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Investigation of nonequilibrium

processes in vicinity of hydrodynamic

states

The Chapman�Enskog method is generalized for the investigation of
processes in the vicinity of hydrodynamic states of a gas. The generalization
is made on the basis of the Bogolyubov idea of the functional hypothesis.
A theory that describes a nonequilibrium state of a gas by the usual hydro-
dynamic variables and arbitrary additional local variables is constructed.
The gradients of all these parameters and the deviations of the latter
variables from their hydrodynamic values are assumed to be small and
are estimated by two independent small parameters. The proposed theory
is nonlinear in the additional variables too. It leads to linear integral
equations with an operator, given by the linearized collision integral. Some
of them are eigenvalue problems for this operator and describe kinetic
modes of the system.

The proposed theory is applied to the solution of a modi�ed Grad
problem in which nonequilibrium states of a gas are described by the usual
hydrodynamic variables and small deviations of the energy and momentum
�uxes from their hydrodynamic values. In the simplest approximation
this leads to a theory of the Maxwell relaxation. It is shown that the
distribution function of the 13-moment Grad approximation corresponds
to the approximation of zero order in gradients and to small �uxes.
Moreover, in that theory the investigation of the relaxation phenomena
in the system is reduced to a very approximate solution of the above-
mentioned eigenvalue problems. The Bogolyubov idea of the functional
hypothesis gives an adequate solution of the problem.
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Ìåòîä ×åïìåíà�Åíñêîãà óçàãàëüíþ¹òüñÿ äëÿ äîñëiäæåííÿ ïðîöåñiâ ïî-
áëèçó âiä ãiäðîäèíàìi÷íèõ ñòàíiâ ãàçó. Óçàãàëüíåííÿ ðîáèòüñÿ íà îñ-
íîâi iäå¨ ôóíêöiîíàëüíî¨ ãiïîòåçè Áîãîëþáîâà. Ïîáóäîâàíî òåîðiþ, ÿêà
îïèñó¹ íåðiâíîâàæíi ñòàíè ãàçó çâè÷àéíèìè ãiäðîäèíàìi÷íèìè çìií-
íèìè i äîâiëüíèìè äîäàòêîâèìè ëîêàëüíèìè çìiííèìè. Ãðàäi¹íòè âñiõ
öèõ ïàðàìåòðiâ i âiäõèëåííÿ îñòàííiõ çìiííèõ âiä ¨õ ãiäðîäèíàìi÷íèõ
çíà÷åíü ââàæàþòüñÿ ìàëèìè. Ðîçðîáëåíà òåîðiÿ ¹ íåëiíiéíà òàêîæ i
ïî äîäàòêîâèõ çìiííèõ. Âîíà âåäå äî ëiíiéíèõ iíòåãðàëüíèõ ðiâíÿíü ç
îïåðàòîðîì, ùî äà¹òüñÿ ëiíåàðèçîâàíèì iíòåãðàëîì çiòêíåíü. Äåÿêi ç
íèõ ¹ ñïåêòðàëüíîþ çàäà÷åþ i îïèñóþòü êiíåòè÷íi ìîäè ñèñòåìè.

Ðîçâèíóòà òåîðiÿ çàñòîñîâàíà äî ðîçâ'ÿçóâàííÿ ìîäèôiêîâàíî¨ ïðî-
áëåìè Ãðåäà, â ÿêié íåðiâíîâàæíèé ñòàí ãàçó îïèñó¹òüñÿ çâè÷àéíèìè
ãiäðîäèíàìi÷íèìè çìiííèìè i ìàëèìè âiäõèëåííÿìè ïîòîêiâ åíåðãi¨ òà
iìïóëüñó âiä ¨õ ãiäðîäèíàìi÷íèõ çíà÷åíü. Ó íàéïðîñòiøîìó íàáëèæåííi
öå âåäå äî òåîði¨ ìàêñâåëëiâñüêî¨ ðåëàêñàöi¨. Ïîêàçó¹òüñÿ, ùî ôóíêöiÿ
ðîçïîäiëó 13-ìîìåíòíîãî íàáëèæåííÿ Ãðåäà âiäïîâiäà¹ íóëüîâîìó íà-
áëèæåííþ çà ãðàäi¹íòàìè i ìàëèì ïîòîêàì. Áiëüøå òîãî, â öié òåîði¨
äîñëiäæåííÿ ðåëàêñàöiéíèõ ÿâèù â ñèñòåìi çâîäèòüñÿ äî äóæå íàáëè-
æåíîãî ðîçâ'ÿçêó âêàçàíî¨ ñïåêòðàëüíî¨ çàäà÷i. Iäåÿ ôóíêöiîíàëüíî¨
ãiïîòåçè Áîãîëþáîâà äà¹ àäåêâàòíèé ðîçâ'ÿçîê ïðîáëåìè.

1 Introduction

The problem of the solution of the Boltzmann equation in order to build
hydrodynamic equations was posed by Boltzmann as soon as he derived
his equation

∂fp(x, t)

∂t
= −υlp

∂fp(x, t)

∂xl
+ Ip(f(x, t)), (1)

which describes nonequilibrium states of a rare�ed gas in terms of the
distribution function (DF) fp(x, t) (Ip(f) is the collision integral, υlp ≡
pl/m; we restrict the discussion to a one-component system).

In any approach the starting point for the construction of hydrodynamic
equations on the basis of the kinetic equation (1) is the energy, momentum,
and particle number conservation laws in di�erential form, which follow
from the relations∫

d3p ζµpIp(f) = 0,
(
ζµp : εp, p l, m; εp ≡ p2/2m

)
. (2)
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The above-mentioned conversation laws have the form

∂ε

∂t
= − ∂qn

∂xn
,

∂πl
∂t

= −∂tln
∂xn

,
∂ρ

∂t
= −∂πn

∂xn
, (3)

where the energy density ε, the momentum density πl, the mass density
ρ (variables ζµ(x, t)), and the densities of the corresponding �uxes qn, tln,
πn are given by the formulas

ε =

∫
d3p εpfp, πn =

∫
d3p pnfp, ρ =

∫
d3pmfp;

qn =

∫
d3p εpυnpfp, tln =

∫
d3p p lυnpfp. (4)

The mass velocity υn and temperature T are de�ned by the relations

πn = ρυn, ε ≡ εo + ρυ2/2, εo = 3nT/2 (ρ ≡ mn) . (5)

An important role in hydrodynamics is played by the Galilean transforma-
tion from the laboratory reference frame (LRF) to the accompanying
reference frame (ARF)

qn = qon + tonlυl + (εo + ρυ2/2)υn, tln = toln + ρυlυn (6)

(Ao is a quantity A in the ARF). Finally, the time equations for usual
hydrodynamic variables T (x, t), υn(x, t), n(x, t) (denoted below by ξµ(x, t))
become

∂T

∂t
= −υn

∂T

∂xn
− 2

3n

(
∂qol
∂xl

+ toln
∂υl
∂xn

)
,

∂υl
∂t

= −υn
∂υl
∂xn

− 1

mn

∂toln
∂xn

,

∂n

∂t
= −∂nυl

∂xl
. (7)

The next step is to express the �uxes qol , t
o
nl in terms of the hydrodynamic

variables ξµ(x, t) by functionals qol (x, ξ(t)), tonl(x, ξ(t)) that leads to closed
equations of the form

∂ξµ(x, t)

∂t
= Mµ(x, ξ(t)) (8)

(Mµ(x, ξ) are some functionals of ξµ(x)). The hydrodynamic variables
ξµ(x, t) are expressed only in terms of the simplest moments of
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the distribution function fp(x, t). Therefore the number of parameters
that describe the system state is reduced as we go from kinetics to
hydrodynamics. Therefore the parameters ξµ(x, t) (or equivalent variables
ζµ(x, t)) may be called reduced description parameters (RDP) of the
system.

A considerable contribution into the solution of this problem was
made by Hilbert [1], who formulated the concept of the normal solution
fp(x, ξ(t)) of the kinetic equation (1). This solution is a functional of the
hydrodynamic variables ξµ(x, t) as functions of the coordinates, and it
depends on the time only through their mediation. Hilbert developed a
perturbation theory in a small parameter g for calculation DF fp(x, ξ) on
the basis of the estimates Ip(f) ∼ g−1, fp(x, t) ∼ g0. The parameter g
(the Knudsen number) is given by the formula g = l/L where l is the
gas mean free path, and L is a characteristic dimension of the system
inhomogeneities. In the main order of the perturbation theory the DF
fp(x, ξ) coincides with the Maxwell distribution wp

wp = wop−mυ, wop ≡
n

(2πmT )3/2
e−

εp
T (Ip(w) = 0). (9)

In practical terms the Hilbert perturbation theory was improved by
Enskog [2], who managed to derive hydrodynamic equations with account
for dissipative processes. His method is called the Chapman�Enskog
method [3], because the same results were obtained by Chapman on the
basis of Maxwell's ideas. The Chapman�Enskog method reduces to the
solution of linear integral equations of the form

K̂gp = hp, (10)

where gp is the sought-for function, and hp is a known function (the
Fredholm integral equation of the �rst kind). The kernel Kpp′ of the

operator K̂ is de�ned by the linearized collision integral

K̂gp =

∫
d3p′Kpp′gp′ ,

wpKpp′ = −Mpp′wp′ , Mpp′ ≡
δIp(f)

δfp′

∣∣∣∣
f→w

. (11)

The integral equations are solved with additional conditions which follow
from the de�nition of the hydrodynamic variables (4) and (5). In fact, in
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the Chapman�Enskog method the perturbation theory for the DF fp(x, ξ)
is built in small gradients of the hydrodynamic variables according to the
estimate

∂sξµ(x)

∂xl1 ...∂xls
∼ gs. (12)

Burnett proposed the method of Sonine orthogonal polynomial Sαn (x)
expansion [4, 5] for the approximate solution of integral equations of the
form (10) related to the Boltzmann equation. The use of these polynomials
is due to the fact that the DF fp(x, ξ) proves to be proportional to the
Maxwell distribution, and therefore the orthogonality relation∫

d3pwopε
α−1/2
p Sαs (βεp)S

α
s′(βεp) = nTα−1/2

2Γ(s+ α+ 1)

s!π1/2
δss′ (13)

(α is some parameter; β ≡ T−1) is obviously helpful. In fact, the
polynomial series is truncated arti�cially, and one-, two-, etc. polynomial
approximations are built. Kohler proposed a variational principle [6] for
the solution of integral equations of the form (4) which is based on the
Hilbert result that the bilinear form

{gp, hp} =

∫
d3p d3p′wpKpp′gphp′ (14)

(gp, hp are arbitrary functions) has the properties

{gp, hp} = {hp, gp}, {gp, gp} ≥ 0;

{gp, gp} = 0 ⇒ gp = ζµp, (15)

(ζµp are de�ned in (2)). This variational principle justi�es the convergence
of the Burnett procedure of approximate solution of the integral equation
(10) with increasing number of polynomials.

It is also worth noting at this point that on the basis of (15) it is easy
to show, following Hilbert, the symmetry of the operator K̂ (11), i.e. the
relation (gp, K̂hp) = (K̂gp, hp). Here, the scalar product is de�ned as

(gp, hp) = 〈gphp〉, 〈gp〉 ≡
∫
d3pwpgp. (16)

The positiveness of the eigenvalues of the operator K̂ also follows from
(15). Its eigenfunctions can be assumed to be orthogonal in the introduced
scalar product.
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In this paper we construct theory which describes nonequilibrium
states close to hydrodynamic ones. These states are described by usual
hydrodynamic variables ξµ(x, t) (or ζµ(x, t)) and some additional variables
ϕi(x, t) that vanish at usual hydrodynamic evolution. Therefore, variables
ϕi(x, t) describe relaxation phenomena and one receives an opportunity
to study forming the hydrodynamic evolution. The proposed theory is
given by our generalization of the Chapman�Enskog method based on the
Bogolyubov idea of the functional hypothesis [7] (see discussion this idea,
for example, in [8]). Relaxation processes are considered at their end that
allows to build a perturbation theory in magnitude of variables ϕi(x, t)
which is additional one to usual perturbation theory in gradients.

The idea of investigation of relaxation processes at their end was used
in a series of papers: in theory of relaxation of polaron gas velocity
and temperature in polar crystals [9], in hydrodynamics of phonon
subsystem of dielectrics taking into account drift velocity relaxation [10], in
hydrodynamics of two-component plasma taking into account temperature
and velocity relaxation of the components [11].

Plan of the paper is as follows. In the Section 2 the Grad approach
to solution of kinetic equations is discussed in connection with the
Bogolyubov reduced description method. Particular attention is paid to
the analysis of his 13-moment approximation (we call this theory the Grad
problem). In the Section 3 the general theory is constructed which describes
nonequilibrium processes in the vicinity of hydrodynamic states. Section
4 gives application of the developed theory to a modi�ed Grad problem.

2 The Grad problem and the Bogolyubov

reduced description method

Grad proposed a method [12] in which solutions of the Boltzmann equation
are sought from the very outset as a truncated series in the orthogonal
tensor Hermite polynomials Hl1...ls(~x). The use of these polynomials is
justi�ed by the same reason as the use of the Sonine polynomials, namely,
by the form of their normalization condition∫

d3pwopHl1...ls((β/m)1/2~p)Hl′1...l
′
s′

((β/m)1/2~p) =

= nδss′
∑
σ

δl′1lσ(1) ... δl′slσ(s) (17)



Nonequilibrium processes in the vicinity of hydrodynamic states 73

(σ is an arbitrary permutation of the numbers 1, ..., s). In the Chapman�
Enskog method, a hydrodynamic gas state is described by moments of the
DF fp(x, t) with the functions ζµp de�ned in (2). In the 13-moment Grad
approximation the system is described by the moments of the DF with the
functions

ζµp, εpυ lp, hln(p)/m
(
hln(p) ≡ pnp l − δnlp2/3

)
which are taken in the ARF. According to (4) this state is de�ned by the
variables ζµ(x, t), qol (x, t),

πoln(x, t) ≡ toln(x, t)− δlntomm(x, t)/3

where qol (x, t), toln(x, t) are the densities of the gas energy and momentum
�uxes in the ARF (ξµ(x, t) can be used instead of ζµ(x, t)). The Grad
equations for �uxes are obtained from the kinetic equation by direct
substitution of the DF expansion in the Hermite polynomials, which leads
to their quadratic nonlinearity because the collision integral Ip(f) is a
quadratic function of the DF fp′ . In the G-13 approximation, equations
(7) are �nal equations, and they are supplemented by the time equations
for the �uxes qol (x, t), πoln(x, t).

The equations of the G-13 approximation were considered by Grad
as a means to investigate nonequilibrium states that precede standard
hydrodynamic ones. On this basis he discussed [13] the hydrodynamic
evolution, studying normal according to Hilbert solutions, with the �uxes
qol (x, t), πoln(x, t) that are functionals of the usual hydrodynamic variables
qol (x, ζ(t)), πoln(x, ζ(t)).

The situation may be clari�ed further if we will base the consideration
on the Bogolyubov idea of the functional hypothesis and his idea of

hierarchy of nonequilibrium states of a system during its evolution. These
ideas are basis of the Bogolyubov reduced description method (RDM)
of nonequilibrium processes [7] and can be applied to investigation of
evolution of a system described by the Liouville equation or kinetic
equations (see review in [8]). On this basis the Chapman�Enskog method
is generalized in the present paper.

Usual hydrodynamic states are realized in the system at times t� τ0,
where τ0 is the mean free time. Nonequilibrium Grad states are realized
at t � τ1, where τ1 is a characteristic time such that τ1 � τ0. According
to the idea of the functional hypothesis we have

fp(x, t)−−−→t�τ1
fp(x, ζ(t), qo(t), πo(t)), (18)
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i.e. at times t � τ1 the DF fp(x, t) becomes a functional of the RDP
ζµ(x, t), qon(x, t), πoln(x, t) as functions of the coordinates and depends on
the time only through their mediation. This functional is universal in the
sense that only the RDP ζµ(x, t), qol (x, t), πoln(x, t) on the right-hand side
of (18) depend on the initial system state described by the DF fp(x, t = 0).
To the functional hypothesis (18) de�nitions of the RDP∫

d3p εpυlp fp+mυ(x)(x, ζ, q
o, πo) = qol (x),∫

d3p hnl(p)fp+mυ(x)(x, ζ, q
o, πo)/m = πoln(x),∫

d3p ζµpfp(x, ζ, q
o, πo) = ζµ(x) (19)

must be added.
The idea of the functional hypothesis is obviously a generalization of

the Hilbert idea of normal solutions. However, in Bogolyubov's research
it became a result of his investigations into non-linear dynamic systems,
in which the synchronization of the solutions of their dynamic equations
with the evolution of some parameters is observed. The term �the
functional hypothesis� was introduced by Uhlenbeck. By now, thanks to
Peletminsky's investigations, this idea has largely lost the status of a
hypothesis. In some important cases it can be proven [14]-[16] (see also [8]).
The right hand side of the functional hypothesis (18) contains asymptotic
value of the distribution function fp(x, t). Transition to asymptotics implies
some coarsening procedure. This procedure corresponds to possibilities of
experimental observations and make possible the reduced description of
the system.

In fact in the G-13 approximation, the DF fp(x, ζ, q
o, πo) is given by

the formula

fp(x, ζ, q
o, πo) = wop(n, T )

{
1 +

1

2mnT 2
pnp lπ

o
nl(x)+

+
1

nT 2
p l(

2εp
5T
− 1)qol (x)

}
p→p−mυ(x)
n→n(x), T→T (x)

, (20)

to which there are no corrections in the framework of Grad's theory
(wop(n, T ) ≡ wop in (9)). A comparison of (20) with the functional from (18)
shows that (20) corresponds to an approximation of small �uxes qol (x, t),
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πoln(x, t) and the zero-order approximation in gradients. Moreover, we show
further on the basis of the developed in the Section 3 theory that expression
(20) corresponds to one-polynomial approximation.

Below we call problem of reduced description of the nonequilibriun
system by variables ζµ(x, t), qol (x, t), πoln(x, t) the Grad problem.

3 Description of nonequilibrium processes

in the vicinity of the hydrodynamic states

3.1 The basic equations of the theory

Consider a generalization of the Grad problem to the case of description
of the system by arbitrary parameters that are additional to usual
hydrodynamic variables. The corresponding stage of evolution precedes
in time hydrodynamic stage. The use of the two reference frames (the
laboratory and the accompanying ones) brings a certain complication to
the theory. Therefore in this section we choose the densities of the integrals
of motion ζµ(x, t) as the basic hydrodynamic variables.

According to Bogolyubov, at the hydrodynamic stage of evolution the
reduced description can be built on the basis of the functional hypothesis

fp(x, t)−−−→t�τ0
f̃p(x, ζ̃(t));

∫
d3p ζµp f̃p(x, ζ̃) = ζ̃µ(x). (21)

Here, the second formula is the de�nition of the parameters ζ̃µ(x, t), for
which the gas energy, momentum, and mass densities are taken (see (2) and
(4)). Let at t � τ1 (τ0 � τ1) the gas be described by the hydrodynamic
parameters ζµ(x, t) and the deviations ϕi(x, t) of the parameters with the
microscopic values θip from their hydrodynamic values θi(x, t) (notation
ϕi(x, t) is less descriptive than δθi(x, t) but leads to compact formulas).
Then the functional hypothesis at these times has the form

fp(x, t)−−−→t�τ1
fp(x, ζ(t), ϕ(t));∫

d3p θipfp(x, ζ, ϕ) = ϕi(x) + θi(x, ζ),

∫
d3p θip f̃p(x, ζ̃) ≡ θi(x, ζ̃);∫

d3p ζµpfp(x, ζ, ϕ) = ζµ(x), (22)
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where the last three formulas de�ne the RDPs ζµ(x, t) and ϕi(x, t).
According to kinetic equation (1), the introduced parameters satisfy

the following time equations

∂ζ̃µ(x, t)

∂t
= L̃µ(x, ζ̃(t)), L̃µ(x, ζ̃) ≡ − ∂

∂xn

∫
d3p ζµpυnp f̃p(x, ζ̃); (23)

∂ζµ(x, t)

∂t
= Lµ(x, ζ(t), ϕ(t)),

Lµ(x, ζ, ϕ) ≡ − ∂

∂xn

∫
d3p ζµpυnpfp(x, ζ, ϕ); (24)

∂ϕi(x, t)

∂t
= Li(x, ζ(t), ϕ(t)),

Li(x, ζ, ϕ) ≡ −
∑
µ

δθi(x, ζ)

δζµ(x′)
Lµ(x′, ζ, ϕ)− ∂

∂xn

∫
d3p θipυnpfp(x, ζ, ϕ) +

+

∫
d3p θipIp(f(x, ζ, ϕ)). (25)

The considered problem implies that the relations

ζµ(x, t)−−−→
t�τ0

ζ̃µ(x, t), ϕi(x, t)−−−→t�τ0
0;

fp(x, ζ(t), ϕ(t))−−−→
t�τ0

f̃p(x, ζ̃(t)) (26)

are true, whence we have the identities

fp(x, ζ, ϕ = 0) = f̃p(x, ζ), Lµ(x, ζ, ϕ = 0) = L̃µ(x, ζ),

Li(x, ζ, ϕ = 0) = 0. (27)

According to Bogolyubov's MRD, the asymptotic DF are the exact

solutions of the kinetic equation

∂ f̃p(x, ζ̃(t))

∂t
= −υlp

∂ f̃p(x, ζ̃(t))

∂xl
+ Ip(̃fp(x, ζ̃(t))),

∂fp(x, ζ(t), ϕ(t))

∂t
= −υlp

∂fp(x, ζ(t), ϕ(t))

∂xl
+ Ip(fp(x, ζ(t), ϕ(t))). (28)

By their meaning, they describe the system state at t � τ0 and t � τ1,
respectively. However, the solution of equations (26) can be continued to
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t = 0, that introduces the e�ective initial conditions to time equations
(23)-(25).

Equations (28) together with relations (23)-(25) yield the following
integro-di�erential equations for the DF f̃p(x, ζ̃) and fp(x, ζ, ϕ)

∑
µ

∫
d3x′

δf̃p(x, ζ)

δζµ(x′)
L̃µ(x′, ζ) = −υlp

∂ f̃p(x, ζ)

∂xl
+ Ip(f̃p(x, ζ)), (29)

∑
µ

∫
d3x′

δfp(x, ζ, ϕ)

δζµ(x′)
Lµ(x′, ζ, ϕ) +

∑
i

∫
d3x′

δfp(x, ζ, ϕ)

δϕi(x′)
Li(x

′, ζ, ϕ) =

= −υlp
∂fp(x, ζ, ϕ)

∂xl
+ Ip(fp(x, ζ, ϕ)). (30)

They should be solved in a perturbation theory in the gradients g of the
RDP ζµ(x), ζ̃µ(x), ϕi(x) and in the parameter λ that estimates the order
of the variables ϕi(x) according to

∂sζµ(x)

∂xl1 ...∂xls
∼ gs, ∂sζ̃µ(x)

∂xl1 ...∂xls
∼ gs, ∂sϕi(x)

∂xl1 ...∂xls
∼ gsλ1. (31)

In doing so,the RDP de�nitions (21) and (22) should be used as additional
conditions.

3.2 Construction of the perturbation theory

According to (27), we can restrict ourselves to the solution of equation
(30) only. The structure of its solution in the perturbation theory is given
by the formulas

fp = f(0)p + f(1)p +O(g2), f(0)p = f(0,0)p + f(0,1)p + f(0,2)p +O(g0λ3),

f(1)p = f(1,0)p + f(1,1)p +O(g1λ2);

f(0,0)p = wp, f(0,1)p = wp
∑
i

aipϕi, f(0,2)p = wp
∑
ii′

bii′pϕiϕi′ ;

f(1,0)p = wop{1 +
∂T

∂xn
Appn +

∂υn
∂xl

Bphnl(p)}p→p−mυ,

f (1,1)p = wp{
∑
i

cilp
∂ϕi
∂xl

+
∑
iµ

diµlpϕi
∂ξµ
∂xl
}. (32)
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Here and in what follows, A(m) is the contribution of the order gm, and
A(m,n) is the contribution of the order gmλn to the quantity A, and the
results are given in terms of the gradients of the variables ξµ(x, t), i.e.
T (x, t), υn(x, t), n(x, t). In (32) aip, bii′p, cilp, diµlp are some momentum

functions to be computed. The contribution f
(1,0)
p coincides with the �rst-

order approximation in gradients of the usual Chapman�Enskog method.
The scalar functions Ap, Bp satisfy the known integral equations

K̂oApp l =
1

mT

(
5

2
− εp
T

)
pl, 〈Apεp〉o = 0;

K̂oBphnl(p) = − 1

mT
hnl(p), (33)

where

K̂ohp =

∫
d3p′wopK

o
pp′hp′ , Ko

p,p′ = Kp+mυ,p′+mυ;

〈hp〉o =

∫
d3pwophp (34)

(the kernel Kpp′ is de�ned in (11); hp is an arbitrary function). The
second formula in (33) is the additional condition that follows from the

RDP de�nition in (22). The functions f
(0,0)
p and f

(1,0)
p de�ne the main

contributions M
(1,0)
µ and M

(2,0)
µ to the usual hydrodynamic equations (8)

M
(1,0)
0 = −υn

∂T

∂xn
− 2

3
T
∂υn
∂xn

, M
(1,0)
l = −υn

∂υl
∂xn

− T

mn

∂n

∂xl
− 1

m

∂T

∂xl
,

M
(1,0)
4 = −∂nυl

∂xl
; (35)

M
(2,0)
0 = − 2

3n

(
∂q

o(1,0)
l

∂xl
+ t

o(1,0)
ln

∂υl
∂xn

)
, M

(2,0)
l = − 1

mn

∂t
o(1,0)
ln

∂xn
,

M
(2,0)
4 = 0. (36)

In (35) the expressions for the reversible �uxes

qo(0,0)n = 0, t
o(0,0)
nl ≡ pδnl, p = nT
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are taken into account (p is the pressure). Equations (36) include the
dissipative contributions to the �uxes

qo(1,0)n = −κ ∂T
∂xn

, t
o(1,0)
ln = −η

(
∂υl
∂xn

+
∂υn
∂xl
− 2

3
δln

∂υm
∂xm

)
,

κ ≡ −2

3
〈ε2pAp〉o, η ≡ −4m

15
〈ε2pBp〉o (37)

where κ and η are the gas heat conductivity and shear viscosity, respecti-
vely.

According to (25) and (32), in the zero-order approximation in gradients
the equation for the parameters ϕi has the form

∂ϕi
∂t

= L
(0,1)
i + L

(0,2)
i +O(g0λ3, g1),

L
(0,1)
i = −

∑
i′

µii′ϕi′ , L
(0,2)
i = −

∑
i′i′′

νii′i′′ϕi′ϕi′′ , (38)

where the coe�cients

µii′ = {θip, ai′p},

νii′i′′ = {θip, bi′i′′p}+
1

2

∫
d3p d3p′wpθipKpp′p′′ai′p′ai′′p′′ (39)

and the function Kpp′p′′

wpKpp′p′′ = −Mpp′p′′wp′wp′′ , Mpp′p′′ ≡
δ2Ip(f)

δfp′δfp′′

∣∣∣∣
f→w

. (40)

are introduced. According to (22) and (30), these coe�cients µii′ , νii′i′′ and
functions aip, bii′p from (32) are the solutions of the integral equations with
the additional conditions

K̂aip =
∑
i′

ai′pµi′i, 〈aipζµp〉 = 0, 〈aipθi′p〉 = δii′ ; (41)

K̂bi′i′′p =
∑
i

aipνii′i′′ +
∑
i

(bii′pµii′′+bii′′pµii′)−

−1

2

∫
d3p′d3p′′Kpp′p′′ai′p′ai′′p′′ , 〈bi′i′′pζµp〉 = 0, 〈bi′i′′pθip〉 = 0. (42)
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Expressions (39) for the coe�cients µii′ , νii′i′′ follow also from the integral
equations (41) and (42) when the last relations in (41) and (42) are taken
into account. However, as will be shown below, these expressions for µii′ ,
νii′i′′ are not needed for the solution of equations (41) and (42).

Further analysis of the integral equations (41) and (42) without
specifying the parameters ϕi (and the functions θip) is di�cult. However,
it is easy to show that the quantities ϕi are linear combinations of the
gas kinetic modes ϕα. To demonstrate this, consider the right and left
eigenfunctions of the matrix µii′∑

i′

µii′ui′α = λαuiα,
∑
i

υiαµii′ = λαυi′α;∑
i

uiαυiα′ = δαα′ ,
∑
α

uiαυi′α = δii′ , (43)

with additional normalization and completeness conditions. Then

ϕi =
∑
α

uiαϕα, ϕα ≡
∑
i

ϕiυiα (44)

and, according to (38), the quantities ϕα satisfy the equation

∂ϕα
∂t

= −λαϕα −
∑
α′α′′

ναα′α′′ϕα′ϕα′′ +O(g0λ3, g1),

ναα′α′′ ≡
∑
ii′i′′

υiανii′i′′ui′α′ui′′α′′ (45)

In this case, (41) gives the integral equation

K̂aαp = λαaαp, 〈aαpζµp〉 = 0, 〈aαpθα′p〉 = δαα′ (46)

for the functions aαp ≡
∑
i aipuiα (θαp ≡

∑
i θipυiα). Thus, we have

arrived at a spectral problem for the operator K̂, i.e. for the linearized
collision operator. The positiveness of its eigenvalues λα and the possibility
of considering its eigenfunctions to be orthogonal in the scalar product
(16) are mentioned above. The spectral problem (46) describes the kinetic
modes of the system because the second condition in (46) means that
the eigenfunctions aαp are orthogonal to the hydrodynamic ones ζµp
(K̂ζµp = 0). Thus the variables ϕi, as the problem under consideration
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implies, really attenuate with the time. The functions ϕα are the gas kinetic
modes. Relations (46) de�ne the type of these modes.

The integral equation (42) should be solved for the quantities bii′p
and νii′i′′ . This equation is simpli�ed if, using the eigenfunctions (43),
we introduce the variable

bαα′p =
∑
ii′

bii′puiαui′α′ (47)

that yields the equations

K̂bα′α′′p =
∑
α

aαpναα′α′′ + bα′α′′p(λα′ + λα′′) + hα′α′′p;

〈bαα′p ζµp〉 = 0, 〈bαα′p θα′′p〉 = 0, 〈hαα′p ζµp〉 = 0 (48)

for the quantities bαα′p and ναα′α′′ (equations (48) may be called equations
(42) in the α-representation). Here, aαp is the eigenfunction that is found
from equation (46), and hαα′p is a known function that depends on aαp.
Besides the eigenfunctions aαp (their number equals to the number of the

parameters ϕi), the operator K̂ has eigenfunctions aµp and additional ones
asp. All these functions are orthogonal each to other and aµp are obtained

by the orthogonalization of the functions ζµp (K̂ζµp = 0). The solution of
the integral equation (48) can be sought in the form of expansion in the
operator K̂ eigenfunctions

bα′α′′p =
∑
α

bαα′α′′aαp +
∑
s

bsα′α′′asp +
∑
µ

bµα′α′′aµp,

hα′α′′p =
∑
α

hαα′α′′aαp +
∑
s

hsα′α′′asp +
∑
µ

hµα′α′′aµp. (49)

The second and fourth formulas in (48) show that the coe�cients bµα′α′′ ,
hµα′α′′ are equal to zero. Then the integral equation (48) yields

bαα′α′′ =
ναα′α′′ + hαα′α′′

λα − (λα′ + λα′′)
, bsα′α′′ =

hsα′α′′

λs − (λα′ + λα′′)
. (50)

The coe�cients ναα′α′′ are now found from the third formula in (48) with
account for the last relation in (46), which yields

bαα′α′′ +
∑
s

bsα′α′′〈aspθαp〉 = 0. (51)
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So, the integral equation with the additional conditions (42) has an unique
solution for the quantities bii′p and νii′i′′ .

Let us now discuss the calculation of the �rst-order contribution in
gradients L

(1)
i to equation (25) for the parameters ϕi. According to (25),

with account for (22) and (27) the main contribution can be written as

L
(1,1)
i = − ∂

∂xn

∫
d3p θipυnpf

(0,1)
p −

∑
µ

∂〈θip〉
∂ζµ

L(1,1)
µ +

+

∫
d3p d3p′θipMpp′ f

(1,1)
p′ +

∫
d3p d3p′ d3p′′θipMpp′p′′ f

(1,0)
p′ f

(0,1)
p′′ (52)

(L
(1,0)
i = 0). Here, L

(1,1)
µ is the right-hand sides of the hydrodynamic

equations for the variables ζµ, and thus for any function h of the
hydrodynamic variables the following formula can be used∑

µ

∂h

∂ζµ
L(1,1)
µ =

∑
µ

∂h

∂ξµ
M (1,1)
µ . (53)

Expressions for functions M
(1,1)
µ follows from equations (7) and (8)

M
(1,1)
0 = − 2

3n

(
∂q

o(0,1)
l

∂xl
+ t

o(0,1)
ln

∂υl
∂xn

)
, M

(1,1)
l = − 1

mn

∂t
o(0,1)
ln

∂xn
,

M
(1,1)
4 = 0 (54)

with �uxes

qo(0,1)n =
∑
i

〈εpυnpai,p−mυ〉oϕi, t
o(0,1)
ln =

∑
i

〈plυnpai,p−mυ〉oϕi. (55)

Further simpli�cation of formula (52) for L
(1,1)
i requires the speci�cation

of the parameters ϕi and the corresponding microscopic quantities θip.

According to (30) and (53), the contribution f
(1,1)
p to the DF satis�es

the equation

∑
µ

∂f
(0,1)
p

∂ξµ
M (1,0)
µ +

∑
µ

∂wp
∂ξµ

M (1,1)
µ +

∑
i

∂f
(0,1)
p

∂ϕi
L
(1,1)
i +υnp

∂f
(0,1)
p

∂xn
+
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+
∑
i

(
∂f

(1,1)
p

∂ϕi
+

∂f
(1,1)
p

∂∂ϕi/∂xn

∂

∂xn

)
L
(0,1)
i =

=

∫
d3p′d3p′′Mpp′p′′ f

(0,1)
p′ f

(1,0)
p′′ +

∫
d3p′Mpp′ f

(1,1)
p′ . (56)

Taking into account expressions (32) for the DF and the expressions for the

right-hand sidesM
(1,0)
µ , L

(0,1)
i , L

(1,1)
i ,M

(1,1)
µ of the equations for RDP from

(35), (38), (52), (54), we obtain the integral equations for the functions
cinp, diµnp

K̂cinp =
∑
i′

ci′npµi′i +
∑
i′

ai′pαi′in + hinp, (57)

K̂diµnp =
∑
i′

di′µnpµi′i +
∑
i′

ai′pβi′iµn + hiµnp, (58)

which, according to (32), de�ne the DF f
(1,1)
p . Here hinp and hiµnp are

known functions (hiµnp depends on cinp) and the coe�cients αii′n, βii′µn
are given by formulas

αii′n = {θip, ci′np}, βii′µn = {θip, di′µnp}. (59)

The additional conditions for equations (57), (58) are given by the formulas
respectively

〈ζµpcinp〉 = 0, 〈θip ci′np〉 = 0, 〈ζµphinp〉 = 0; (60)

〈ζµpdiµ′np〉 = 0, 〈θip di′µnp〉 = 0, 〈ζµphiµ′np〉 = 0. (61)

Expressions (59) for the coe�cients αii′n, βii′µn follow from equations
(57), (58) with account for the relation 〈aipθi′p〉 = δii′ from (41). However,
these relations are not needed for the solution of equations (57), (58), and
the integral equations are linear (this is similar to the situation with the
solution of equations (41) and (42) without regard for (39)). Equations
(57), (58), and (60), (61) are simpli�ed in the α-representation

K̂cαnp = cαnpλα +
∑
α′

aα′pαα′αn + hαnp,

〈ζµpcαnp〉 = 0, 〈θαpcα′np〉 = 0, 〈ζµphαnp〉 = 0; (62)

K̂dαµnp = dαµnpλα +
∑
α′

aα′pβα′αµn + hαµnp,

〈ζµpdαµ′np〉 = 0, 〈θαpdα′µnp〉 = 0, 〈ζµphαµ′np〉 = 0. (63)



84 V.N. Gorev, A.I. Sokolovsky

The solution of these equations may be discussed in a similar way to the
solution of equation (48) and needs more information about parameters
ϕi.

The calculation of the DF f
(1,1)
p allows us to �nd the contributionM

(2,1)
µ

to the right-hand side of the hydrodynamic equations (8). According to (8),
the following formulas hold

M
(2,1)
0 = − 2

3n

(
∂q

o(1,1)
l

∂xl
+ t

o(1,1)
ln

∂υl
∂xn

)
, M

(2,1)
l = − 1

mn

∂t
o(1,1)
ln

∂xn
,

M
(2,1)
4 = 0 (64)

with �uxes

qo(1,1)n =

∫
d3pεpυnpf

(1,1)
p , t

o(1,1)
ln =

∫
d3pplυnpf

(1,1)
p . (65)

In summary, we have investigated the equations for the RDP ϕi and
ξµ in the following orders of the perturbation theory

∂ϕi
∂t

= L
(0,1)
i + L

(0,2)
i + L

(1,1)
i +O(g0λ3, g1λ2, g2λ1, g3),

∂ξµ
∂t

= M (1,0)
µ +M (1,1)

µ +M (2,0)
µ +M (2,1)

µ +O(g1λ2, g2λ2, g3), (66)

where the quantities L
(0,1)
i , L

(0,2)
i , L

(1,1)
i , M

(1,0)
µ , M

(1,1)
µ , M

(2,0)
µ , M

(2,1)
µ

are given in formulas (35), (36), (38), (52), (54), (64). Clearly the above-
described procedure of sequential calculation of the DF and the right-hand
sides of the RDP time equations can be continued. A detailed analysis
of the obtained integral equations for the contributions to the DF is
only possible when the parameters ϕi and the corresponding microscopic
quantities θip are speci�ed. This will allow us to use rotational invariance
considerations, which can greatly simplify the calculations, and to perform
the required Galilean transformation.

4 Modi�ed Grad problem

Consider application of the developed theory to the Grad problem in which
nonequilibrium states of a gas are described by hydrodynamic variables
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ζµ(x, t) as well as by energy �ux qon(x, t) and traceless momentum �ux
πoln(x, t) taken in ARF. Speci�cation of RDP simpli�es the consideration
because allows us to make Galilean transformation for transition from LRF
to ARF and to use rotational invariance in calculations.

It was stressed above that solution of the Grad problem in framework of
the RDM can be based on the functional hypothesis (18) supplemented by
de�nition of the RDP (19). It is obvious that the Grad DF (20) corresponds
to the zero order approximation in gradients and to an approximation of
small �uxes. In this section according to the general theory developed
in Section 3 a modi�ed Grad problem is investigated. In this problem
the deviations of the �uxes δqon(x, t), δπoln(x, t) from their hydrodynamic
values qon(x, ζ(t)), πoln(x, ζ(t)), which are functionals of the hydrodynamic
variables ζµ(x, t), are taken as the RDP. These deviations are assumed
to be small values of the same order λ. Speci�cation of the result of
Section 3 for the problem considered here is quite simple. For example,
the functional hypothesis considers the DF as a functional of the form
fp(x, ζ(t), δqo(t), δπo(t)).

The time equations for the �uxes qon, π
o
ln follow from their de�nitions

(19) and kinetic equation (1) and can be written as

∂πoln
∂t

= −υm
∂πoln
∂xm

− πoln
∂υm
∂xm

−
(
πolm

∂υn
∂xm

+ πonm
∂υl
∂xm

− 2

3
δlnπ

o
sm

∂υs
∂xm

)
+

−nT
(
∂υl
∂xn

+
∂υn
∂xl
− 2

3
δln

∂υm
∂xm

)
− ∂πln,m(f)

∂xm
+Rln(f), (67)

∂qol
∂t

= −υn
∂qol
∂xn

− qol
∂υn
∂xn

− 5

3
qon
∂υl
∂xn

+
1

mn
πoln

∂πonm
∂xm

+
5

2

T

m

∂πoln
∂xn
−

+
1

mn
(πoln +

5

2
nTδln)

∂nT

∂xn
− ∂qln(f)

∂xn
− πln,m(f)

∂υn
∂xm

+Rl(f) (68)

where the notation

Rln(f) =
1

m

∫
d3p hln(p)Ip+mυ(f), Rl(f) =

1

m

∫
d3p εpp lIp+mυ(f);

πln,m(f) =
1

m2

∫
d3p hln(p)pmfp+mυ,

qln(f) =
1

m2

∫
d3p εpp lpnfp+mυ (69)
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is introduced. Equations (67), (68) are satis�ed by the functionals
qon(x, ζ(t)) ≡ q̃on, π

o
ln(x, ζ(t)) ≡ π̃oln and the usual hydrodynamic DF

f̃p(x, ζ) = wp + f
(1,0)
p + O(g2) (see (27), (32)). Therefore, according to

(67), (68) , the exact time equations for the deviations have the form

∂δπoln
∂t

= −υm
∂δπoln
∂xm

− δπoln
∂υm
∂xm

−

−
(
δπolm

∂υn
∂xm

+ δπonm
∂υl
∂xm

− 2

3
δlnδπ

o
sm

∂υs
∂xm

)
+

−∂δπln,m
∂xm

+ δRln ≡ Lln, (70)

∂δqol
∂t

= −υn
∂δqol
∂xn

− δqol
∂υn
∂xn

− 5

3
δqon

∂υl
∂xn

+
5

2

T

m

∂δπoln
∂xn

+

+
1

mn
δπoln

∂δπonm
∂xm

+
1

mn
π̃oln

∂δπonm
∂xm

+
1

mn
δπoln

∂π̃onm
∂xm

+

+
1

mn
δπoln

∂nT

∂xn
− ∂δqln

∂xn
− δπln,m

∂υn
∂xm

+ δRl ≡ Ll (71)

where the notations

δRln ≡ Rln(f)−Rln(̃f), δRl ≡ Rl(f)−Rl(̃f);

δπln,m ≡ πln,m(f)− πln,m(f̃), δqln ≡ qln(f)− qln(̃f) (72)

are introduced. To continue the derivation of the time equations, one needs
to calculate DF fp(x, ζ, δq

o, δπo) using the general theory developed in
Section 3 and substitute it into (72).

Here we restrict ourselves to the calculation of the contribution f
(0)
p of

zero order in gradients to this DF. According to (32) in this approximation
the DF fp(x, ζ, δq

o, δπo) has the structure

f(0)p = wop{1 + anp δq
o
n + alnp δπ

o
ln +O(g0λ2)}p→p−mυ,

anp ≡ appn, anlp ≡ bp hnl(p) (73)

where ap, bp are some scalar functions. In view of (70)-(72), the time
equations for the deviations of the �uxes qon, π

o
ln in the zero order in

gradients have the form

∂δqol
∂t

= −λqδqol +O(g0λ2, g1),
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∂δπoln
∂t

= −λπδπoln +O(g0λ2, g1) (74)

where

λq =
1

3m
{p lεp, p lap}o, λπ =

1

5m
{p lpn, hln(p)bp}o. (75)

These quantities are written using the following bilinear form

{gp, hp}o =

∫
d3pd3p′wopK

o
pp′gphp′ (76)

which is a speci�cation of the form (14) {gp, hp} for the ARF (see also
(9), (11), (34)). According to formulas (32), (41) of the general theory, the
functions ap, bp from (73) satisfy the integral equations with the additional
conditions

K̂oapp l = λqapp l, 〈εpap〉o = 0, 〈ε2pap〉o = 3/2; (77)

K̂obphln(p) = λπbphln(p), 〈ε2pbp〉o =
15

8m
. (78)

As would be expected, these equations are eigenvalue problems for the
operator K̂o de�ned in (34). According to the remark given after formulas
(16), its eigenvalues are positive and equations (71) describe attenuation
of the �ux deviations δqon(x, t), δπoln(x, t) i.e. the processes

qon(x, t)−−−→
t�τ0

qon(x, ζ(t)), πoln(x, t)−−−→
t�τ0

πoln(x, ζ(t)). (79)

This phenomenon is called the Maxwell relaxation. In the Grad theory
[13] relaxation equations of the type (74) for �uxes qon(x, t), πoln(x, t) are
obtained too, but describe simple attenuation of these �uxes.

Equations (74) give contributions L
(0,1)
l , L

(0,1)
ln to the right-hand sides

Ll, Lln of the time equations for RDP (70), (71). According to the general
theory, contributions to Ll, Lln that do not depend on the parameters δqon,
δπoln are absent, and therefore

L
(1,0)
l = 0, L

(1,0)
ln = 0; L

(2,0)
l = 0, L

(2,0)
ln = 0 (80)

(see, for example, equations (66)). In the present paper other contributions
will not be discussed. Consider only approximate solution of the integral
equations (77), (78) using the Burnett method of a truncated Sonine
polynomial expansion.
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Solution of the equation (77) with account for its tensor dimensionality
is found in the form of the series

ap =

∞∑
s=0

asS
3/2
s (βεp) (81)

(β = T−1). Additional conditions (77) thus give

a0 = 0, a1 = −2β2/5n. (82)

Integral equation (77) leads to the following in�nite set of linear equations
for the coe�cients as

∞∑
s′=1

Ass′ ãs′ = λ̃qãs (83)

where the notations

Ass′ = {p lS3/2
s (βεp), plS

3/2
s′ (βεp)}o(xsxs′)−1/2,

ãs = asx
1/2
s , λ̃q =

2mn

β
λq, xs ≡

2Γ(s+ 5/2)

s!π1/2
(84)

are introduced. According to the properties of the bilinear form (76) the
matrix Ass′ is symmetric and positively de�ned. Solution of equations (83)
in one- and two-polynomial approximations gives

a
[1]
1 = a1, λ̃[1]q = A11;

a
[2]
1 = a1, a

[2]
2 =

2

71/2
λ̃
[2]
q −A11

A12
a1,

λ̃[2]q = {(A11 +A22)− [(A11 −A22)2 + 4A2
12]1/2}/2 (85)

(here A[n] is a quantity A taken in n-polynomial approximation). Note

that in the two-polynomial approximation eigenvalue λ̃
[2]
q of the smallest

value was chosen.
With account for the tensor dimensionality of equation (78) its solution

is found as the following series expansion

bp =

∞∑
s=0

bsS
5/2
s (βεp). (86)
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Additional condition (78) de�ne the �rst coe�cient of the expansion

b0 = β2/2mn. (87)

Integral equation (78) leads to the in�nite set of linear equations for the
coe�cients bs

∞∑
s′=0

Bss′ b̃s′ = λ̃π b̃s (88)

where the notations

Bss′ = {hln(p)S5/2
s (βεp), hln(p)S

5/2
s′ (βεp)}o(ysys′)−1/2,

b̃s = bsy
1/2
s , λ̃π =

8m2n

3β2
λπ, ys ≡

2Γ(s+ 7/2)

s!π1/2
(89)

are introduced. According to the properties of the bilinear form (76) the
matrix Bss′ is symmetric and positively de�ned one. Solution of equations
(88) in one- and two-polynomial approximations gives

b
[1]
0 = b0, λ̃[1]π = B00;

b
[2]
0 = b0, b̃

[2]
1 =

21/2

71/2
λ̃
[2]
π −B00

B01
b0,

λ̃[2]π = {(B00 +B11)− [(B00 −B11)2 + 4B2
01]1/2}/2. (90)

Note that in the two-polynomial approximation the eigenvalue λ̃
[2]
π of the

smallest value was chosen.
So, in the one-polynomial approximation the following expression for

DF (73) of the zero order in gradients is obtained

f(0)p = wop

{
1 +

1

2mnT 2
pnplδπ

o
ln +

+
1

nT 2
pn(

2

5

εp
T
− 1)δqon +O(g0λ2)

}
p→p−mυ

(91)

For the selected independent variables this expression coincides with the
Grad DF (20). Therefore, the statement given at the end of section 2 is
con�rmed and his DF contains only contributions of the orders g0λ0, g0λ1

and takes them in the one-polynomial approximation.
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In the one-polynomial approximation our attenuation constants are
given by the formulas

λ[1]q =
2

15mnT 3
{p lεp, p lεp}o =

5

2

nT

mκ[1]
,

λ[1]π =
1

10m2nT 2
{hln(p), hln(p)}o =

nT

η[1]
(92)

where the expressions for the heat conductivity κ[1] and the shear viscosity
η[1] in the same approximation are used to compare. Famous result of the
theory [3] is given by the formula

κ[1] = 15η[1]/4m (93)

which leads to the relations

λ[1]q = 2λ[1]π /3. (94)

Note that the Grad theory [12] gives also expressions (92) for attenuation
constants. However, in his theory this constants describe unphysical
attenuation of the �uxes qol (x, t), πoln(x, t) to zero and cannot be corrected.

As the �nal remark note that it is not possible to rigorously prove the
method of a truncated polynomial expansion for solution of eigenvalue
problem for operator K̂. However, the proposed calculations additionally
show limitation of the Grad method as an alternative to the Bogolyubov
reduced description method.

5 Conclusion

The Chapman�Enskog method has been generalized for the investigation
of processes in the vicinity of hydrodynamic states of a gas. The genera-
lization is made on the basis of the Bogolyubov idea of the functional
hypothesis. A theory that describes a nonequilibrium state of a gas
by the usual hydrodynamic variables ζµ(x, t) and arbitrary additional
local variables θi(x, t) has been constructed. The gradients of all these
parameters and the deviations ϕi(x, t) of the variables θi(x, t) from their
hydrodynamic values θi(x, ζ(t)) are assumed to be small and are estimated
by two independent small parameters g, λ. The proposed theory is
nonlinear in the variables ϕi(x, t) too.



Nonequilibrium processes in the vicinity of hydrodynamic states 91

The usual Chapman�Enskog method leads to the solution of Fredholm
integral equations of the �rst kind with an operator K̂ given by the
linearized collision integral. The proposed theory leads to the solution
of linear integral equations of a more complicated nature with the same
operator K̂. Some of them are eigenvalue problems for the operator K̂ and
describe the kinetic modes of the system.

The proposed theory is applied to the solution of a modi�ed Grad
problem. Grad formulated his problem in his 13-moment approximation
for the solution of kinetic equations. In his theory nonequilibrium states
of a gas are described, in addition to the usual hydrodynamic variables,
by the �uxes of energy qon(x, t) and traceless momentum πoln(x, t) ≡
toln(x, t) − tomm(x, t)δln/3 in the accompanying reference frame. In fact
these �uxes are considered as small quantities of the same order λ and
the Grad distribution function includes only terms of the orders g0λ0,
g0λ1. Moreover, it corresponds to the one-polynomial approximation. In
our modi�cation of the Grad problem a nonequilibrium state of a gas
is described by the usual hydrodynamic variables and small deviations
δqon(x, t), δπoln(x, t) of the above-mentioned �uxes from their hydrodynamic
values qon(x, ζ(t)), πoln(x, ζ(t)). In the simplest approximation this leads to
a theory of the Maxwell relaxation.

The consideration shows that in the 13-moment Grad approximation
the investigation of the relaxation phenomena in the system is reduced to
a very approximate solution of the eigenvalue problem for the operator
K̂. The Bogolyubov reduced description method, based on his idea of the
functional hypothesis, gives an adequate solution of the problem.

The proposed theory can be applied to evolution described by arbitrary
kinetic equations, and to the evolution of dense systems described by the
Liouville equation.
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