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Mathematical problems

of the almost-periodic solids

We put forward a hypothesis that all solids are almost-periodic and discuss
the appropriate mathematical problems.

Ìè âèñóâà¹ìî ãiïîòåçó, ùî âñi òâåðäi òiëà ¹ ìàéæå-ïåðiîäè÷íèìè, i îá-
ãîâîðþ¹ìî âiäïîâiäíi ìàòåìàòè÷íi ïðîáëåìè.

1 Introduction

It is well known that all solids are built of light electrons and heavy nuclei.
The di�erence of masses is very large since an electron is about 2000
times lighter than a nucleon and a nucleus consists of tens or hundreds
of nucleons. As a result of that we can imagine a solid as a collection
of light and fast electrons moving quickly among heavy and slow nuclei.
The slow nuclei form a potential for the fast electrons and in the �rst
approximation the electrons follow to slow changes of the potential. It is
an essence of the adiabatic hypothesis in the solid state physics.

The nuclei form a carcass of solid and an arrangement of nuclei in the
carcass de�nes a structure of the solid. We classify the solids by a character
of this structure.

If the solid is a crystal it leads to important consequences which allow
to describe many properties of crystalline solids. First of all since the
lattice has a symmetry of some space group the tensors which describe
various properties of the crystal (tensor of elastic constants, tensor of
dielectric or magnetic susceptibilities, tensor of conductivity etc.) have
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a symmetry of an appropriate point group. Secondly the nuclei, arranged
in a lattice, form a periodic potential for the fast electrons and therefore
an electron energy spectrum is a spectrum of the Schr�odinger operator
with the periodic potential. We can prove that this spectrum is absolutely
continuous and has band structure, i.e. it is a union of closed segments
of absolutely continuous spectrum. As a result of this fact all crystals are
conductors in general.

If the nuclei are arranged randomly the solid has an amorphous
structure. In this case electrons move in a random potential and therefore
their energy spectrum is a spectrum of the Schr�odinger operator with the
random potential. If this potential is of the "white noise"type then we
can prove that an appropriate spectrum is point. In this case amorphous
solids are dielectrics. Electrons are allowed to move in electric �eld only
by means of an electric breakdown.

We have described above two limit cases when nuclei arrangements
(and also the corresponding electron potentials) are periodic or random
functions. It appears that there exist a set of the almost-periodic functions
which include periodic functions as a particular case and satisfy the
condition of ergodicity which is the weakest possible exhibition of the
randomness property. Therefore it looks reasonable to assume that in
general case the nuclei arrangements in solids are almost-periodic. We can
express it in other way saying that all solids are almost-periodic [1].
It is indeed the case and we shall discuss this idea now in details. Before
that we explain what are the almost-periodic functions.

2 Almost-periodic structures

The theory of almost-periodic functions was created mainly by H. Bohr
in 1924�1926 years and developed further by A. Besicovitch, S. Bochner,
N. Bogoljubov, J. Favard, B. Levitan, J. von Neumann, V. Stepanov,
H. Weyl and others. A particular but very important class of the almost-
periodic functions (known now as quasi-periodic functions) was studied by
P. Bohl and E. Esclangon as early as the end of XIX century.

Now we present essentials of the theory of almost-periodic functions
and in order to make our exposition as simple as possible we consider only
one-dimensional almost-periodic functions, a generalization of results for
many-dimensional case is straightforward. We do not give proofs here, the
reader can �nd them himself in the literature [7, 8, 17, 20, 22, 23].
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Among many equivalent de�nition of the almost-periodic functions we
choose the following one.

De�nition 1. Function f(x) is called almost-periodic if it is a uniform
limit in a space of trigonometrical polynomials Trig(R), i.e. for any ε > 0
there exist such a trigonometrical polynomial Pε(x) that

sup
x∈R
|f(x)− Pε(x)| < ε. (1)

We denote the set of all continuous almost-periodic functions on R by
CAP (R). Every almost- periodic function f(x) is bounded and therefore
we may introduce the norm

||f || = sup
x∈R
|f(x)|. (2)

With this norm the set of almost-periodic functions becomes a
commutative Banach algebra with the usual de�nition of addition and
multiplication.

Now we enumerate some properties of the almost-periodic functions
which we shall use further.

A. For any almost-periodic function there exist a mean value

M(f) = lim
L→∞

1

L

∫ L

0

f(x)dx. (3)

It allows for any almost-periodic function to build a Fourier series

f(x) '
∑
n

An exp(iλnx), An = M(f(x) exp(−iλnx)). (4)

We designate the numbers λn as the Fourier frequencies and the numbers
An as the Fourier coe�cients of the function f(x). By means of the
Fourier series we can build approximative trigonometric polynomials for
the almost-periodic function.

We say that a countable set of real numbers {λn}∞1 has a rational basis
{αn}∞1 if the numbers αn are linear independent and any number λn can
be presented as their �nite linear combination with rational coe�cients,
i.e.

λn =

Sn∑
k=1

rnk αk, rnk ∈ Q. (5)
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We say that the basis is �nite if it is �nite set, we say that the basis is
integer if all numbers rnk are integer numbers. If the a Fourier frequencies
of the almost-periodic function have a �nite and integer basis we designate
the appropriate almost-periodic function as a quasi-periodic one. A quasi-
periodic function with unique period is pure periodic one.

B.

Theorem 1. (Kronecker�Weyl) Let λk, k = 1, . . . , n be real linearly
independent numbers, θk, k = 1, . . . , n be arbitrary real numbers,
δk, k = 1, . . . , n be arbitrary positive numbers. Let χ(x1, x2, . . . , xn) be
a characteristic function of parallelepiped in Rn de�ned by inequalities

θk − δk < xk < θk + δk, k = 1, . . . , n. (6)

Continue the function χ(x1, x2, . . . , xn) to the whole Rn periodically with
periods 2π in all variables xk, k = 1, . . . , n.

Then uniformly in L we have

lim
L→∞

1

2L

∫ L

−L
χ(λ1x− θ1, . . . , λnx− θn)dx = π−nδ1 . . . δn. (7)

C. A number τ is called an ε−almost-period of the function f(x), x ∈ R
if

sup
x∈R
|f(x+ τ)− f(x)| < ε. (8)

It appears that any almost-periodic function has a relatively dense set of
ε−almost-periods for any ε > 0, i.e. for any ε > 0 there is such a number
l(ε) that in any interval of the length l(ε) there exist at least one ε−almost-
period.

For the almost-periodic functions there exist close connection between
ε−almost-periods and the Fourier frequencies. Namely for any natural
number n and any positive number δ < π there exist such a positive
number ε(n, δ) that all ε−almost-periods of the almost-periodic function
f(x) satisfy the following system of inequalities

|λk τ | < δ, ( mod 2π), k = 1, 2, . . . , n. (9)

At the same time for any ε > 0 we can point out such a natural number
n and a positive number δ < π that any real number τ, which satisfy the
system of inequalities

|λk τ | < δ, ( mod 2π), k = 1, 2, . . . , n,
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is an ε−almost-period of the almost-periodic function f(x).
D. Function F (x1, x2, . . .) of �nite or countable set of variables, each

of which admits all real values, is called limiting periodic if it is a uniform
limit of periodic ones, i.e. if for any real positive number ε we can point
out such an integer positive number n(ε) and such a periodic function
Fε(x1, x2, . . . , xn(ε)) that

sup
−∞<xk,k=1,2,...<+∞

|F (x1, x2, . . .)− Fε(x1, x2, . . . , xn(ε))| < ε. (10)

It appears that for any almost-periodic function f(x) there exist such
a limiting periodic function F (x1, x2, . . .) of �nite or countable set of
variables that

f(x) = F (x, x, . . .) = F (x1, x2, . . .)|x1=x2=...=x. (11)

Thus any almost-periodic function is restriction to a diagonal of some
limiting periodic function. In other words we can also characterize every
almost-periodic function by a sequence of periodic functions.

The properties of the limiting periodic function F (x1, x2, . . .) depends
essentially on the basis of the Fourier frequencies of the function f(x).
If the basis α1, α2, . . . of the almost-periodic function f(x) is integer
then the limiting periodic function F (x1, x2, . . .) is periodic with periods
2π/α1, 2π/α2, . . . . If the basis α1, α2, . . . of the almost-periodic function
f(x) is �nite then the limiting periodic function F (x1, x2, . . .) depends on
�nite set of variables. If the basis α1, α2, . . . of the almost-periodic function
f(x) is �nite and integer then the limiting periodic function F (x1, x2, . . .)
is periodic function of �nite set of variables [21, 22].

E. Let f(x) is a complex almost-periodic function and infx |f(x)| =
k > 0 then we can de�ne

arg f(x) = cx+ φ(x) (12)

where a constant c is called a meam motion, and φ(x) is some almost-
periodic function. The a meam motion c and the Fourier frequencies of
the almost-periodic function φ(x) are linear combinations with integer
coe�cients of Fourier frequencies of the function f(x) [21].

F. A continuous function f(x) is almost-periodic i� a set of functions
{f(x + h)},−∞ < h < +∞ is relatively compact, i.e. if from any in�nite
sequence f(x + h1), f(x + h2), . . . we can chose a subsequence which
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converges uniformly for all x ∈ R (S. Bochner). In other words any function
u(x) from the Banach space Cb(R) of continuous bounded functions is
called almost-periodic if the set {Tx(·), x ∈ R}, where Tx(·) = u(· + x),
is relatively compact in Cb(R). A closure Ω of this set is known to be a
compact in metrizable Abelian group. A normalized Haar measure µ on
the set Ω turns out to be Tx−invariant and ergodic. Thus each almost-
periodic function generates a probability space (Ω, µ, Tx). The operation
of averaging on this space is given by

M(f) = lim
x→∞

1

x

∫ x

0

f(Txu)dx =

∫
Ω

f(u)µ(du). (13)

H. Bohr formulated also fundamentals of the harmonic and analytic
almost-periodic functions. Various generalizations of the almost-periodic
functions (e.g. for functional spaces with other metrics, for other groups
etc.) were built by A. Besicovitch, B. Levitan, J. von Neumann,
V. Stepanov, H. Weyl and others.

Now let us return to the idea that the nuclei arrangements in solids are
almost-periodic in general and discuss various consequences.

The �rst important consequence of the above statement is a
classi�cation of solids in terms of nuclei structures and a corresponding
partition solids into periodic solids (or crystals), random solids and
properly almost-periodic solids. Such a classi�cation of solids was proposed
for the �rst time in [1, 3].

Crystals and amorphous solids are well known for a long time. We can
obtain easily the properly almost- periodic nuclei arrangements in crystals
by means of displacements of nuclei from equilibrium sites under in�uence
of waves. Indeed the following theorem is valid.

Theorem 2. (E.D. Belokolos, 1975) [1] Crystal, which is deformed by a
�nite (countable) set of waves with linearly independent frequencies, creates
a quasi (an almost)-periodic potential.

Proof. At �rst we consider the one-dimensional case.
Let us assume that nuclei, located in nodes of some lattice, create a

periodic potentia V (x). We suppose that the periodic potential V (x) is
continuous function and therefore it is uniformly continuous function. It
means that for any ε′ > 0 there exist such δ′ > 0 that |V (x1)−V (x2)| < ε′

as soon as |x1 − x2| < δ′. Let us de�ne ε = min(ε′, δ′). Under deformation
u(x) a crystal point with a coordinate x is transformed to a coordinate
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x+ u(x) where u(x) is a trigonometrical sum. If this sum contains in�nite
set of summands we shall assume that it converges at a whole real axis so
that u(x) appears to be an almost-periodic u(x) function.

Let us consider the function V (x+ u(x)) which describes the potential
of a crystal lattice deformed by waves. For the number ε, de�ned above, let
us construct a relatively dense set of the ε−almost-periods τ common for
the functions V (x) and u(x). As it is well known we can do it always [6].
Each of thus constructed number τ is simultaneously 2ε−almost-period for
the function V (x+ u(x)). Indeed,

|V (x+ τ + u(x+ τ))− V (x+ u(x))| ≤
|V (x+ u(x+ τ))− V (x+ u(x))|+ ε ≤ 2ε. (14)

Here the �rst inequality follows from the inequality |V (x+ τ)−V (x)| ≤ ε,
and the second inequality follows from the inequality |u(x+ τ)−u(x)| ≤ ε
and the de�nition ε. Thus for any ε > 0 we can construct a relatively dense
set of 2ε−almost-periods for the function V (x+ u(x)). And therefore as a
result of that the function V (x+ u(x)) is almost-periodic.

Let u(x) is a �nite trigonometrical polynomial with frequencies ωs, s =
1, . . . ,m and the function V (x) has a frequency ω0. Then joint ε−almost-
periods of the functions V (x), u(x) satisfy the system of the inequalities
|ωsτ | < δ( mod 2π), s = 0, 1, . . . ,m for an appropriate δ. In accordance
with the statement above they are simultaneously 2ε− almost-periods for
the function V (x + u(x)). Therefore the function V (x + u(x)) is quasi-
periodic function.

In conclusion we remark that there is no problems to generalize this
proof for the case of d−dimensional crystal.

Thus a vibrating lattice at a �xed moment of time is an almost-periodic
arrangements of nuclei. In other words in adiabatic approximation an
electron in solid moves in an almost-periodic potential. By means of various
reasons (e.g. by the Hume-Rosery phenomenon) these wave distributions of
nuclei locations can be stabilized and in such a way these almost-periodic
arrangements can be realized in equilibrium also.

We should only remember that in a solid there exist a lot of various of
waves: the charge density waves, the magnetic (or spin) density waves, the
concentration waves etc., and all these waves may have uncommensurable
frequencies. Thus the almost-periodicity in solids can have various physical
manifestations.
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In 1984 material scientist D. Shechtman discovered in Al-Mn alloys
the quasi-periodic structures which were designated later as the quasi-
crystals [32]. In 2011 he was awarded the Nobel Prize in Chemistry for
discovery �a new principle for packing of atoms and molecules�. In 1992 the
International Union of Crystallography acknowledged the possibility for
solids to order either periodic or aperiodic. Today physicists know hundreds
of quasi-periodic solids, they are ubiquitous in many metallic alloys and
compositions [33].

We need varieties of mathematical means to describe quasi-periodic
structures. The �cut and project� method [21] represent a quasi-periodic
function as a restriction of high-dimensional periodic one to an irrational
intersection with one or more hyperplanes. In order to describe a quasi-
periodic structure as an aperiodic substitution tiling we use the Delone and
Meyer sets [17, 28] and also the Pisot numbers [19] as eigenvalues of the
substitution matrices. When we go from crystals to quasi-crystals we must
to generalize our notions from lattices and groups to ones of quasi-lattices
and groupoids [30].

3 Spectra of the Schr�odinger operator with

almost-periodic potential

Studies of spectral properties of the Schr�odinger operator with quasi-
periodic potential in connection with the quantum theory of solids were
initiated E.D. Belokolos (1975, 1976) [1, 2], Ya.G. Sinai and E. Dinaburg
(1975) [5].

We shall consider the spectral properties of the Schr�odinger operator

H = −∆ + u(x), (15)

where ∆ is the Laplace and u(x), x ∈ Rd is a continuous almost-periodic
potential. First of all we present basic results about this operator.

Theorem 3. The Schr�odinger operator with almost-periodic potential is
self-adjoint essentially.

For the Schr�odinger operator with almost-periodic potential we can
prove the existence of the number of states (or an integrated density of
states) N(λ) and other similar of spectral characteristics.
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Theorem 4. (M.A. Shubin, 1978) [10-13] The Schr�odinger operator with
almost-periodic potentialt has a number of states

N(λ) = lim
k→∞

|Vk|−1NVk
(λ), (16)

where Vk is bounded domain in Rn with the Lebesgue measure |Vk| and
NVk

(λ) is the standard distribution function of the discrete spectrum in
the domain Vk with some self-adjoint boundary conditions.

The number of states N(λ) is non-decreasing function of λ and
is de�ned by the above expression everywhere besides the points of
discontinuity.

We can prove also the existence of other similar limits, e.g.

D(λ) = lim
k→∞

|Vk|−1
∑
λj<λ

(fψj , gψj), (17)

where ψj are eigenfunctions and f, g are arbitrary almost-periodic
functions.

By considering the inverse functions we can prove the existence of the
Fermi energy

EF (ρ) = lim
k/|Vk|→ρ

1

p

k∑
j=1

λj , k →∞, |Vk| → ∞, ρ > 0− const, (18)

where λ1 ≤ λ2 ≤ . . . are the eigenvalues arranged into an increasing
sequence with their multiplicity taken in account.

It is known that there exist a single-valued correspondence between any
self-adjoint operator A and a projector-valued measure Pλ on a Hilbert
space H which is expressed in such way

A =

∫ +∞

−∞
λ dPλ. (19)

A point λ is said to belong to a spectrum σ(A) of the operator A, λ ∈ σ(A),
i� P(λ−ε,λ+ε) 6= 0 for any ε > 0. We say that a point λ belongs to an
essential spectrum, λ ∈ σess(A), i� the projector P(λ−ε,λ+ε) is in�nite-
dimensional for any ε > 0. We say that a point λ belongs to an discrete
spectrum, λ ∈ σdisc(A), i� the projector P(λ−ε,λ+ε) is �nite-dimensional
for any ε > 0. It is obvious that

σ(A) = σess(A) ∪ σdisc(A). (20)
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It appears for the Schr�odinger operator with almost-periodic potential
that the spectrum is essential.

Theorem 5. (G. Scharf, 1965) [31] The spectrum of Schr�odinger operator
with almost-periodic potential is essential, i.e. it does not contain isolated
eigenvalues of �nite multiplicity.

Proof. According to H. Weyl the point λ ∈ σ(A) i� there exist such
a sequence {ψj}∞j=1 that limj→∞ ||(A − λI)ψj || = 0. If this sequence
is compact then λ ∈ σdisc(A), if this sequence is not compact then
λ ∈ σess(A).

Let us consider any function ψ ∈ C∞0 (Rd) such that ||ψ|| = 1 and
||(A − λI)ψ|| < ε/2. Shifting this function by su�ciently large δ−almost
periods of the potential u(x) and its derivatives for a su�ciently small δ > 0
we can construct an orthogonal system of functions {ψj , j = 1, 2 . . .} such
that ||(A−λI)ψj || < ε for all j = 1, 2, . . . . By the above criterion it means
that the spectrum of the operator H is essential.

In one-dimensional case no eigenvalue can have in�nite multiplicity and
that means that the spectrum is a perfect set, i.e. a closed without isolated
points.

Sometimes it is important to have any information on possible gaps
in essential spectrum. It appears that there exist a deep connection
between a smoothness of potential u(x) and a size of possible spectral
gaps ∆. Appropriate studies for a one-dimensional case were initiated by
P. Hartman and C.R. Putnam [24].

Theorem 6. (M.S.P. Eastham, 1976 [23]; V.I. Feigin, 1977 [14]) Let
in a self-adjoint operator A in L2(R), de�ned by di�erential expression
−y′′ + u(x)y, a real function u(x) at large |x| has p > 1 derivatives. Then
in an essential spectrum of the operator A a lacuna of a size ∆ with center
at a value λ satis�es an asymtotic equality

∆ = O(λ−p/2). (21)

Another decomposition of the spectrum σ(A) is useful also. According
to the spectral theorem any self-adjoint operator A is unitary equivalent
to an operator multiplication on λ in L2(R, dµ) for some measure µ. Since
any measure µ on R has unique decomposition in a sum

µ = µpp + µac + µsing, (22)
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where µpp is pure point measure, µac is absolutely continuous with respect
to Lebesgue measure, µsing continuous singular with respect to Lebesgue
measure, therefore we have the following decomposition of the spectrum:

σ(A) = σpp(A) ∪ σcont(A) = σpp(A) ∪ σac(A) ∪ σsing(A). (23)

It appears that in one-dimensional case the number of states N(λ)
determines the spectrum σ(H) of the Schr�odinger operator H :

Theorem 7. (L.A. Pastur, 1980) [29]

σ(H) = supp(dN). (24)

The Lyapunov exponent γ(λ) of the spectrum is de�ned as follows,

γ(λ) = lim
L→∞

|L|−1 ln ||TL||, (25)

where TL is a linear operator in R2 mapping (ψ(0), ψ′(0)) into
(ψ(L), ψ′(L)) and ψ being a solution of the equation Hψ = λψ.

In terms of the Lyapunov exponent the absolutely continuous spectrum
σac(H) of the Schr�odinger operator H is described in such a way,

Theorem 8. (S. Kotani, 1982) [26] σac(H) = {λ ∈ R : γ(λ) = 0}.

The Lyapunov exponent γ(λ) and the number of states N(λ) are real
and imaginery parts appropriately of a so called Floquet function which is
analytic in the upper half of complex plane C+ of the spectral parameter
λ. This fact leads to a following connection between the number of states
and the Lyapunov exponent,

Theorem 9. (Thouless, 1972) [], (J. Avron and B. Simon, 1983)[] The
Lyapunov exponent is

γ(λ) = γ0(λ) +

∫ +∞

−∞
ln |λ− λ′|d|N(λ′)−N0(λ′)|, (26)

where values γ0(λ) = [max(0,−λ)]1/2 and N0(λ) = π−1[max(0,−λ)]1/2

corresponds to the case u(x) = 0.

We can label the gaps of the spectrum by the elements of the frequency
module of the almost-periodic potential similar as it has place for periodic
one.
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Theorem 10. (E.D. Belokolos, 1975) [1, 3] Johnson and J. Moser, 1982)
[27] For the Schr�odinger operator with the potential u(x) ∈ CAP (R) and
λ ∈ R \σ(H) the number of states N(λ) ∈ Ωu, where Ωu is the frequencies
module of u.

Now we formulate the main theorem and give a sketch of its proof.

Theorem 11. (E.D. Belokolos, 1975) [1, 3], (E. Dinaburg and
Ya.G. Sinai, 1975) [5] Let us consider the Schr�odinger equation

(−∂2 + u(x))ψ(x) = λψ(x) (27)

where u(x) is a quasi-periodic potential with rationally independent
frequencies (ω1, . . . , ωn) = ω,

u(x) = U(ωx) = U(ω1x, . . . , ωnx). (28)

Suppose U(x1, . . . , xn) is an analytic function with period 2π in all n
variables and ω satis�es the generalized Bragg-Wul� condition

|(q, ω)| ≥ ε|q|−d, 0 6= q ∈ Zn. (29)

If |u(x)| is su�ciently small (Belokolos), or λ is su�ciently large
(Dinaburg and Sinai), then solutions of the Schr�odinger equation admit a
Floquet representation, in other words, we possess two linearly independent
solutions of the form

ψ(x) = eikxv(x), ψ̄(x) = e−ikxv̄(x), (30)

where v(x) is the quasi-periodic function with the same set of frequencies
(ω1, . . . , ωn).

Proof. Let us sketch the idea of the proof. We have the Schr�odinger
equation

(−∂2 + u(x))ψ(x) = λψ(x) (31)

with quasi-periodic potential,

u(x) = U(φ) = U(xω), x ∈ R,
φ = (φ1, . . . , φn), ω = (ω1, . . . , ωn). (32)
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Here

U(φ) = U(φ1, . . . , φn) (33)

is analytic and periodic in any variable φk, k = 1, . . . , n function.
We shall assume also that the potential u(x) is small, i.e.

sup
−∞<x<+∞

|u(x)| = sup
φ∈Tn

|U(φ)| = ε, 0 < ε� 1, (34)

where Tn is a n−dimensional torus. Evidently we have

U(φ) =
∑
q∈Zn

Uq exp(i(q, φ)), (q, φ) =

n∑
s=1

qsφs, (35)

and therefore

u(x) =
∑
q∈Zn

Uq exp(i(q, ω)x). (36)

For the Schr�odinger equation in the zero approximation of the
perturbation theory we have

ψ0(x) = exp(ikx), λ0 = k2. (37)

In the �rst approximation of the perturbation theory we have

ψ0(x) + ψ1(x) = exp(ikx)

1 +
∑
q∈Zn

Uq exp(ix((q, ω)− k))

k2 − (k − (q, ω))2

 ,

λ0 + λ1 = k2 +
∑
q∈Zn

|Uq|2

k2 − (k − (q, ω))2
. (38)

We have problems with the perturbation series written above only
because of the presence of small denominators

k2 − (k − (q, ω))2 = (q, ω)(2k − (q, ω)). (39)

For example if the wave vector k satis�es the generalized Bragg�Wul�
conditions

2k = (q, ω), |Uq| 6= 0, (40)
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then the standard perturbation series have no sense, we must use the
secular perturbation theory which reveals an appearance of gaps in
spectrum.

But even if the wave vector k does not satisfy the generalized Bragg�
Wul� conditions the convergence of series is not obvious and depends on
a rate of vanishing of numerators with growth of |q|. A rate of vanishing
of denominators depends on the arithmetical properties of the wave vector
2k and the vector of frequencies ω = (ω1, ω2, . . . , ωn) of the quasi-periodic
potential, or, more precisely, on how quickly the linear superpositions of
frequencies (ω, q) approximate the wave vector 2k. It appears that some
real numbers 2k are approximated by the numbers (ω, q) quite well and
some real numbers 2k are approximated by the numbers (ω, q) quite bad.

A rate of vanishing of numerators depends on the smoothness of the
function U(φ) which determines how quickly vanish the Fourier amplitudes
Uq of the potential u(x). For example, if the potential U(φ) has p
derivatives then |Uq| ' |q|−p and if the potential U(φ) is analytical function
in the strip |Imφ| = sup1≤k≤n |Imφk| < a then |Uq| ' ε exp(−a|q|).

If perturbation series for the wave function ψ(x) and energy λ converge
at a some domain of the wave vector k then for the energy λ we
obtain absolutely continuous spectrum. If perturbation series for the wave
function ψ(x) and energy λ diverge at a some domain of wave vector k then
we must use a seculare theory of perturbation and therefore for the energy
λ we can obtain at a some domain of wave vector a spectral gap. If these
gaps are arranged properly then we obtain for energy the band structure:
intervals of absolutely continuous spectrum devided by gaps. If the gaps
are distributed chaotically then we can obtain a point spectrum, or even
singularly continuous one. Thus depending on properties of quasi-periodic
potential we can have various spectra: point, absolutely continuous and
singularly continuous.

In conclusion we remark that even today we do not have complete
understanding how the properties of the quasi-periodic potential connect
with the properties of its spectrum.

In course these studies we elucidate astonishing fact: many proper
quasi-periodic potentials can have a band spectrum similar to for periodic
ones [8, 9]. We understand a band spectrum as a union of �nite or countable
set of intervals of absolutely continuous one. Quasi-periodic solids with
such a type of spectrum have many interesting properties and important
applications.
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In the spectral problem of the Schr�odinger operator with an almost-
periodic potential we can also use the Kolmogorov�Arnold�Moser
technique [4, 15] as it was done E.D. Belokolos (1975), E.I. Dinaburg and
Ya.G. Sinai (1975) for quasi-periodic ones.
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