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We study plane homeomorphisms preserving integrally quasiinvariant the
weighted p-module and provide conditions ensuring the local Hölder con-
tinuity of such mappings with respect to euclidian distances and to their
logarithms. The inequality defining the continuity is sharp with respect to
the order.

1. Introductory remarks. In this paper, we continue studying the
properties of plane mappings with controlled p-module. The main charac-
terization of these mappings relies on an extension of quasiinvariance of
p-moduli of appropriate order for quasiconformal and quasiisomertic map-
pings. This approach involves the inequalities which the growth of moduli
of families of curves via

Mp(fΓ) ≤
∫
G

Q(z)ρp(z)dm(z),

where Q is a given real measurable function.
For many questions concerning quasiconformal mappings and their gen-

eralizations it would be interesting to have criteria for the Lipschitz or
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Hölder continuity or giving more general regularity conditions in a pre-
scribed point or on a given set. Our main results state that for every
1 < p < 2 and any locally integrable Q with the exponent exceeding
2/(2 − p) the corresponding mappings is Hölder continuous while for the
degree 2/(2−p) it is logarithmically Hölder continuous. Other results con-
cern the equicontinuity and normality of the mapping families.

2. Q-homeomorphisms with respect to p-moduli and related
estimates. In this section we give all needed definitions and notations.

2.1. A curve γ in C is a continuous mapping γ : ∆ → C, where D is an
interval in R. The locus γ(∆) is denoted by |γ|. Given a family Γ in C of
curves γ, a Borel function ϱ : C→ [0,∞] is called admissible for Γ (abbr.
ϱ ∈ adm Γ) if ∫

γ

ϱ |dz| ≥ 1

for any γ ∈ Γ. The quantity

Mp(Γ) = inf
ϱ∈admΓ

∫∫
C

ϱp(z) dm(z), p ≥ 1,

is called p-module of Γ; here m denotes the two-dimensional Lebesgue
measure in C. For the properties of p-module, we refer to [1, 2].

Let G be a domain in C and Q : G → [0,∞] be a Lebesgue measur-
able function. A homeomorphic mapping w = f(z) : G → C is called
Q-homeomorphism with respect to p-module, if

Mp(fΓ) ≤
∫
G

Q(z)ρp(z)dm(z) (1)

for every family Γ of curves located in G and any ρ admissible for Γ.
The study of such mappings was started in [3]; on their differential and

geometric properties see [4 — 6]. Such homeomorphisms in Rn are close to
bilipschitz mappings (see e.g. [7, 8]). Note also that right-hand side in (1)
can be treated as a weighted p-module; cf. [9, 10].

2.2. Let E = (A,C) be a condenser. Denote by C0(A) the set of all
continuous functions u : A → R1 with compact support in A, and let
W0(E) = W0(A,C) be the set of all nonnegative functions u : A → R1

satisfying: u ∈ C0(A), u(z) ≥ 1 for z ∈ C and u belongs to ACL (absolutely
continuous on lines). Put
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capp E = capp (A,C) := inf
u∈W0(E)

∫
A

(
u2x + u2y

)p/2
dm(z), p ≥ 1.

This quantity is called p-capacity of condenser E .
It was proven in [11] that for p > 1,

capp E = Mp(∆(∂A, ∂C;A \ C)), (2)

where ∆(∂A, ∂C;A\C)) denotes the set of all continuous curves joining the
boundaries ∂A and ∂C in A\C. The general properties of p-capacities and
their relation to the mapping theory are presented in [12, 13]. In particular,
when 1 ≤ p < 2,

capp E ≥ 2
√
πp
(

2 − p

p− 1

)p−1

[mC]
2−p
2 . (3)

For 1 < p ≤ 2, there is the following lower estimate

capp E ≥ γ
dp(C)

(mA)p−1
, (4)

where d(C) denotes the diameter of C, and γ is a positive constant de-
pending only on p (see [14]).

2.3. It is well-known that the class of planar quasiconformal mappings
is intrinsically connected with homeomorphic solutions to the Beltrami
equation

fz = µ(z)fz,

where µ(z) is a measurable function with |µ(z)| < 1 a.e. (called also com-
plex dilatation) in a given subdomain G of the complex plane C and

fz :=
∂f

∂z
=

1

2

(
∂f

∂x
+i

∂f

∂y

)
, fz :=

∂f

∂z
=

1

2

(
∂f

∂x
−i∂f

∂y

)
(z = x+iy),

are the partial derivatives (in general, the distributional derivatives) of f ;
see e.g. [15, 16, 2]. The quantity

Kµ(z) =
1 + |µ(z)|
1 − |µ(z)|

,

is called Lavrentiev characteristic (or dilatation) of a mappings f at the
point z (cf. [17, 18]).
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Equivalently Kµ(z) =
|wz| + |wz̄|
|wz| − |wz̄|

=
(|wz| + |wz̄|)2

|wz|2 − |wz̄|2
=

|wz|2 − |wz̄|2

(|wz| − |wz̄|)2
.

Since |wz|2 − |wz̄|2, |wz| + |wz̄| and |wz| − |wz̄| are equal to the Jacobian,
maximal and minimal stretching of a sense-preserving mapping w, one
can recall counterparts of the Lavrentiev dilation with respect to a given
p, p ≥ 1. The quantities

KO
p,w(z) =

(|wz| + |wz̄|)p

|wz|2 − |wz̄|2
and KI

p,w(z) =
|wz|2 − |wz̄|2

(|wz| − |wz̄|)p

stand for the p-outer and p-inner dilatations of a mapping w at z, respec-
tively.

Due to Theorem 4.1 from [19], the majorant Q(z) in (1) can be regarded
as KI

p,f (z), or in terms of the Lavrentiev dilatation and p-outer dilatation,

Q(z) = Kp
µ(z)/KO

p,f (z).

2.4. Let (X, dX) and (Y, dY ) be two metric spaces with distances dX
and dY , respectively. A family F of continuous mappings f : X → Y is
called equicontinuous at a point x0 ∈ X if for every ε > 0 there is δ > 0
such that dY (f(x), f(x0)) < ε for all f ∈ F and any x ∈ X provided
that dX(x, x0) < δ. The family F is called equicontinuous in X if F is
equicontinuous for every x0 ∈ X.

The following notion is closely related to equicontinuity. A family F
is called normal if for any sequence {fn} of continuous mappings fn :
X → Y there exists a subsequence {fnm} that converges uniformly on
each compact set E ⊂ X.

The following well known Ascoli’s theorem provides a sufficient condi-
tion for an equicontinuous family F to be normal; see e.g. [20, 21].

Proposition. If T is a separable topological space and Y is a compact
metric space, then every equicontinuous family F of mappings f : T → Y
is a normal family.

3. Hölder continuity. One of the interesting problems in geometric
function theory is to find the conditions insuring the Hölder continuity
of mappings. For the Q-homeomorphisms with respect to conformal mod-
ule, Q of BMO-class (bounded mean oscillation), FMO-class (finite mean
oscillation) and Lα, see e.g. [22].

In this section we establish that integrability ofQ inG with an exponent
α < 2/(2 − p) implies the Hölder continuity of Q-homeomorphisms with
respect to p-module with degree 1 − 2/(2 − p)α.
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Theorem 3.1. Let G and G∗ be domains in C, and let f : G → G∗

be a Q-homeomorphism with respect to p-module, 1 < p < 2, with Q(z) ∈
∈ Lα(G), α > 2

2−p . Then for an arbitrary compact set F ⊂ G and for
any pair of points z, ζ ∈ F , such that |z − ζ| < δ, δ = 1

4dist (F, ∂G), the
following inequality holds

|f(z) − f(ζ)| ≤ λp∥Q∥
1

2−p
α |z − ζ|1−

2
α(2−p) , (5)

with a constant λp depending only on p.
Proof. Consider an annulus A = A(z, ε1, ε2) centered at z ∈ G

and radii ε1, ε2, 0 < ε1 < ε2 < δ, such that A(z, ε1, ε2) ⊂ G. Then(
fB (z, ε2) , fB (z, ε1)

)
is a condenser located in G∗. By (2)

capp (fB(z, ε2), fB(z, ε1)) = Mp(△(∂fB(z, ε2), ∂fB(z, ε1); fA)),

where B(z, r) is a disk centered at z of radius r. Since f is homeomorphism,

△ (∂fB (z, ε2) , ∂fB (z, ε1) ; fA) = f (△ (∂B(z, ε2), ∂B(z, ε1);A)) .

Now consider the function

ϱ(z) =

{
1

ε2−ε1 , z ∈ A

0, z /∈ A,

which is admissible for the family △(∂fB(x, ε2), ∂fB(x, ε1); fA). Then
from (1)

capp (fB(z, ε2), fB(z, ε1)) ≤ 1

(ε2 − ε1)p

∫
R(z,ε1,ε2)

Q(z) dm(z) ,

and by the Hölder inequality

capp (fB(z, ε2), fB(z, ε1)) ≤
(
πε22
)α−1

α

(ε2 − ε1)p
∥Q∥α . (6)

Letting ε = |z − ζ|, ε1 = 2ε and ε2 = 4ε, one gets the upper bound for
p-capacity

capp (fB(z, 4ε), fB(z, 2ε)) ≤ γ1∥Q∥αε
2α−αp−2

α . (7)

On the other hand, one can derive from the inequality (3) the following
lower bound

capp (fB(z, 4ε), fB(z, 2ε)) ≥ γ2 [m(fB(z, 2ε))]
2−p
2 , (8)

where γ2 is a positive constant depending only on p.



120 A. Golberg, R. Salimov

Combining the estimates (7) and (8), one gets the upper bound for the
image of the disk B(z, 2ε),

m(fB(z, 2ε)) 6 γ3∥Q∥
2

2−p
α ε

2(2α−αp−2)
α(2−p) ,

where γ3 is also a constant depending only on p.
Now, letting in (6) ε1 = ε and ε2 = 2ε, one obtains

capp (fB(z, 2ε), fB(z, ε)) ≤ γ4∥Q∥αε
2α−αp−2

α , (9)

and after applying the lower bound from (4),

capp (fB(z, 2ε), fB(z, ε)) ≥ γ5
dp(fB(z, ε))

mp−1(fB(z, 2ε))
. (10)

The inequalities (9) and (10) result in

d(fB(z, ε)) ≤ γ∥Q∥
1

2−p
α ε1−

2
α(2−p)

with a constant γ depending only on p.
Now the desired estimate (5) follows from the obvious inequality

d(fB(z, ε)) ≥ |f(z) − f(ζ)| and this completes the proof.

4. Logarithmic Hölder continuity. When Q is locally integrable
with the exponent 2/(2−p), one can derive a stronger inequality than (5).
This kind of continuity can be regarded as a logarithmic Hölder continuity.

Theorem 4.1. Let G and G∗ be two domains in C, ζ ∈ G, and

Q ∈ L
2

2−p (B(ζ, r0)) , r0 ≤ min
(
1,dist4 (ζ, ∂G)

)
.

Then for every Q-homeomorphism f : G → G∗ with respect to p-module,
1 < p < 2,

|f(z) − f(ζ)|
(

log
1

|z − ζ|

) p
2(2−p)

≤ Cp ∥Q∥
1

2−p
2

2−p

, |z − ζ| < r0, (11)

where ∥Q∥ 2
2−p

=
( ∫
B(ζ,r0)

Q
2

2−p (z) dm(z)
) 2−p

2

and Cp is a positive constant

depending only on p.
Proof. Consider an annulus A(ζ, ε1, ε2) = {x : ε1 < |z− ζ| < ε2} with

radii 0 < ε1 < ε2 such that A(ζ, ε1, ε2) ⊂ G.
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Since both f
(
B (ζ, ε2) , B (ζ, ε1)

)
and

(
fB (ζ, ε2) , fB (ζ, ε1)

)
are ring-

like condensers in G∗ and coincide (since f is a homeomorphism), one gets
from (2)
capp (fB(ζ, ε2), fB(ζ, ε1))=Mp(△(∂fB(ζ, ε2), ∂fB(ζ, ε1); fA(ζ, ε1, ε2))) .

By the same reason △ (∂fB (ζ, ε2) , ∂fB (ζ, ε1) ; fA(ζ, ε1, ε2)) =
= f (△ (∂B(ζ, ε2), ∂B(ζ, ε1);A(ζ, ε1, ε2))). These equalities and the defi-
nition of Q-homeomorphisms with respect to p-module yield

capp (fB(ζ, ε2), fB(ζ, ε1)) ≤
∫

A(ζ,ε1,ε2)

Q(z) ρp(z) dm(z)

for any function ρ admissible for the family △(∂B(ζ, ε2), ∂B(ζ, ε1);
A(x0, ε1, ε2)).

Obviously, the function

ρ(z) =

{
1

|z−ζ| log ε2
ε1

, if z ∈ A(ζ, ε1, ε2),

0, otherwise

is admissible for this family, and hence

capp (fB(ζ, ε2), fB(ζ, ε1)) ≤ 1

logp ε2ε1

∫
A(ζ,ε1,ε2)

Q(z)

|z − ζ|p
dm(z) .

Applying to the integral in the right-hand side the Hölder inequality yields
capp (fB(ζ, ε2), fB(ζ, ε1)) ≤

≤ log−p ε2
ε1

( ∫
B(ζ,r0)

Q
2

2−p (z) dm(z)

) 2−p
2
( ∫
A(ζ,ε1,ε2)

dm(z)

|z − ζ|2

) p
2

.

Since
∫

A(ζ,ε1,ε2)

dm(z)
|z−ζ|2 = 2π log(ε2/ε1), one derives

capp (fB(ζ, ε2), fB(ζ, ε1)) ≤

≤
√

(2π)p
( ∫
B(ζ,r0)

Q
2

2−p (z) dm(z)

) 2−p
2

log− p
2
ε2
ε1
.

(12)

Choosing ε1 = ε and ε2 =
√
ε, we have

capp (fB(ζ,
√
ε), fB(ζ, ε)) ≤

≤ C1

( ∫
B(ζ,r0)

Q
2

2−p (z) dm(z)

) 2−p
2

log− p
2

1

ε

(13)
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with C1 depending only on p.
On the other hand, from (4),

capp (fB(ζ,
√
ε), fB(ζ, ε)) ≥ C2

dp(fB(ζ, ε))

mp−1(fB(ζ,
√
ε))

, (14)

where C2 is a positive constant depending only on p.
Now, combining (13) and (14), we have

dp(fB(ζ, ε))

mp−1(fB(ζ,
√
ε))

≤ C3

( ∫
B(ζ,r0)

Q
2

2−p (z) dm(z)

) 2−p
2

log− p
2

1

ε
. (15)

To find an upper bound for m(fB(ζ,
√
ε)) in (15), pick in (12) ε1 =

√
ε

and ε2 = 4
√
ε. Then one derives

capp(fB(ζ, 4
√
ε), fB(ζ,

√
ε)) ≤

≤ C4

( ∫
B(ζ,r0)

Q
2

2−p (z) dm(z)

) 2−p
2

log− p
2

1

ε
.

(16)

The capacity in the left-hand side of (16) is estimated by (3)

capp(fB(ζ, 4
√
ε), fB(ζ,

√
ε)) ≥ C5

[
m(fB(ζ,

√
ε))
] 2−p

2 ; (17)

here C5 depends only on p. Combining (16) and (17), we derive the desired
estimate

m(fB(ζ,
√
ε)) ≤ C6 log

− p
2−p 1

ε

∫
B(ζ,r0)

Q
2

2−p (z) dm(z)

with a constant C6 depending only on p.
Substituting this into (15), one obtains the estimate

d(fB(ζ, ε))

(
log

1

ε

) p
2(2−p)

≤ Cp

( ∫
B(ζ,r0)

Q
2

2−p (z) dm(z)

) 1
2

which implies

|f(z)−f(ζ)|
(

log
1

|z − ζ|

) p
2(2−p)

≤ d(fB(ζ, ε))

(
log

1

ε

) p
2(2−p)

≤ Cp ∥Q∥
1

2−p
2

2−p

,

where ∥Q∥ 2
2−p

=
( ∫
B(ζ,r0)

Q
2

2−p (z) dm(z)
) 2−p

2

and Cp is a positive constant

depending only on p. The proof is completed.
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5. Example. It seems likely that the assumption Q ∈ L
2

2−p in Theorem
4.1 is not only sufficient for the logarithmic Hölder continuity, but also can
be the necessary one.

Fix p satisfying 1 < p < 2, and consider the automorphism w = f :
∆ → ∆ of the unit disk ∆ given by

w = eiθ
(

1 +
2 − p

p− 1
log

1

|z|

)− p−1
2−p

, z ̸= 0, and w(0) = 0, z = |z|eiθ. (18)

This mapping is differentiable, has nonvanishing Jacobian at all points
of ∆, except for the origin. Using the polar coordinates (ρ, ψ) and (r, θ)
in the image and its inverse, respectively, one can rewrite the mapping at
z ̸= 0 in the form

w =

{
ρ =

(
1 +

2 − p

p− 1
log

1

r

)− p−1
2−p

, ψ = θ, 0 < r < 1, 0 ≤ θ < 2π

}
.

The semiaxes of the characteristic ellipse are dρ/dr and ρ/r, and a
direct calculation implies

dρ

dr
=

(
1 +

2 − p

p− 1
log

1

r

)− 1
2−p 1

r
,

ρ

r
=

(
1 +

2 − p

p− 1
log

1

r

)− p−1
2−p 1

r
.

Hence, |wz| − |wz̄| = dρ/dr and |wz| + |wz̄| = ρ/r, which yields that the
p-inner dilatation equals KI

p,w(z) = rp−2.
For the mapping (18) Q(z) /∈ L

2
2−p , because a direct calculation implies

∥Q∥ 2
2−p

= ∞.
In this case the left-hand-side of (11) also increases to ∞ as z → 0,

which shows that Theorem 4.1 is somewhat sharp.

6. Equicontinuity and normality. The questions concerning
equicontinuity and normality of various classes of mappings are of a spe-
cial interest. For the classical quasiconformal mappings we refer to [20],
for their generalization named mappings quasiconformal in the mean see
[21] (cf. [22]).

Theorem 6.1. Let G and G∗ be two domains in C, and let FQ be a fam-
ily of Q-homeomorphisms f : G→ G∗ with respect to p-module, 1 < p < 2,
with Q(z) ∈ Lα(G), α ≥ 2

2−p . Then the family FQ is equicontinuous.
This theorem follows from Theorems 3.1 and 4.1. For a bounded image

G∗, we have more
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Corollary. Let FQ be a family of Q-homeomorphisms f : G→ G∗ with
respect to p-module, 1 < p < 2, with Q(z) ∈ Lα(G), α ≥ 2

2−p . Then the
family FQ is normal.

Observe, that the assumption α ≥ 2
2−p is essential, and the correspond-

ing problem on Q-homeomorphisms with 1 < α < 2
2−p is still open.
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