УДК 517.984, 517.923

В. Н. Молибога

(Институт математики НАН Украины, Киев)

Об ограниченности решений уравнения Хилла с потенциалом—распределением

molyboga@imath.kiev.ua

We describe all values of $\lambda \in \mathbb{R}$ for which the all non-trivial solutions of Hill's equation $-y'' + q(x)y = \lambda y$ with 1-periodic real-valued distribution potential q(x) from $H^{-1}_{loc}(\mathbb{R})$ are bounded ore unbounded on \mathbb{R} . In particular, potential q can be a 1-periodic Radon measure (for example, sum of 1-periodic δ -functions).

Описаны все значения $\lambda \in \mathbb{R}$, для которых все нетривиальные решения уравнения Хилла $-y''+q(x)y=\lambda y$ с 1-периодическим действительнозначным потенциалом—распределением q(x) из $H^{-1}_{loc}(\mathbb{R})$ являются ограниченными или неограниченными на \mathbb{R} . В частности, потенциал q может быть 1-периодической мерой Радона (например, сумма 1-периодических δ -функций).

В работе исследуются свойства *ограниченности* и *неограниченности* решений уравнения Хилла с сильно сингулярным потенциалом.

Уравнение Хилла очень важно для понимания устойчивости движения в осцилляторных системах. В зависимости от параметра $\lambda \in \mathbb{R}$ решения могут иметь вид устойчивых квазипериодических колебаний, либо колебания будут раскачиваться с нарастающей экспоненциально амплитудой. В физике ускорителей уравнение Хилла необычайно важно, поскольку описывает поперечную линейную динамику частиц в фокусирующих магнитных полях (бетатронные колебания). Важными частными случаями уравнения Хилла являются уравнение Матьё и уравнение Мейснера.

Имея более чем столетнюю историю исследования [6], уравнение Хилла и по сегодняшний день остаётся предметом пристального изучения, причём как в случае L^2 -потенциала [3, 16, 14, 15], так и в случае потенциала, являющегося обобщённой функцией [1, 2, 18, 7, 8, 4, 12, 13], см. также библиографию там.

Рассмотрим сначала уравнение Хилла

$$-y'' + q(x)y = \lambda y, \qquad x \in \mathbb{R}, \ \lambda \in \mathbb{R},$$
 (1)

с непрерывным 1-периодическим вещественным потенциалом q. Исследуем при каких значениях параметра $\lambda \in \mathbb{R}$ нетривиальные решения уравнения Хилла (1) являются ограниченными либо неограниченными на всей оси \mathbb{R} .

Чтобы дать ответ на поставленный вопрос, рассмотрим на отрезке [0, 1] периодическую и антипериодическую краевые задачи, порождённые уравнением (1) и соответствующими краевыми условиями:

$$y(0) = y(1),$$
 $y'(0) = y'(1),$ (P)
 $y(0) = -y(1),$ $y'(0) = -y'(1).$ (AP)

$$y(0) = -y(1), y'(0) = -y'(1).$$
 (AP)

Тогда, как хорошо известно [10, 19, 23], собственные значения задач (1)+(P) и (1)+(AP) образуют бесконечные последовательности, которые стремятся к бесконечности и удовлетворяют неравенствам:

$$-\infty < \lambda_0^+ < \lambda_1^- \leqslant \lambda_1^+ < \lambda_2^- \leqslant \lambda_2^+ < \lambda_3^- \leqslant \lambda_3^+ \cdots. \tag{2}$$

Здесь λ_n^\pm с чётными номерами являются собственными значениями периодической задачи (1)+(Р), а с нечётными — антипериодической задачи (1)+(AP).

Введём обозначения

$$\mathcal{B}_n := (\lambda_n^+, \lambda_{n+1}^-), \qquad n \in \mathbb{Z}_+, \tag{3}$$

$$\mathcal{G}_0 := (-\infty, \lambda_0^+), \quad \mathcal{G}_n := (\lambda_n^-, \lambda_n^+), \qquad n \in \mathbb{N}.$$
 (4)

Замкнутые интервалы $\overline{\mathcal{B}}_n$ мы будем называть cnekmpaльными интервалами (спектральными зонами), а интервалы \mathcal{G}_n — спектральными лакунами. В случае, когда

$$\lambda_{n_i}^- = \lambda_{n_i}^+,$$

мы будем говорить, что спектральная лакуна \mathcal{G}_{n_i} вырождена. При этом в точке $\lambda_{n_i}^- = \lambda_{n_i}^+$ соседние спектральные зоны $\overline{\mathcal{B}}_{n_i-1}$ и $\overline{\mathcal{B}}_{n_i}$ объединяются.

Теперь мы можем сформулировать ответ на поставленный в начале работы вопрос [10, 24, 19, 23]:

- (1) все нетривиальные решения уравнение Хилла (1) являются ограниченными на \mathbb{R} тогда и только тогда, когда λ является внутренней точкой некоторой спектральной зоны $\overline{\mathcal{B}}_n$, либо является точкой объединения спектральных зон;
- (2) все нетривиальные решения уравнение Хилла (1) являются неограниченными на \mathbb{R} тогда и только тогда, когда λ принадлежит некоторой спектральной лакуне \mathcal{G}_n ;

Рассмотрим в гильбертовом пространстве $L^2(\mathbb{R})$ оператор Хилла

$$L(q)y := -y'' + q(x)y,$$

$$q(x+1) = q(x) \in C(\mathbb{R}), \quad \text{Im } q = 0.$$
(5)

Как известно, оператор L(q) самосопряжён и полуограничен снизу. Его спектр абсолютно непрерывен и имеет зонную структуру.

Оказывается, что спектр оператора L(q) можно охарактеризовать в терминах ограниченности решений уравнения (1): $\lambda \in \mathbb{R}$ принадлежит спектру оператора Хилла L(q) тогда и только тогда, когда соответствующее уравнение (1) имеет хотя бы одно нетривиальное ограниченное решение [20].

Замечание 1. С ограниченностью решений уравнения Хилла тесно связано понятие устойчивости уравнения. Значение $\lambda \in \mathbb{R}$ называется устойчивым, если все нетривиальные решения уравнения являются ограниченными на \mathbb{R} , в противном случае это значение $\lambda \in \mathbb{R}$ называется неустойчивым.

Поэтому открытые спектральные интервалы \mathcal{B}_n вместе с их точками объединения называют интервалами устойчивости, а замыкания спектральных лакун $\overline{\mathcal{G}}_n$ называют интервалами неустойчивости [10, 21, 24].

Основная цель настоящей работы — описать все значения $\lambda \in \mathbb{R}$, для которых все нетривиальные решения уравнения Хилла (1) с потенциалом q, являющимся 1-периодическим вещественнозначным распределением (обобщённой функцией) из пространства $H^{-1}_{loc}(\mathbb{R})$, будут ограничены либо неограничены на \mathbb{R} .

Оказывается, что результат остаётся таким же, как и для случая непрерывного потенциала, хотя для доказательства этого приходится преодолеть определённые трудности, обусловленные наличием в уравнении обобщённой функции (например, меры).

Согласно с [7, 5] 1-периодическая обобщённая функция $q \in H^{-1}_{loc}(\mathbb{R})$ допускает представление

$$q = C + Q'$$

где

$$C \in \mathbb{R}, \ Q(x+1) = Q(x) \in L^2_{loc}(\mathbb{R}), \ \int_0^1 Q(x) dx = 0, \ \mathrm{Im} \, Q = 0.$$

Далее в работе, без потери общности, мы будем полагать, что $C \equiv 0$. Следуя [17] уравнение (1) с сингулярным потенциалом мы определяем как квазидифференциальное:

$$l[y] = \lambda y,$$

$$l[y] := -(y' - Qy)' - Q(y' - Qy) - Q^2y,$$
(6)

где $y^{[1]} := y' - Qy$ —квазипроизводная. При этом локально абсолютно непрерывная функция y выбирается таким образом, чтобы квазипроизводная $y^{[1]}$ также была локально абсолютно непрерывной функцией. Можно показать, что множество таких функций y является всюду плотным в $L^2(\mathbb{R})$.

Решение квазидифференциального уравнения (6) мы определяем следующим образом.

Определение. Решение задачи Коши для квазидифференциального уравнения

$$l[y] = \lambda y,$$

с начальными условиями

$$y(x_0) = c_1, \quad y^{[1]}(x_0) = c_2, \qquad x_0 \in \mathbb{R}, \quad c = (c_1, c_2) \in \mathbb{C},$$

определяется как первая компонента решения задачи Коши для соответствующей системы первого порядка линейных дифференциальных уравнений

$$\frac{d}{dx} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} Q & 1 \\ -\lambda - Q^2 & -Q \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \quad y_1(x_0) = c_1, \quad y_2(x_0) = c_2, \quad (7)$$

где $y_1 := y, y_2 := y^{[1]}$.

Согласно сделанным предположениям элементы матрицы в уравнении (7) являются локально суммируемыми функциями, поэтому в силу теоремы существования и единственности глобального решения задачи Коши для систем линейных дифференциальных уравнений [22, 19] данное выше определение является корректным.

Вместе с квазидифференциальным уравнением (6) рассмотрим на интервале [0, 1] периодическую и антипериодическую краевые задачи, порождённые (6) и соответствующими краевыми условиями (с заменой производной на квазипроизводную):

$$y(0) = y(1), y^{[1]}(0) = y^{[1]}(1), (\widetilde{P})$$

$$y(0) = y(1),$$
 $y^{[1]}(0) = y^{[1]}(1),$ (\widetilde{P})
 $y(0) = -y(1),$ $y^{[1]}(0) = -y^{[1]}(1).$ (\widetilde{AP})

Отметим, что в случае, когда функция Q является локально абсолютно непрерывной, краевые задачи (1)+(P), (1)+(AP) и (6)+(P), (6)+(AP)соответственно эквивалентны, если потенциал в уравнении (1) является локально суммируемой функцией.

Как известно [7, 8, 11, 5], собственные значения периодической $(6)+(\widetilde{P})$ и антипериодической $(6)+(\widetilde{AP})$ краевых задач образуют бесконечные последовательности, стремящиеся к $+\infty$, и удовлетворяют неравенствам (2). При этом λ_n^{\pm} с чётными номерами являются собственными значениями периодической задачи, а с нечётными — антипериодической.

Определения спектральных зон $\overline{\mathcal{B}}_n$ (3), спектральных лакун \mathcal{G}_n (4), вырожденных спектральных лакун, объединённых спектральных зон мы оставляем прежними как для случая непрерывного потенциала.

Основным результатом работы является следующая теорема.

Теорема 1. Для квазидифференциального уравнения Хилла (6) с сильно сингулярным потенциалом $q \in H^{-1}_{loc}(\mathbb{R})$ имеют место следующие утверждения:

- (1) все нетривиальные решения уравнение Хилла (6) являются ограниченными на \mathbb{R} тогда и только тогда, когда λ является внутренней точкой некоторой спектральной зоны $\overline{\mathcal{B}}_n$, либо является точкой объединения спектральных зон;
- (2) все нетривиальные решения уравнение Хилла (6) являются неограниченными на \mathbb{R} тогда и только тогда, когда λ принадлежит некоторой спектральной лакуне \mathcal{G}_n ;

Следствие 1.1. Если $\lambda \in \mathbb{R}$ совпадает с концом невырожденной спектральной лакуны, то среди нетривиальных решений уравнения (6) есть и ограниченные и неограниченные решения на \mathbb{R} .

Доказательство. Перепишем соответствующую квазидифференциальному уравнению (6) систему (7) в каноническом (гамильтоновом) виде [21, 24]

$$\frac{d\overrightarrow{y}}{dx} = JH(x,\lambda)\overrightarrow{y}, \qquad H(x,\lambda) = H_0(x) + \lambda H_1, \tag{8}$$

где

$$J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad H_0(x) = \begin{pmatrix} Q^2 & Q \\ Q & 1 \end{pmatrix}, \quad H_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Отметим, что матрица $H(x,\lambda)$ является эрмитовой, а её элементы являются локально суммируемыми функциями.

Обозначим через $U(x,\lambda)$ матрицант уравнения (8), т. е. квадратную матрицу

$$U(x,\lambda) = \begin{pmatrix} u_1(x,\lambda) & v_1(x,\lambda) \\ u_2(x,\lambda) & v_2(x,\lambda) \end{pmatrix}, \qquad U(0,\lambda) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

являющуюся решением дифференциальной системы

$$\frac{dU}{dx} = JH(x, \lambda)U.$$

Матрица $U(1,\lambda)$ называется матрицей монодромии системы (8), а её собственные значения $\rho_1(\lambda)$, $\rho_2(\lambda)$ — мультипликаторами.

Поскольку след ${\rm Tr}\,JH(x,\lambda)$ матрицы $JH(x,\lambda)$ тождественно равен нулю, то в силу формулы Лиувилля

$$\det U(x,\lambda) \equiv 1. \tag{9}$$

Рассмотрим функцию Ляпунова (дискриминант Хилла)

$$\Delta(\lambda) := \frac{1}{2} \operatorname{Tr} U(1, \lambda).$$

Тогда, учитывая равенство (9), мультипликаторы матрицы монодромии будут вычисляться по формуле

$$\rho_{1,2}(\lambda) = \Delta(\lambda) \pm \sqrt{\Delta^2(\lambda) - 1}.$$

Поэтому, при

(a) $|\Delta(\lambda)| < 1$ мультипликаторы находятся на единичной окружности и являются простыми;

- (b) $|\Delta(\lambda)| > 1$ один из мультипликаторов по абсолютной величине больше 1, а другой меньше 1;
- (c) $|\Delta(\lambda)| = 1$ мультипликаторы находятся на единичной окружности и имеют алгебраическую кратность равную 2: $\rho_{1,2} = -1$ либо $\rho_{1,2} = 1$.

В силу общей теоремы [21, Стр. 214], [24, Стр. 106] (см. также [9]), дающей необходимые и достаточные условия устойчивости линейных гамильтоновых систем, имеем:

- (а) все нетривиальные решения система (8) ограничены на \mathbb{R} тогда и только тогда, когда мультипликаторы находятся на единичной окружности и либо являются простыми ($|\Delta(\lambda)| < 1$), либо имеют геометрическую кратность равную 2 ($|\Delta(\lambda)| = 1$, $\frac{\partial \Delta(\lambda)}{\partial \lambda} = 0$);
- (b) все нетривиальные решения система (8) неограничены на \mathbb{R} тогда и только тогда, когда мультипликаторы по абсолютной величине не равны 1 ($|\Delta(\lambda)| > 1$);
- (c) система (8) имеет нетривиальные ограниченные решения и нетривиальные неограниченные решения на $\mathbb R$ тогда и только тогда, когда $\rho_1=\rho_2=1$ либо $\rho_1=\rho_2=-1$, причём геометрическая кратность мультипликатора не равна 2 ($|\Delta(\lambda)|=1$ и $\frac{\partial \Delta(\lambda)}{\partial \lambda} \neq 0$).

Поэтому, для завершения доказательства теоремы остаётся заметить, что как и в случае непрерывного потенциала:

$$|\Delta(\lambda)| < 1 \Leftrightarrow \lambda \in \mathcal{B}_n, \quad n \in \mathbb{Z}_+,$$

 $|\Delta(\lambda)| > 1 \Leftrightarrow \lambda \in \mathcal{G}_n, \quad n \in \mathbb{Z}_+,$

И

$$\Delta(\lambda) = 1 \Leftrightarrow \lambda \in \{\lambda_0^+, \ \lambda_{2n}^\pm\}_{n \in \mathbb{N}}, \qquad \Delta(\lambda) = -1 \Leftrightarrow \lambda \in \{\lambda_{2n-1}^\pm\}_{n \in \mathbb{N}}$$

Теорема 1 и следствие 1.1 доказаны.

В гильбертовом пространстве $L^2(\mathbb{R})$ рассмотрим оператор Хилла L(q) вида (5) с сильно сингулярным потенциалом $q(x+1)=q(x)\in$

 $H^{-1}_{loc}(\mathbb{R})$. В этом случае оператор L(q) может быть корректно определён в пространстве $L^2(\mathbb{R})$ несколькими эквивалентными между собой способами [11]:

- как сумма квадратичных форм [8];
- как квазидифференциальный оператор [17, 18]: минимальный, максимальный, расширение по Фридрихсу минимального оператора;
- как предел, в смысле равномерной резольвентной сходимости, последовательности операторов с 1-периодическими гладкими коэффициентами.

Известно, что оператор L(q) является полуограниченным снизу самосопряжённым оператором. Его спектр абсолютно непрерывен и имеет зонную структуру: спектральные зоны чередуются со спектральными лакунами [7, 8, 11, 5]. При этом

$$\operatorname{spec}(\operatorname{L}(q)) = \bigcup_{n=0}^{\infty} \overline{\mathcal{B}}_n.$$

Следующая теорема позволяет охарактеризовать спектр оператора Хилла в терминах свойств решений соответствующего уравнения.

Теорема 2. Точка $\lambda \in \mathbb{R}$ принадлежит спектру оператора L(q) тогда и только тогда, когда соответствующее квазидифференциальное уравнение (6) имеет хотя бы одно нетривиальное ограниченное решение на \mathbb{R} .

Доказательство. При доказательстве теоремы 1 было установлено, что квазидифференциальное уравнение (6) имеет хотя бы одно нетривиальное ограниченное решение тогда и только тогда, когда $|\Delta(\lambda)| \le 1$. Для завершения доказательства теоремы достаточно учесть, что

$$|\Delta(\lambda)| \leq 1 \Leftrightarrow \lambda \in \overline{\mathcal{B}}_n, \quad n \in \mathbb{Z}_+.$$

Теорема доказана.

Список литературы

[1] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable models in Quantum Mechanics [2-nd ed.] With an appendix by Pavel Exner. – Providence, RI: AMS Chelsea Publishing, 2005.

- [2] Albeverio S., Kurasov P., Singular perturbations of differential operators.
 Solvable Schrödinger type operators. Cambridge: Cambridge University Press, 2000.
- [3] Djakov P., Mityagin B. Instability zones of one-dimentional periodic Schrödinger and Dirac operatots // Russian Math. Surveys. 2006. **61**, no. 4. P. 663–766.
- [4] Djakov P., Mityagin B. Spectral gaps of Schrödinger operators with periodic singular potentials // Dynamics of PDE. 2009. 6, no. 2. P. 95–165.
- [5] Djakov P., Mityagin B. Fourier method for one dimentional Schrödinger operators with singular periodic potentials // Topics in operator theory, vol. 2. Systems and mathematical physics. – Oper. Theory Adv. Appl., vol. 203. – Basel: Birkhäuser, 2010. – P. 195–236.
- [6] Hill G. W. On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon. // Acta Matematica. – 1886. – 8, no. 1. – P. 1–36.
- [7] Hryniv R., Mykytyuk Ya. 1-D Schrödinger operators with periodic singular potentials // Methods Funct. Anal. Topology. 2001. 7, no. 4. P. 31–42.
- [8] Korotyaev E. Characterization of the spectrum of Schrödinger operators with periodic distributions // Int. Math. Res. Not. 2003. 37. P. 2019–2031.
- [9] Крейн М. О характеристической функции $A(\lambda)$) линейной канонической системы дифференциальных уравнений второго порядка с периодическим коэффициентами // Прикладная Математика и Механика. 1957. 21. С. 320—329.
- [10] Magnus W., Winkler S., Hill's equation, New York, etc.: Interscience Publishers, 1966.
- [11] Mikhailets V., Molyboga V. One-dimensional Schrödinger operators with singular periodic potentials // Methods Funct. Anal. Topology. – 2008. – 14, no. 2. – P. 184–200.
- [12] Mikhailets V., Molyboga V. Spectral gaps of the one-dimensional Schrödinger operators with singular periodic potentials // Methods Funct. Anal. Topology. -2009. -15, no. 1. -P. 31–40.

- [13] Mikhailets V., Molyboga V. Hill's potentials in Hörmander spaces and their spectral gaps // Methods Funct. Anal. Topology. – 2011. – 17, no. 3. – P. 235–243.
- [14] Mikhailets V., Molyboga V. Smoothness of Hill's potential and lengths of spectral gaps // Spectral theory, mathematical system theory, evolution equations, differential and difference equations. – Oper. Theory Adv. Appl., vol. 221. – Basel: Birkhäuser, 2012. – P. 469–479.
- [15] Pankrashkin K. A remark on the discriminant of Hill's equation and Herglotz functions // Arhiv der Mathematik. – 2014. – 102, no. 2. – P. 155–163.
- [16] Pöschel J. Hill's potentials in weighted Sobolev spaces and their spectral gaps // Math. Ann. – 2011. – 349, no. 2. – P. 433–458.
- [17] Savchuk A., Shkalikov A. Sturm-Liouville operators with singular potentials. – Math. Notes. – 1999. – 66, no. 5–6. – P. 741–753.
- [18] Savchuk A., Shkalikov A. Sturm-Liouville operators with distribution potentials. – Trans. Moscow Math. Soc. – 2003. – 64. – P. 143–192.
- [19] Weidmann J., Spectral theory of ordinary differential operators. Berlin: Springer-Verlag, 1987.
- [20] Глазман И. Прямые методы качественного спектрального анализа сингулярных дифференциальных операторов. – Москва: Физ-мат лит., 1963.
- [21] Демидович Б. Лекции по математической теории устойчивости. Москва: Наука, 1967.
- [22] Наймарк М., Линейные дифференциальные операторы. Москва: Наука, 1969.
- [23] Левитан Б., Саргсян И., Операторы Штурма-Лиувилля и Дирака Москва: Наука, 1988.
- [24] *Якубович В., Старжинский В.*, Линейные дифференциальные уравнения с периодическими коэффициентами и их приложения. Москва: Наука, 1972.