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Given co-H-spaces X and Y , B. Gray [13] has defined a co-H-space X ◦ Y
and a natural transformation X ◦ Y → X ∨ Y which leads to a generalized
Whitehead product. We make use of that product and sketch ideas on
its dual to examine cyclic and cocyclic maps. Given spaces X and Y ,
some results on Gottlieb sets G(X,Y ) and dual Gottlieb sets DG(X,Y ) are
stated.

Introduction

The Gottlieb group Gn(X) of a space X is the subgroup of the
homotopy group πn(X) of X consisting of homotopy classes of maps
f : Sn → X such that the map f ∨ idX : Sn ∨ X → X admits an ex-
tension F : Sn × X → X. The study of the properties and structure
of the Gottlieb groups represents a fundamental problem in homotopy
theory dating back to their introduction by D. Gottlieb in the 1960’s
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Marek Golasiński, Thiago de Melo 23

[8, 10]. Connections between the Gottlieb groups and fixed point the-
ory [8, 15, 22], transformation groups [11, 20], covering spaces [11, 16]
and the homotopy theory of fibrations [9, 12, 21] have been extensively
researched.

The definition of Gn(X) uses the concept of cyclic homotopies. K.
Varadarajan [23] studies the role of cyclic and cocyclic (dual of cyclic)
maps in the set-up of Eckmann-Hilton duality. The set of homotopy
classes of cyclic maps X → Y , denoted by G(X,Y ) is a group provided
X carries an H-cogroup structure. Dually, the set of homotopy classes
of cocyclic maps X → Y , denoted by DG(X,Y ) is a group provided Y

carries an H-group structure. Relationships between these generalized
Gottlieb (dual Gottlieb groups) and the generalized Whitehead product
(the dual generalized Whitehead product) [1] have been considered in
[14, 17, 18, 19] and other various papers.

The aim of this paper is to present those results in the context of
the so called Theriault product considered by B. Gray in [13] being an
extended version of the generalized Whitehead product from [1] and its
dual. The first section expounds the notions and clarify results needed in
next two sections. Section 2 recalls results on cyclic maps and then takes
up the systematic study of these maps in the context of results from [13].

Section 3 is devoted to cocyclic maps. First, their relations with the
dual generalized Whitehead product [1] are summarized. In particular,
a characterization of co-H-spaces in terms of the cocyclicity of maps is
concluded. Then, following mutatis mutandis the construction presented
by B. Gray in [13] and the cotelescope concept, we sketch ideas of the
dual Theriault product extending the dual generalized Whitehead [1]
and relate cocyclic maps to this product. Many results and proofs on
the Theriault product can be dualized. The details will be published
somewhere shortly.
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2 Prerequisites

We concentrate with connected and based spaces having the homo-
topy type of CW -complexes. All maps and homotopies preserve base
points. For simplicity, we sometimes use the same symbol for a map
and its homotopy class. Denote by [X,Y ] the set of homotopy classes of
continuous maps X → Y and write Sn for the n-dimensional sphere. In
particular, let πn(X) = [Sn, X] be the nth homotopy group of a space X
for n ≥ 0.

Next, write ΣX and ΩX for the suspension and the loop space of X.
Recall that ΣX and ΩX are an H-cogroup and an H-group, respectively.
If f : X → Y then for every space Z, we have homomorphisms (Σf)∗ :

[ΣY, Z] → [ΣX,Z] and (Ωf)∗ : [Z,ΩX] → [Z,ΩY ]. Further, there are
canonical natural maps e : ΣΩX → X and e′ : X → ΩΣX.

The following well-known results are frequently used:

Proposition 2.1. (1) If X is a co-H-space, then there is a map s : X →
ΣΩX such that es ' idX ;

(2) If X is an H-space, then there is a map s′ : ΩΣX → X such that
s′e′ ' idX ;

(3) Let X and Y be an H-cogroup and an H-group, respectively. Then,
[X,Z] and [Z, Y ] are groups for any space Z.

Let X[Y be the flat product and X ∧ Y the smash product, that is,
the fibre and the cofibre of the inclusion X ∨ Y ↪→ X × Y . Next, write
∆ : X → X ×X and ∇ : X ∨X → X for the diagonal and folding maps,
respectively.

The Whitehead product [−,−] : πm(X) × πn(X) → πm+n−1(X),
determined by the Whitehead map w : Sm+n−1 → Sm ∨ Sn plays a
crucial role in the homotopy theory. The generalized Whitehead map
w : Σ(X ∧ Y ) → ΣX ∨ ΣY constructed in [1] leads to the generalized
Whitehead product

[−,−] : [ΣX,Z]× [ΣY,Z]→ [Σ(X ∧ Y ), Z].
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Now, let CO be the category of simply connected co-H-spaces and co-H-
maps. In [13], a functor

◦ : CO × CO → CO

(called the Theriault product) and a natural transformation w : X ◦Y →
X ∨ Y for co-H-spaces X,Y generalizing the Whitehead product have
been defined. More precisely, in [13, Theorem 1, Theorem 2] it has been
shown:

Theorem 2.2. There is a functor

◦ : CO × CO −→ CO

and equivalences in CO:
(1) (ΣX) ◦ Y ∼= X ∧ Y ;
(2) Σ(X ◦ Y ) ∼= X ∧ Y ;
(3) (X1 ∨X2) ◦ Y ∼= (X1 ◦ Y ) ∨ (X2 ◦ Y )

and homotopy equivalences:
(4) X ◦ Y ∼= Y ◦X;
(5) (X ◦ Y ) ◦ Z ∼= X ◦ (Y ◦ Z).

Theorem 2.3. There is a natural transformation

w◦ : X ◦ Y −→ X ∨ Y

which is the Whitehead product map in case X and Y are both suspen-
sions. Furthermore, there is a homotopy equivalence

X × Y ∼= (X ∨ Y ) ∪w◦ C(X ◦ Y ),

where (X∨Y )∪w◦C(X ◦Y ) is the mapping cone of w◦ : X ◦Y −→ X∨Y .

Notice that w◦ : X ◦ Y −→ X ∨ Y defines a map

[−,−]◦ : [X,Z]× [Y,Z]→ [X ◦ Y, Z]

for any space Z.
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3 Cyclic maps and evaluation groups

According to [23], a map f : X → Y is said to be cyclic if there exists
a map F : X × Y → Y such that the diagram

X ∨ Y� _

��

∇(f∨idY ) // Y

X × Y

F

88

is homotopy commutative.
Write G(X,Y ) for the set of homotopy classes of cyclic maps from X

to Y called the Gottlieb subset of [X,Y ]. If X is an H-cogroup then by
[23, Theorem 1.5] the subset G(X,Y ) ⊆ [X,Y ] is a subgroup of [X,Y ]. If
X = Sn, the n-dimensional sphere then G(Sn, Y ) = Gn(Y ) is called the
nth evaluation subgroup of Y or the nth Gottlieb group defined in [8] for
n = 1 and then in [10] for any n ≥ 1. Then, Gn+k(Sn) and Gn+k(FPn)

have been extensively studied in [6] and [7], respectively, where FPn

is the projective space over F being the reals R, complex numbers C,
quaternions H or the Cayley algebra K.

To show the existence of cyclic maps, we recall:

Proposition 3.1 ([23, Lemmas 1.3 and 1.4]). Let f : X → Y be a cyclic
map and g : Z → X an arbitrary map. Then:

(1) fg : Z → Y is a cyclic map;
(2) if a map g : Y → Y ′ has a right homotopy inverse then gf : X →

Y ′ is a cyclic map.

In particular, let X be a co-H-space, f : X → Y and e : ΣΩX → X

the usual map. Then f is cyclic if and only if fe : ΣΩX → Y is cyclic.

Proposition 3.2 ([17, Proposition 3.3]). Let Y be a space. Then the
following are equivalent:

(1) Y is an H-space;
(2) idY is cyclic;
(3) G(X,Y ) = [X,Y ] for any space X.
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Another way in which cyclic maps arise naturally is by fibrations.
Suppose F → E → B is a fibration. Then we have an operation ρ :

F × ΩB → F and the restriction ∂ = ρ|ΩB is cyclic.
Now, we make use of Theorem 2.3 to deduce results being key ones in

sequel.

Corollary 3.3. Let X,Y be spaces. Then:
(1) the map w◦ : ΣΩX ◦ ΣΩY → ΣΩX ∨ ΣΩY coincides with the

generalized Whitehead map w : Σ(ΩX ∧ ΩY )→ ΣΩX ∨ ΣΩY ;
(2) there is the commutative diagram

X ◦ Y w◦ // X ∨ Y

ΣΩX ◦ ΣΩY

e◦e

OO

w◦ // ΣΩX ∨ ΣΩY.

e∨e

OO

Then, the result [18, Proposition 4.6] leads to:

Proposition 3.4. Let X be a co-H-space and f : X → Y a cyclic map.
Then [f, g]◦ = 0 for any map g : Z → Y provided Z is a co-H-space.

Proof. Let f : X → Y be a cyclic map. Then by Proposition 3.1 the
map fe : ΣΩX → Y is cyclic as well. Hence, in view of [18, Proposition
4.6], we get [fe, ge] = 0. Because X and Z are co-H-spaces, Corollary 3.3
leads to [f, g]◦ = 0 and the proof is complete.

Further [5, Proposition 2.3] and Proposition 2.1 yield:

Proposition 3.5. For a map f : X → Y of H-groups, the following are
equivalent:

(1) f∗ maps [Z,X] into the center of [Z, Y ];
(2) ∇(f ∨ idY )i ' ?, where i : X[Y ↪→ X ∨ Y is the inclusion map.

If one of the conditions above is fulfilled, T. Ganea [5] says that f
maps X into the center of Y .

The proof of the result below is a direct consequence of Corollary 3.3
and [14, Corollary 3].
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Theorem 3.6. Let X,Y be co-H-spaces and f : X → Y . Then the
following are equivalent:

(1) f is cyclic;
(2) f maps ΩX into the center of ΩY ;
(3) [f, idY ]◦ = 0.

Theorem 3.6 generalized the result known to spheres: f ∈
G(Sn+k,Sn) = Gn+k(Sn) if and only if the Whitehead product [f, idSn ] = 0

which has been applied in [6] to find Gn+k(Sn) for k ≤ 13. Certainly, the
computations depend on the Whitehead product on spheres.

Now, let i1 : Y1 ↪→ Y1 ∨ Y2 and i2 : Y2 ↪→ Y1 ∨ Y2 be the inclusion
maps. Then, Theorem 3.6 leads to the following generalization of [3,
Proposition 2.3]:

Corollary 3.7. Let X,Y1, Y2 be co-H-spaces and f : X → Y1∨Y2. Then,
f is cyclic if and only if [f, i1]◦ = [f, i2]◦ = 0.

If A is an abelian group and n ≥ 2 then the Moore space M(A,n) is
a co-H-space as a suspension of some space. Because M(A1 ⊕ A2, n) ∼=
M(A1, n)∨M(A2, n) for some abelian groups A1, A2 [3, Proposition 2.3]
has been applied to compute Gn(M(A,n)) provided A is a finitely gener-
ated abelian group. The paper [2] considers the set of homotopy classes
of co-structures on a Moore space M(A,n), where A is an abelian group
and n ≥ 2 is an integer. It is shown that for n > 2 the set has one element
and for n = 2 the set is in one-to-one correspondence with Ext(A,A⊗A).
Further, a detailed investigation of the co-H-structures onM(A, 2) in the
case A = Zm, the integers mod m has been considered. It has been
shown that all co-H-structures on M(Zm, 2) are associative and commu-
tative ifm is odd, and all co-H-structures onM(Zm, 2) are associative and
non-commutative if m is even. Therefore, Corollary 3.7 should be use-
ful to describe G2(M(A, 2)) with respect to all possible co-H-structures
on M(A, 2) provided A is a finitely generated group or more generally,
A =

⊕
i∈I Z⊕

⊕
j∈J Zmj

.

Let Y be an H-group and f : X → Y . Recall that f is called central
if c(idY ×f) ' ?, where c : Y × Y → Y is the basic commutator map. If



Marek Golasiński, Thiago de Melo 29

Y is an H-space then, in view of Proposition 2.1, the map Ω : [X,Y ] →
[ΩX,ΩY ] given by f 7→ Ωf is injective. Write [ΩX,ΩY ]CΩ for the subset
of [ΩX,ΩY ] consisting of those homotopy classes of maps Ωf which are
central. Following [18, Definition 4.1], we set C(X,Y ) = Ω−1[ΩX,ΩY ]CΩ.
By [18, Propositions 4.6 and 5.1], it holds:

Proposition 3.8. Let X,Y and Z be spaces.
(1) If f ∈ C(ΣX,Z) then [f, g] = 0 for any g ∈ [ΣY,Z].
(2) C(X,Y ) is a subgroup contained in the center of [X,Y ] if X is a

co-H-space with a right homotopy inverse and Y is any space.

It follows that ifX is a co-H-space with a right homotopy inverse, then
for every space Y , G(X,Y ) ⊆ C(X,Y ) ⊆ center of [X,Y ] as subgroups.
In particular, G(X,Y ) and C(X,Y ) are abelian groups provided X is a
co-H-space. This generalizes Gottlieb’s result from [8] that the Gottlieb
group G1(Y ) lies in the center of the homotopy group π1(Y ).

4 Cocyclic maps and coevaluation groups

According to [23], a map f : X → Y is said to be cocyclic if there is
a map F ′ : X → X ∨ Y such that the diagram

X × Y

X

(idX ×f)∆

99

F ′
// X ∨ Y
?�

OO

is homotopy commutative.
Write DG(X,Y ) for the set of homotopy classes of cocyclic maps from

X to Y called the dual Gottlieb subset of [X,Y ]. If Y is an H-group
then by [23, Theorem 1.5] the subset DG(X,Y ) ⊆ [X,Y ] is a subgroup
of [X,Y ].

Certainly, every map f : X → Y is cocyclic provided X is a co-H-
space.
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Another way in which cocyclic maps arise naturally is by cofibrations
(cf. [19]). Suppose A → B → C is a cofibration. Then we have a
cooperation φ : C → C ∨ ΣA. Then the map s = p2φ : C → ΣA is
cocyclic, where p2 : C ∨ ΣA→ ΣA is the projection map.

Notice that if f : X → Y is a cocyclic map and g : X ′ → X has a
left homotopy inverse then fg : X ′ → Y is also a cocyclic map. Then, in
view of [23, Lemma 7.2], Proposition 3.1 can be dualized as follows:

Proposition 4.1. Let f : X → Y be a cocyclic map. Then:
(1) gf : X → Z is a cocyclic map for an arbitrary map g : Y → Z;
(2) if a map g : X ′ → X has a left homotopy inverse then fg : X ′ → Y

is a cocyclic map.

In particular, let Y be an H-space, f : X → Y and e′ : Y → ΩΣY the
usual map. Then f is cocyclic if and only if e′f : X → ΩΣY is cocyclic.
Further, [19, Proposition 3.2] provides a characterization of a co-H-space
in terms of the cocyclicity of maps.

Proposition 4.2. Let X be a space. Then the following are equivalent:
(1) X is a co-H-space;
(2) idX is cocyclic;
(3) DG(X,Y ) = [X,Y ] for any space Y .

Recall from [1] that given spaces X and Y , there is a dual Whitehead
map w′ : ΩX × ΩY → Ω(X[Y ). This leads to the dual generalized
Whitehead product

[−,−]′ : [Z,ΩX]× [Z,ΩY ]→ [Z,Ω(X[Y )]

for any space Z.
Now, let CO′ be the category of simply connected H-spaces and H-

maps. Following mutatis mutandis the construction presented by B. Gray
in [13] and the cotelescope construction, we get a functor

◦′ : CO′ × CO′ −→ CO′

(called the dual Theriault product) and a natural transformation

w′ : X × Y −→ X ◦′ Y
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which leads to a map

[−,−]◦′ : [Z,X]× [Z, Y ]→ [Z,X ◦′ Y ]

for H-spaces X,Y and any space Z. Many results and proofs of [−,−]◦
can be dualized. We mention only that the products [−,−]′ and [−,−]◦′

coincide provided X,Y are loop spaces. However, many cannot since
[−,−]◦′ is not precise a dual of [−,−]◦. The details and dual version of
Theorem 2.2 and Theorem 2.3 will be published somewhere shortly.

The dual version of Corollary 3.3 and the result [18, Proposition 4.6]
yield:

Proposition 4.3. Let Y be an H-space and f : X → Y a cocyclic map.
Then [f, g]◦′ = 0 for any map g : X → Z provided Z is an H-space.

>From this a dual version of Corollary 3.7 follows:

Corollary 4.4. Let X1, X2, Y be H-spaces and f : X1×X2 → Y . Then,
f is cocyclic if and only if [f, p1]◦′ = [f, p2]◦′ = 0 for the projection maps
p1 : X1 ×X2 → X1 and p2 : X1 ×X2 → X2.

Let A be an abelian group and n ≥ 2. Then the associated
Eilenberg-MacLane space K(A,n) inherits an H-structure. Because
K(A1 × A2, n) ∼= K(A1, n) × K(A2, n) for any abelian groups A1, A2,
Corollary 4.4 should be very useful to compute DG(K(A,n), Y ) provided
that A is an abelian finitely generated group and Y is an H-space.

The dual version of Proposition 3.5 and [5, Proposition 2.3] lead to:

Proposition 4.5. For a map f : X → Y of H-cogroups, the following
are equivalent:

(1) f∗ maps [Y, Z] into the center of [X,Z];
(2) j(idX ×f)∆ ' ?, where j : X × Y → X ∧ Y is the quotient map.

If one of the conditions above is fulfilled, we follow T. Ganea [5] to
say that f maps X into the cocenter of Y . Let X be an H-cogroup and
f : X → Y . Recall that f is called cocentral if (idX ∨f)c ' ?, where
c : X → X ∨X is the basic cocommutator map.
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If X is a co-H-space then the map Σ : [X,Y ] → [ΣX,ΣY ] given by
f 7→ Σf is injective. A subset DC(X,Y ) of [X,Y ] which is the dual of
C(X,Y ) has been studied in [19]. If Y is an H-space then the map Σ :

[X,Y ]→ [ΣX,ΣY ] given by f 7→ Σf is injective. Let [ΣX,ΣY ]CΣ denote
the subset of [ΣX,ΣY ] consisting of those homotopy classes of maps Σf

which are cocentral. Following [19, Definition 4.7], we set DC(X,Y ) =

Σ−1[ΣX,ΣY ]CΣ.
In view of [19, Propositions 4.8 and 5.2], it holds:

Proposition 4.6. Let X,Y and Z be spaces.
(1) If f ∈ DC(Z,ΩX) then [f, g]′ = 0 for any g ∈ [Z,ΩY ];
(2) the set DC(X,Y ) is a subgroup contained in the center of [X,Y ]

if Y is an H-space with a left homotopy inverse and X is any space.

It follows that if Y is an H-space with a right homotopy inverse,
then for every space X there are inclusions DG(X,Y ) ⊆ DC(X,Y ) ⊆
center of [X,Y ] of subgroups. In particular, DG(X,Y ) and DC(X,Y )

are abelian groups provided X is an H-space.
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