation need not be a set of approximation,
but, in the positive direction, the following result of Alexander Munro
Davie and Bernt Karsten Øksendal [10] is fundamental.

Lemma 3 (Davie–Øksendal). If K1 and K2 are sets of rational ap-
proximation and ∂K1∩∂K2 is analytically negligible, then K1∪K2 is also
a set of rational approximation.

Since a piecewise analytic curve is analytically negligible (see [8]) and a
countable union of analytically negligible sets is analytically negligible, and
since a closed subset of an analytically negligible set is again analytically
negligible, we have the following.

Lemma 4. If K1 and K2 are sets of rational approximation and the
boundary of one of the two sets is piecewise analytic, then K1 ∪K2 is also
a set of rational approximation.

A more general problem than that of characterizing compact sets K,
on which all plausibly approximable functions are approximable (that is,
R(K) = A(K)), is that of characterizing those functions f on K which
can be approximated by rational functions, for an arbitrary compact set
K. Vitushkin also solved that problem, but we shall not make use of that
result. Alice Roth proved the following Fusion Lemma (see [11]), which
allows one to approximate two functions simultaneously.

Lemma 5 (Fusion Lemma). Let K1,K2 be disjoint compacts sets of
the Riemann sphere C . There is a constant A > 0 such that if k ⊂ C is a
compact set and r1, r2 are rational functions with maxz∈k |r1(z)−r2(z)| <
< ϵ, then there is a rational function r, such that

max
z∈Kj∪k

|r(z) − rj(z)| < Aϵ, j = 1, 2.

Roth pointed out that a consequence of her Fusion Lemma is the beau-
tiful localization theorem of Errett A. Bishop (see [11]).

Theorem 3 (Localization Theorem). Let K ⊂ C and f : K → C.
Then, f ∈ R(K) if and only if, for each z ∈ K, there is disc Dz containing
z such that f |(K ∩Dz) ∈ R(K ∩Dz).

From the Localization Theorem (also directly from the Vitushkin The-
orem 2), we have the following.
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Theorem 4. If Q1 and Q2 are compact sets of rational approximation
having the form Qj = Kj ∪ k, j = 1, 2, with Kj compact and disjoint, then
Q = Q1 ∪Q2 is a set of rational approximation.

Proof. Choose z ∈ Q. There are three cases: z ∈ K1, z ∈ k\K1, z ∈ K2.
Suppose z ∈ K1. There is a discDz containing z, such thatDz∩K2 = ∅.

Thus,

Q ∩Dz = (K1 ∪ k ∪K2) ∩Dz = (K1 ∪ k) ∩Dz = Q1 ∩Dz .

Similarly, if z ∈ K2, there is a disc Dz containing z, such that

Q ∩Dz = Q2 ∩Dz.

If z ∈ k \K1 , then there is a disc Dz containing z, such that Dz ∩K1 = ∅,
so

Q ∩Dz = (K1 ∪ k ∪K2) ∩Dz = (k ∪K2) ∩Dz = Q2 ∩Dz .

Thus, for each z ∈ Q , there is a disc Dz containing z , such that, for
j = 1 or j = 2 , Q ∩ Dz = Qj ∩ Dz . The theorem then follows from the
Localization Theorem and also from the Vitushkin Theorem 2.

3. Exponentials and logarithms in C . The object of this paper is
to approximate a function f on a compact set K by polynomials zero-free
on K. It is natural to assume that K is a set of polynomial approximation,
and in this case, we have noted that it is sufficient to approximate f by
functions in A(K) which are zero-free on K, for the latter functions can be
approximated by polynomials which, for sufficiently good approximations,
are also zero-free. If g ∈ A(K), then eg ∈ A(K) and eg is zero-free, so it
is sufficient to approximate by exponentials eg. In this section we gather
some basic facts regarding exponentials and logarithms on subsets of C .

Lemma 6. Suppose E is connected, f ∈ C(E) is zero-free and log1 f
and log2 f are two branches of log f. Then, log1 f and log2 f differ by an
integral multiple of 2πi.

Proof. We note that log1 f − log2 f is a branch of log 1 on E. It is
sufficient to show that every branch of log 1 on E is of the form n2πi for
some n ∈ Z. Let log 1 be a branch. Then, for each z ∈ E, log 1(z) = nz2πi,
for some nz ∈ Z. It is sufficient to show that nz takes the same value for
all z ∈ E. If E is a singleton, this is trivial. If E is not a singleton, then
no point of E is isolated, since E is connected. Since nz is continuous, it
must be locally constant. Thus, for each n the set En = {z ∈ E : nz = n}
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is clopen in E. Since E is connected, each En is empty or all of E. Since
E is not empty, it is equal to En for some n. This completes the proof.

For an open set U ⊂ C , denote by O(U) the family of holomorphic
functions in U. Let us say that an open (not necessarily connected) set is
simply connected if every component is simply connected.

Lemma 7. Suppose U is a simply-connected open set and f ∈ C(U) is
zero-free. Then, f has a logarithm. Equivalently, f ∈ expC(U). If, more-
over f ∈ O(U), then f ∈ expO(U).

Proof. This follows immediately from the universal covering.

Lemma 8. If f ∈ A(K) ∩ expC(K), then f ∈ expA(K).

Proof. Suppose f ∈ A(K) and f = eg, g ∈ C(K). Then, there is a
branch of log f such that g = log f. Thus, g ∈ A(K) which completes the
proof.

4. Reduction to exponential approximation. The set of zero-free
elements in the algebra C(K) is precisely the group C(K)−1 of invertible
elements of the algebra C(K). For a general unital algebra A, we denote
by A−1 the group of invertible elements of A. Our problem is a particular
case of trying to approximate an element of a unital Banach algebra A by
elements of the group A−1. In a unital Banach algebra A, we can define
the class eA = expA (see [12]). If we wish to approximate by elements of
A−1, it is sufficient to approximate by elements of eA, since the latter is a
subgroup of the former.

Lemma 9 (see [12]). Let A be a unital Banach algebra. Then eAis the
component of the identity in A−1 and consequently eA is closed in A−1.

Setting A = C(K), we see that expC(K) is the component of the
identity element of the multiplicative topological group C(K)−1, that is,
the component of the function 1. More information concerning the relation
between eA and A−1 is given by the following.

Theorem 5 (Arens–Royden [13]). Let M be the maximal ideal space
of a commutative unital Banach algebra A. Then

A−1/eA ∼= H1(M,Z).

In this theorem, the symbol ∼= denotes group homomorphism. For a
compact set K ⊂ C the maximal ideal space of the algebra C(K) is K
itself so we have the following.
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Corollary 1. For a compact set K,

C(K)−1/ expC(K) ∼= H1(K,Z).

Hence the Arens–Royden gives a necessary and sufficient condition on
a compact set K in order for every continuous zero-free function to have
a logarithm. Namely, this is the case if and only if H1(K,Z) = {0}.

Theorem 6. C(K)−1 = expC(K) if and only if C \K is connected.
Proof. This is an immediate consequence of the previous corollary,

but let us give a simple proof not explicitly involving cohomology. Suppose
C\K is connected and f is a continuous zero-free function on K. Firstly, we
extend f to a continuous function f̃ on all of C . By considering a regular
exhaustion of C \K, we may surround K by finitely many disjoint Jordan
curves J1, J2, · · · , Jn such that f̃ remains zero-free inside and on each Jj .
Denote by D1, D2, · · · ,Dn the corresponding disjoint Jordan domains. By
the monodromy theorem, we may define a branch of log f̃ inside each Dj

and clearly it extends to Dj . The restriction of log f̃ to K is a branch of
log f defined on K.

Suppose, conversely, that C \ K is not connected and let zo be in a
bounded complementary component. Then, z− zo is continuous and zero-
free on K, but it is impossible to define a branch of log(z− zo) on K. This
completes the proof.

Let P (K) denote the closure in C(K) of the polynomials. The maximal
ideal space of P (K) is the polynomial hull K̂ of K. Consequently, we have
the following corollary of the Arens–Royden Theoem.

Corollary 2. For a compact set K,

P (K)−1/ expP (K) ∼= H1(K̂,Z).

Since K̂ is the union of K with its bounded complementary compo-
nents, it follows from Mergelyan’s theorem that P (K) = A(K) if and only
if C \K is connected and so we deduce the following.

Corollary 3. For a compact set K, we have A(K)−1 = expA(K) if
and only if C \K is connected.

The following theorem summarizes much of the previous discussion (see
[14]).

Theorem 7. For a compact set K, the following are equivalent:
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C \K is connected;
H1(K,Z) = {0};

C(K)−1 = expC(K);

A(K)−1 = expA(K);

A(K) = P (K).

Recall that our main object is approximation by polynomials zero-free
on K, which is equivalent to approximation by functions in A(K)−1. Let us
say that a compact set K is a set of exponential approximation if expA(K)
is dense Ao(K). We have now seen that, if C \ K is connected, then ap-
proximation by functions in A(K)−1 is also equivalent to approximation
by functions in expA(K). We emphasize this as follows.

Theorem 8. If C \ K is not connected, then K is not a set of zero-
free polynomial approximation. If C \ K is connected, then K is a set of
zero-free polynomial approximation if and only if K is a set of exponential
approximation.

Proof. The second part follows directly from the previous corollary and
Mergelyan’s Theorem. Suppose C\K is not connected and choose a point zo
in some bounded complementary component. The usual proof of Runge’s
polynomial approximation theorem [11] shows that f(z) = (z− zo)−1 can-
not be approximated on K by polynomials, in particular by polynomials
zero-free on K. Since f is zero-free on K, the proof is complete.

5. Proof of Theorem 1. Having reduced the problem of zero-free
polynomial approximation to that of exponential approximation, we shall
show how exponential approximation yields a proof of our main theorem.
We need the inequalities in the following two simple lemmas.

Lemma 10. For w1 = ρ1e
iφ1 and w2 = ρ2e

φ2 , with |φ1 − φ2| ≤ π/4 ,

|φ1 − φ2| ≤
π

2 min{ρ1, ρ2}
|w1 − w2| .

Proof. We may assume 0 < ρ1 ≤ ρ2 and φ1 = 0. Then, |w2 − w1| ≥
≥ |ρ1eiφ2 − ρ1| ≥ ℑρ1eiφ2 = ρ1 sinφ2 ≥ ρ1(2/π)φ2 . Forgetting our
assumption that ρ1 ≤ ρ2 and φ1 = 0, this yields |w1 − w2| ≥
≥ min{ρ1, ρ2}(2/π)|φ1 − φ2| .

Lemma 11. For |w1|, |w2| ≥ m > 0 and |w1 − w2| < δ < m, we may
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choose argw1, argw2 so that

| argw1 − argw2| ≤ arcsin
δ

m
<
π

2

δ

m
.

Proof. We may assume that 0 = argw1 ≤ argw2, so we only need to
estimate argw2. The point w2 lies in the band 0 ≤ ℑw < δ and outside the
circle |w| < m. Thus, w2 lies in the first quarter plane and we only need
to estimate the value of argw2 lying between 0 and π/2. The maximum is
attained at the intersection of ℑw = δ with |w| = m. Thus,

0 ≤ argw2 ≤ arcsin
δ

m
<
π

2

δ

m
.

It is easy to see (by considering a circle) that the possibility of approxi-
mating a function by exponentials on a set is not a local property. However,
following lemma allows us to approximate simultaneously two exponentials
given on overlapping sets by a single exponential on the union of the two
sets.

Lemma 12 (Exponential Fusion). Let K1,K2 be disjoint compacts sets
of the Riemann sphere C. There is a constant A > 0 such that if k ⊂ C is
a compact set and, for j = 1, 2, rj are rational functions with |rj | ≤M on
Kj ∪ k and maxz∈k |r1(z) − r2(z)| < ϵ, where Aϵ ≤ 1, then, there exists a
rational function r such that

max
z∈Kj∪k

|er(z) − erj(z)| < eM ·Aϵ · e, j = 1, 2.

Proof. By the Fusion Lemma, there is a rational function r such that

max
z∈Kj∪k

|r(z) − rj(z)| < Aϵ, j = 1, 2.

Thus, for z ∈ Kj ∪ k,

|er(z) − erj(z)| = |erj(z)| · |er(z)−rj(z) − 1| ≤

eM ·

∣∣∣∣∣
∞∑
n=1

(r(z) − rj(z))
n

n!

∣∣∣∣∣ ≤ eM · |r(z) − rj(z)| ·
∞∑
n=1

1

n!
≤

≤ eM ·Aϵ · e.



102 P.M. Gauthier

Lemma 13. Let K1,K2, k be compact sets, with K1 ∩ K2 = ∅ and
k path connected. Suppose f is a function defined on K = K1 ∪ k ∪ K2

and for j = 1, 2, we have f |(Kj ∪ k) ∈ expA(Kj ∪ k). Suppose also that
f(z) ̸= 0, z ∈ k. Then, f ∈ expA(K).

Proof. Let ϵ > 0 and let A be the constant associated with the couple
K1,K2 by the Fusion Lemma. Let fj be the restriction of f to Kj ∪ k. By
hypothesis, for each δ > there are functions gj ∈ A(Kj ∪ k), such that

max
z∈Kj∪k

|fj(z) − egj(z)| < δ, j = 1, 2.

Thus,
max
z∈k

|eg1(z) − eg2(z)| < 2δ. (1)

Set maxz∈k |f(z)| = M and minz∈k |f(z)| = m > 0. For δ < m/2 suffi-
ciently small, we may assume that

m/2 < |egj(z)| < 2M, z ∈ k, j = 1, 2. (2)

We wish to show that we can choose branches of arg eg1 and arg eg2

which are close to each other on k. Namely, we fix a branch of arg eg1

and we shall choose an appropriate branch of arg eg2 . To this end, fix a
point a ∈ k and let σ : [0, 1] → E be a path in E, with initial point
σ(0) = a. Let T ⊂ [0, 1] be the set of t ∈ [0, 1] such that there is a
(continuous) branch of arg eg2(σ(s)), for 0 ≤ s ≤ t, such that | arg eg1(σ(s))−
− arg eg2(σ(s))| < π/8. The set T is open by definition. By equation (1) and
Lemma 11, we may assume that δ is so small that a ∈ T, so T ̸= ∅. Also,
if | arg eg1(σ(s)) − arg eg2(σ(s))| < π/8, and δ is small, then by Lemma 11,
| arg eg1(σ(s)) − arg eg2(σ(s))| is actually much smaller than π/8, say ≤ π/9.
Thus, T is closed. By connectivity, it follows that T = [0, 1].We have shown
that, along an arbitrary path σ in E, with initial point a, there is a branch
of arg eg2(σ(s)), with | arg eg1(σ(s)) − arg eg2(σ(s))| < π/8. If σ(s) = σ(t), for
some s < t, then, we claim that arg eg2(σ(s)) = argg2(σ(t)) . Indeed, a choice
of arg eg2 at each point of σ corresponds to a choice of nz ∈ Z at each
point of σ, with arg eg2 = ℑg2 + inz2π. Since, we have made a continuous
choice of arg eg2 along σ, we may choose nz constant along σ. Thus, if
σ(s) = σ(t), we have

arg eg2(σ(s)) = ℑg2(σ(s)) + n2πi = ℑg2(σ(t)) + n2πi = arg eg2(σ(t)) .
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For every such path, the choice of na is unique. Thus, we have the same
n, for all paths in E starting from a. Set h1 = g1 and h2 = g2 + n2πi. We
have shown that | arg eh1(z) − arg eh2(z)| < π/8, for z ∈ E. From (1), (2)
and Lemma 10, we have

| arg eh1(z) − arg eh2(z)| < 2

m/2
2δ, z ∈ E .

Thus, for sufficiently small δ,

|ℑh1(z) −ℑh2(z)| = | arg eh1(z) − arg eh2(z)| < ϵ/2, z ∈ E. (3)

Since log t is uniformly continuous on [m/2, 2M ], for all sufficiently
small δ > 0, we have that, if |t1 − t2| < 2δ, with t1, t2 ∈ [m/2, 2M ], then
| log t1 − log t2| < ϵ/2. Set t1 = eℜh1(z) and t2 = eℜh2(z). Then, by (1) we
have tj ∈ [m/2, 2M ] and

|t1 − t2| = ||eh1(z)| − |eh2(z)|| ≤ |eh1(z) − eh2(z)| < 2δ,

and so
|ℜh1(z) −ℜh2(z)| = | log t1 − log t2| < ϵ/2, z ∈ k. (4)

Combining (3) and (4), we have

|h1(z) − h2(z)| < ϵ , z ∈ k .

Since Kj ∪k are sets of rational approximation, there are rational func-
tions rj such that

max
z∈Kj∪k

|hj(z) − rj(z)| < ϵ, j = 1, 2.

By the Fusion Lemma 5, there is a rational function r such that

max
z∈Kj∪k

|r(z) − rj(z)| < Aϵ, j = 1, 2.

Thus,
max

z∈Kj∪k
|r(z) − hj(z)| < (1 +A)ϵ, j = 1, 2.

Since the h1 and h2 are bounded, r has no poles on K and, in particular,
r ∈ A(K). By choosing ϵ sufficiently small, we may assume (1 + A)ϵ < 1.
Then, for z ∈ Kj ∪ k, noting that egj = ehj , we have
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|fj(z) − er(z)| ≤ |fj(z) − ehj(z)| + |ehj(z) − er(z)| ≤

≤ δ + |ehj(z)| |er(z)−hj(z) − 1| ≤ m

4π
ϵ+ 2M

∣∣∣∣∣
∞∑
n=1

(r(z) − hj(z))
n

n!

∣∣∣∣∣ ≤
≤ m

4π
ϵ+ 2M |r(z) − hj(z)|

∞∑
n=1

1

n!
≤ m

4π
ϵ+ 2M (1 +A)ϵ e .

Thus,
max
z∈K

|f(z) − er(z)| <
(m

4π
+ 2M(1 +A)e

)
ϵ .

Since ϵ can be taken arbitrarily small, we have shown that f ∈ expA(K).
This completes the proof of the lemma.

Proof of Theorem 1. If f ∈ Ao(Q1∪Q2), then, f ∈ Ao(Qj), j = 1, 2.
Since each Qj is a set of zero-free polynomial approximation, it is a set of
polynomial approximation and hence C \ Qj is connected. Consequently,
A(Qj)

−1 = expA(Qj). Since f can be approximated by polynomials zero-
free on Qj and such polynomials are in A(Qj)

−1, they are in expA(Qj).

Thus f |Qj ∈ expA(Qj), j = 1, 2. From Lemma 13, setting k = Q1 ∩ Q2

and Kj = Qj \ (Q1 ∩ Q2), j = 1, 2, we have that, if f is zero-free on
Q1 ∩ Q2, then f ∈ exp(Q1 ∪Q2). Since the union of two compact sets
having connected complements is again of connected complement, provided
their intersection is connected (see [2]), C \ (Q1 ∪Q2) is connected and so
expA(Q1 ∪Q2) = A(Q1 ∪Q2)−1. Thus, f is the uniform limit of functions
in A(Q1 ∪ Q2)−1, but by Mergelyan’s theorem, such functions are the
uniform limit of polynomials, which, for sufficiently good approximations
are zero-free on Q1 ∪Q2. This completes the proof of Theorem 1.

6. A theorem of Khrushchev. Recall that Ao(K) denotes the
functions in A(K) which have no isolated zeros in the interior. Clearly,
A(K)−1 ⊂ Ao(K) and our problem is whether they are equal. Moreover,
we have seen that A(K)−1 = expA(K) if and only if C \K is connected.
A recent result of Khrushchev [5] gives a sufficient condition for approxi-
mation by functions in expA(K). In this section, we present Khrushchev’s
theorem, from which several results published earlier on zero-free polyno-
mial approximation follow.

Lemma 14. Suppose a set E is path connected. If f ∈ C(E) is bound-
ed away from zero, then f ∈ expC(E) if and only if f has a logarithm.
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We remark that, we have not assumed that E is closed or open and if E
is compact, then the conclusion holds whether or not E is path connected,
because, then expC(E) is the component of the identity in C(E)−1 and is
therefore closed in C(E)−1.

Proof. If f has a logarithm, then f ∈ expC(E) and so trivially
f ∈ expC(E).

Conversely, suppose f ∈ expC(E). Then, for every ϵ > 0, there is a
g ∈ C(E) such that supz∈E |f(z)−eg(z)| < ϵ. Since f is bounded away from
zero, setting m = infz∈E |f(z)|, we may assume that |eg(z)| > m/2 > 0,
for z ∈ E. Thus, both f(z) and eg(z) lie outside D(0,m/2) and f(z) ∈
∈ D(eg(z), ϵ). For ϵ sufficiently small, the disc D(eg(z), ϵ) lies in a sector of
opening less than π/4, for every z ∈ E. Thus, for every z ∈ E, we may
choose arg f(z) and arg eg(z) so that | arg f(z) − arg eg(z)| < π/4.

Fix a point a ∈ E and set

w1 = f(a) = ρ1e
iφ1 , w2 = eg(a) = ρ2e

iφ2 ,

where ρ2 = eℜg(a) and φ2 is a value of arg eg(z) chosen so |φ1 −φ2| < π/4.
Let ga = g + na2πi, where na ∈ Z is chosen so that ℑga(a) = φ2. Since
eg = ega , we replace g by ga and ga has all of the properties, which we
have established for g.

Let γ be a path in E beginning at a. As z traverses γ, the point f(z)
remains in the moving disc D(ega(z), ϵ). We may cover γ with a chain
{Dj} of such discs and in each disc choose arg f(z) so that the choices
are compatible for each pair Dj , Dj+1. Suppose, to obtain a contradiction
that for some j < k, the discs Dj and Dk intersect and the choices arg f,
which we denote by argj f and argk f do not agree on Dj ∩ Dk. Then
| argj f − argk f | ≥ 2π. However, | argj f − argk f | < | argj − arg ega | +
+| arg ega − argk f | < π/4 + π/4. This contradiction shows that we may
define arg f continuously along each path in E, starting from a, even if
the path returns to a previous point. Thus, arg f(z) has a branch on E,
which is equivalent to the assertion that log f(z) has a branch on E. This
completes the proof of the lemma.

The notion of local connectivity is useful to study the logarithm. The
proof of the following lemma follows the presentation in [11, p. 138].

Lemma 15. Let U be an open subset of C and zo ∈ ∂U. Then U ∪{zo}
is locally connected at zo if and only if it is locally path connected at zo.

Proof. Notice that U ∪ {zo} is locally path connected at zo if and
only if the following holds: for every neighborhood W of zo, there exists a
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neighborhood V of zo with the property that each point z ∈ U ∩V can be
connected to zo by an arc γz which is in ⊂ U ∩W, except for its end point
zo .

a) Suppose U ∪{zo} is path connected and W is a neighborhood of zo.
We use the neighborhood of zo from the previous paragraph and write

Z = ∪{γz : z ∈ U ∩ V } ∪ {zo};

hence Z is connected and Z ⊂ (U ∪{zo})∩W. Further, Z ⊃ (U ∪{zo})∩V
and the latter is a neighborhood of zo in U ∪ {zo}.

b) Now suppose U ∪ {zo} is locally connected at zo and W is a neigh-
borhood of zo. It is sufficient to show the following.

Claim: There exists a neighborhood V ⊂W of zo such that each point
z in U ∩V can be connected in U ∩W with a point that is arbitrarily close
to zo.

For then we construct {Wn} such that Wn+1 ⊂ Wn and ∩Wn = {zo}
and the corresponding Vn such that Vn+1 ⊂ Vn, and in the obvious way
we connect countably many arcs to constitute γz, which lies in U ∩ W
and connects z in U with zo. In order to show the claim, choose a point
z ∈ U ∩ V and let Z be the component of U ∩W containing z. Suppose Z
does not contain points arbitrarily close to zo. Then Z is open and closed
in (U ∪ {zo})∩W. Hence, it is also open and closed in (U ∪ {zo})∩ V. But
since Z does not contain zo, it is not all of (U ∪{zo})∩V. This contradicts
the connectivity of (U∪{zo})∩V. Hence Z contains points arbitrarily close
to zo. Since Z is open and connected, it is path-wise connected. Thus z
can be path connected in U ∩W to points arbitrarily close to zo, which
establishes the claim and completes the proof.

Suppose U is a simply-connected domain in C , f ∈ C(U) is zero-
free on U and log f is a branch of the logarithm of f on U, zo ∈ ∂U,
f(zo) ̸= 0, U ∪{zo} is locally connected at zo. Then, log f need not extend
continuously to zo. For example, consider U = C \ [0,+∞], f(z) = z and
zo = 1. Then, we may define log z in U but it does not have a continuous
extension to the point 1.

It does not help to suppose that U is the interior of a compact set K, for
we may consider K = D(0, 1) \D(1/2, 1/2), f(z) = z and zo = 1. Again,
we may define log z in U, but we cannot extend it to the boundary point
1.

To remedy this difficulty, Khrushchev [5] introduced the notion of loga-
rithmic continuity. Let us say that f ∈ C(E) is logarithmically continuous
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if there is a (continuous) branch of log f on E \ f−1(0). If f is logarith-
mically continuous on E, we may extend log f to a continuous function
log f : E → C , by setting log f(z) = ∞ for z ∈ f−1(0). This definition of
logarithmic continuity appears more general than that of Khrushchev, but
it is equivalent. With the help of logarithmic continuity, Khrushchev has
obtained the following fundamental result on zero-free approximation.

Theorem 9 (Khushchev [5]). For every logarithmically continuous
f ∈ A(K) and ϵ > 0, there is a function g ∈ eA(K), and hence invert-
ible in A(K), such that |f(z) − g(z)| < ϵ, z ∈ K.

Khrushchev claimed that logarithmically continuous functions cannot
vanish on Ko. This is not correct. A correct statement is that logarithmi-
cally continuous functions in A(K) can have no isolated zeros in Ko. That
is, they must lie in Ao(K).

Khrushchev’s theorem gives condition under which we may approxi-
mate an individual function on a given set. We may apply it to determine
classes of functions on classes of sets, for which zero-free polynomial ap-
proximation is possible.

The following is a slight generalization of Theorem 3.1 in [5].

Theorem 10. Let K be a locally connected compact set with connected
complement. Then, every function f ∈ Ao(K) is logarithmically continu-
ous.

Khrushchev proved this result under the stronger assumption that f
has no zeros on Ko, but his proof also yields the present formulation. As a
consequence we obtain the following slight generalization of the important
Corollary 3.3 in [5].

Corollary 4. Let K be a locally connected compact set with connected
complement. Then every function f ∈ Ao(K) can be arbitrarily closely
approximated by polynomials zero-free on K.

7. Examples and open problems. Khushchev showed that if f
is logarithmically continuous and K satisfies certain conditions, then
f ∈ expA(K). The converse is false. Khushchev gave an example of a
compact set K with connected complement and a function f ∈ A(K)
which is zero-free on Ko, such that f is in A(K)−1 but f is not log-
arithmically continuous. For compact sets with connected complement,
A(K)−1 = expA(K), so f ∈ expA(K), though f is not logarithmically
continuous.
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In the example given by Khushchev, every boundary point belongs
to only one impression. Thus, the fact that every boundary point of a
compact domain belongs to only one impression does not guarantee that
every f ∈ Ao(K) is logarithmically continuous.

Suppose K satisfies the hypotheses of Corollary 4 and moreover K =
= Ko with Ko connected. Then, of course, Ko is simply connected. Since
K = Ko, it follows that ∂K = ∂C \K and from Th. 2.1 [15] we see that
K is a closed Jordan domain.

Corollary 4 (also Khrushchev’s version) yields many examples where
Ko is not connected. In particular, it yields the recent results for zero-free
approximation on Jordan domains [1] and on chains, forests and bouquets
of Jordan domains [4, 2].

One can mimic the proof for Jordan domains to show the following.
Theorem 11. Let D be a C∞-smoothly bounded strictly pseudoconvex

domain in Cn, n > 1 , which is biholomorphic to the unit ball and f a
continuous function on D, which is holomorphic and zero-free on D. Then
f can be uniformly approximated by zero-free functions in O(D).

For the proof, we need two theorem. The first is due independently to
Henkin, Kerzman and Lieb (see [16]).

Theorem 12 (Henkin–Kerzman–Lieb). Suppose, for n > 1, that
D ⊂ Cn is the closure of a strictly pseudoconvex domain D with C2-boun-
dary. Then, every function continuous on D and holomorphic on D can
be approximated uniformly by functions in O(D).

Theorem 13 (Vormoor [17]). If Φ : D1 → D2 is a biholomorphic
mapping between two strictly pseudoconvex domains in Cn, n > 1 , with
C∞-boundaries, then Φ extends to a homeomorphism Φ : D1 → D2.

Proof of Theorem 11. Let Φ : D → B be a biholomorphic mapping
of D onto the unit ball B. For 0 < r < 1, set fr(z) = f(Φ−1(rΦ(z))). Then,
fr is continuous on D by Vormoor’s Theorem and clearly fr is holomorphic
on D. By the Henkin–Kerzman–Lieb Theorem, fr can be uniformly ap-
proximated by functions in O(D). Sufficiently good such approximations
are zero-free on D, since fr is zero-free. Moreover, fr converges uniformly
to f, as r → 1. This completes the proof of the theorem.

Another theorem in one variable which extends to several variables is
the following.

Theorem 14. Suppose K is strictly starlike with respect to some point
zo. That is, for each z ∈ K, the segment



Zero-free polynomial approximation ... 109

[zo, z) = {zo + r(z − zo) : 0 ≤ r < 1}

is contained in Ko, then each continuous function f on K, which is holo-
morphic and zero-free on Ko, can be uniformly approximated by zero-free
function in O(K).

The very simple proof is the same as in one variable. Namely, the func-
tions fr(z) = f(zo + r(z − zo)) may serve as the desired approximations.

Problem 1. What more can be said regarding zero-free approximation
in several variables?

Corollary 4 also allows approximation on certain compacta whose inte-
riors have infinitely many components.

For a sequence E1, E2, · · · of sets, lim supj→∞Ej denotes the set of all
z such that every neighborhood of z meets Kj , for infinitely many j.

Theorem 15. If Q,Q1, Q2, · · · are disjoint compact sets of zero-free
approximation and

lim sup
j→∞

Kj ⊂ Q,

then

K =

∞∪
j=1

Qj ∪Q

is a set of zero-free rational approximation.
Proof. Suppose f ∈ Ao(K) and ϵ > 0. Let g∞ be a rational function

which is zero-free on Q, such that |g∞ − f |Q| < ϵ/2. Then, there is a
neighborhood U of Q such that |g∞−f | < ϵ/2, for z ∈ K ∩U. For some n,
we have Qj ⊂ U, for each j > n. For each j = 1, 2, · · · , n let gj be a rational
function, which is zero-free on Qj , such that |gj−f |Qj | < ϵ/2. Define g on
K by setting g = gj on Qj , j = 1, 2, · · · , n and g = g∞ on K∩U. Then g is
holomorphic and zero-free on K and |g−f | ≤ ϵ/2. By Runge’s theorem we
may approximate g uniformly on K by rational functions and sufficiently
good such approximations will also be zero-free on K. Thus, K is a set of
zero-free rational approximation.

Definition (Schlangengebiet). Let G be a simply connected bounded
domain with one non-degenerate prime end P, all other prime ends being
simple. Moreover, let 0 be in G. Then, Gaier [7] calls G a Schlangengebiet,
if for every z ∈ G, z ̸= 0, there is a cross-cut q(z) through z, which
separates z from P, such that the diameter of q(z) tends to 0 as z → P.
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Definition (Snake domain). By a snake domain we mean a strip S
which gets thinner as it approaches a non-degenerate continuum. Now, we
give a more formal definition. Consider a conformal mapping φ : ∆ → S
of the unit disc onto a bounded domain S. Let P be the prime-end of
S corresponding to 1 and let [P ] be its impression. We suppose that φ
extends to a homeomorphism φ : ∂∆ \ {1} → ∂S \ [P ]. For 0 < δ < 1,
consider the lens Lδ = {z ∈ ∆ : |z − 1| < δ, and consider the two circular
boundary arcs

α+
δ = {z ∈ ∂∆ : 0 < |z − 1| < δ,ℑz > 0},

α−
δ = {z ∈ ∂∆ : 0 < |z − 1| < δ,ℑz < 0}.

Denote by d(E,F ) the distance between two sets and suppose

lim
δ→0

max
{
d
(
φ(Lδ), φ(α−

δ )
)
, d
(
φ(Lδ), φ(α+

δ )
)}

= 0.

This complicated condition is just the condition that Sδ ≡ φ(Lδ) is getting
thinner as δ → 0. We call the the impression [P ] of the prime end P
the end of the snake domain S. If the continuum [P ] is degenerate (a
singleton), then ∂S is a Jordan curve. However, we assume that [P ] is a
non-degenerate continuum and call such a domain S a snake domain. A
familiar example of a snake domain, is a thin strip neighborhood of the
curve y = sin 1/x, 0 < x ≤ 1. Another familiar example is a strip which
approaches the unit circle from without (or within) while winding around
the circle infinitely many times. The cornucopia is the union of ∆ with
such an outer snake domain.

Let us define a compact snake K to be the closure of a snake domain
S. Thus, K = S. Let P be the non-degenerate prime end of S, and [P ]
its impression. Set bG = ∂S \ [P ]. Then ∂K is the disjoint union of the
continuum [P ] and the Jordan arc bS = φ(∂∆ \ {1}). ∂K = bG ∪ [P ].

Problem 2. Is every compact snake or Schlangengebiet a set of zero-
free approximation?

The following two lemmas provide some preliminary information re-
garding this situation.

Lemma 16. Every compact snake is a set of rational approximation.
Proof. It is sufficient [8] to show that K has no inner boundary. First

of all, every point of the Jordan arc bS is on the outer boundary. We may
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construct a Jordan arc α in C \K which approaches bS as bS approach-
es [P ]. Thus, every point of [P ] is in the closure of the complementary
component of K containing α. Consequently, every point of [P ] lies on the
outer boundary. Hence, the inner boundary of K is empty so K is a set of
rational approximation.

Lemma 17. For each continuous function f on the unit circle ∂∆,
and each outer spiral σ approaching ∂∆, there is a closed spiral domain S
containing σ and an extension F ∈ A(S) with F = f on ∂∆. In particular,
each f ∈ A(∆) extends to a cornucopia ∆ ∪ S.

Proof. Extend f continuously to C . Let F, holomorphic in C \ ∆, be
a carleman approximation of f on σ. If the approximation is sufficiently
rapid, then F is uniformly continuous on σ and hence is a continuous
extension of f to ∂∆ ∪ σ. We may construct a spiral neighborhood S of
σ, so close to σ that F is continuous on ∆∪ S. Note that these extensions
are highly non-unique.

Definition. By a cornucopia, we mean a compact set K consisting of
the closed unit disc ∆ and a (closed) strip S spiraling in towards the unit
circle.

Problem 3. Is a cornucopia a set of zero-free approximation?

The following lemma is obvious.

Lemma 18. Let K = ∆∪S be a cornucopia. If f ∈ A(S), g ∈ A(S\∆),
and f(z) − g(z) → 0, as z → ∂∆, then g extends continuously to S and
g = f on ∂∆.

For f ∈ A(K), where K is a cornucopia, this lemma may help to
‘remove’ possible zeros on ∂S \ ∆, by replacing f on S \ ∆ by such an
approximation g which is zero-free on ∂S \ ∆.

All of the above problems are related to the following general problem
which I considered in writing [6] (but did not publish) and which was
published by Andersson [1].

Problem 4. Is every compact set of polynomial approximation a set of
zero-free polynomial approximation?

One could also consider the analogous problem on closed (rather than
compact) sets. The following problem might be a very simple situation in
which to begin.
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Problem 5. Let E be the closed right half-plane and suppose f is an
entire function whose unique zero on E is at the origin. Can f be uniformly
approximated on E by entire functions having no zeros on E?

8. Topology. Let us say that K is a compact domain if K is compact,
Ko is connected and K is the closure of Ko.

The following theorem shows that there is no topological obstruction
to the zero-free approximation we are attempting in this paper.

Theorem 16. Suppose K ⊂ C is compact, f ∈ C(K) and f−1(0) ⊂
⊂ ∂K. Then, for each ϵ > 0, there is a g ∈ C(K)−1 such that

|f(z) − g(z)| < ϵ ∀ z ∈ K .

Proof. Since E = f−1(0) is compact and f is continuous, given ϵ > 0,
there are finitely many disjoint Jordan domains Dj , j = 1, 2, . . . , n , whose
union D contains E and is contained in K and such that |f | < ϵ on D.
Since ∂D ∩ E = ∅, the function f is bounded away from zero on ∂D ∩K.
Let m = min{|f(z)| : z ∈ ∂D ∩ K. Extend f continuously to ∂D, so
that m ≤ |f | ≤ ϵ on ∂D. Since E ⊂ D ∩ ∂K, we may choose points
zj ∈ Dj \ K, j = 1, 2, . . . , n . For each j, let Uj be an open disc, with
zj ∈ Uj ⊂ Dj \ K and let Aj be the closed annular region Dj \ Uj . We
define a continuous function hj on Aj by first setting hj = f on ∂Dj

and then extending hj continuously to Aj while maintaining the bounds
m ≤ |hj | ≤ ϵ. Now, we define a zero-free function gϵ ∈ C(K), by setting
gϵ = f on K \ D and gϵ = hj on each Aj . Then, f = g on K \ D and
|f − g| ≤ ϵ + m ≤ 2ϵ on K ∩D. Thus, |f − g| ≤ 2ϵ on K. Since ϵ was an
arbitrary positive number, the proof is complete.

If f ∈ A(K), then on each component of Ko, the function f is either
identically zero or zero-free. Another way of saying this is that f has no
isolated zeros on Ko. This necessary condition also has a topological ana-
log. Suppose K is a compact domain and f ∈ C(K). Let zo be an isolated
zero of f in Ko. For sufficiently small neighborhoods G of zo, the degree
µ(0, f,G) of the mapping f : G → C , with respect to 0 is invariant (see
[18]). We denote this value by µ(0, f, zo) and call it the local degree of f
at zo with respect to 0. Our topological necessary condition for zero-free
approximation is the following.

Theorem 17. Let K be a compact domain. Suppose a sequence of zero-
free functions gn ∈ C(K) converges uniformly to a function f ∈ C(K).
Then, µ(0, f, zo) = 0 at each isolated zero zo of f in Ko.
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Proof. Let D be a closed disc centered at zo and contained in K, such
that zo is the only zero of f in D. Then, µ(0, f,D) = µ(0, f, zo). By the
Topological Rouché Theorem [19], for n sufficiently large, µ(0, f,D) =
= µ(0, gn, D). Since gn omits 0, we have µ(0, gn, D) = 0 and since
µ(0, f,D) = µ(0, f, zo), the conclusion follows.

If f holomorphic and not identically zero on a domain has a zero at a
point zo, then the local (topological) degree of f at zo is the usual degree
of the zero of f at zo, that is, the integer n such that, in a neighborhood
of zo, the function f has a representation f(z) = (z − zo)

nh(z), with h
holomorphic and h(zo) ̸= 0. Thus, if f is holomorphic, the condition that
the local degree µ(0, f, zo) = 0 is zero at each isolated zero zo means that f
has no isolated zeros By the uniqueness property, the topological condition
of the theorem, in the holomorphic case, becomes the condition that, on
each component of Ko, the function f is either zero-free or identically zero.
This is the condition which we considered to be natural from the start.
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