V. M. Bondarenko ${ }^{1}$, I. V. Chervyakov ${ }^{2}$, Yu. M. Pereguda ${ }^{3}$

1, 2 (Institute of mathematics of NAN of Ukraine, Kyiv)
${ }^{3}$ (Zhytomyr Military Institute of the State University of Telecommunications, Zhytomyr, Ukraine)
${ }^{1}$ vit-bond@imath.kiev.ua, ${ }^{3}$ pereguda.juli@rambler.ru

On point-local deformations of minimal extensions of non-serial Dynkin diagrams

In this paper we study point-local deformations of Tits quadratic forms of finite graphs. We describe all P-limiting numbers of minimal extensions of non-serial Dynkin dyagrams in the case when these extensions are neither usual neither extended Dynkin diagrams.

1. Introduction. Let

$$
f(z)=f\left(z_{1}, \ldots, z_{n}\right):=\sum_{i=1}^{n} f_{i i} z_{i}^{2}+\sum_{i<j} f_{i j} z_{i} z_{j}
$$

be a qudratic form over the field of real numbers \mathbb{R}. By the definition from [1], a quadratic form of the form

$$
f^{(s)}(z, t)=t f_{s s} z_{s}^{2}+\sum_{i \neq s} f_{i i} z_{i}^{2}+\sum_{i<j} f_{i j} z_{i} z_{j} \text { with } f_{s s} \neq 0
$$

where t is a parameter running \mathbb{R}, is called the local deformation of $f(z)$ with respect to z_{s} or the s-deformation of $f(z)$.

Let now $f_{s s}>0$. Denote by $F_{+}^{(s)}$ the set of all $a \in \mathbb{R}$ such that the quadratic form $f^{(s)}(z, a)$ is positive definite, and put $F_{-}^{(s)}=\mathbb{R} \backslash F_{+}^{(s)}$. Obviously, $F_{-}^{(s)} \neq \varnothing$ (since $f^{(s)}(z, 0)$ is not positive definite), and if $F_{-}^{(s)} \neq \mathbb{R}$ then $m_{f}^{(s)}=\sup F_{-}^{(s)} \in F_{-}^{(s)}$ is called the P-limiting number of $f(z)$ for z_{s} or the s-th P-limiting number of $f(z)$. In the case $F_{-}^{(s)}=\mathbb{R}$ we put $m_{f}^{(s)}=\infty$. Concerning general properties of P-limiting numbers see in [1, 2, 3]. Deformations considered above were called point-local deformations of $f(z)$ in [3]. This paper is devoted to study of point-local deformations of the Tits quadratic form of quivers.
2. Minimal extensions of graphs. Elsewhere in the paper all graphs are finite and non-oriented. Sets of vertices and edges of a graph X are denoted by X_{0} and X_{1}, respectively. A graph $G=\left(G_{0}, G_{1}\right)$ is said to be a minimal extension of a graph $Q=\left(Q_{0}, Q_{1}\right)$ if $G_{0}=S_{0} \cup d$ with $d \notin Q_{0}$ and $G_{1}=Q_{1} \cup(d, j)$ with $j \in Q_{0}$. The vertex d is said to be the added vertex of G. In this case we write $G=Q \cup(d, j)$. If Q is a Dynkin diagram, the most interesting from the point of view of deformations (as we can see in the next section) is the case when the graph G is neither an usual not an extended Dynkin diagram. We call such G an essential minimal extension of Q.

We consider minimal extensions of the non-serial Dynkin diagtams, i. e. the diagrams E_{6}, E_{7}, E_{8} :

Directly from the definitions we have the following statement.
Proposition 1 An extension $G=E \cup(0, j)$ of a Dynkin diagram $E=E_{i}$ ($i=6,7,8$) is essential if and only if one of the following condition holds: 1) $E=E_{6}, j \neq 1,5,6$; 2) $E=E_{7}, j \neq 1,6$; 3) $E=E_{8}, j \neq 7$.
3. Formulation of the main results. By the definition (see [4]) the Tits quadratic form of a graph $Q=\left(Q_{0}, Q_{1}\right)$ is the following integral quadratic form:

$$
q_{Q}(z)=q_{Q}\left(z_{1}, z_{2}, \ldots, z_{n}\right):=\sum_{i \in Q_{0}} z_{i}^{2}-\sum_{\{i-j\} \in Q_{1}} z_{i} z_{j} .
$$

It is well-known that $q_{Q}(z)$ is positive definite if and only if the graph Q is a disjoint union of Dynkin diagrams (see [4]). All P-limiting numbers of such quadratic forms are describes in [2]; they are rational numbers belonging to $[0,1)$.

Note that formally it is more convenient to say about P-limiting numbers of a graph Q instead of the quadratic form $q_{Q}(z)$. As in [2], by the P-limiting number of a vertex $i \in Q_{0}$ we mean the i-th P-limiting number of $q_{Q}(z)$, and we write $m_{Q}^{(i)}$ instead of $m_{q_{Q}(z)}^{(i)}$.

We consider minimal extensions G of Dynkin diagtams. If G is an extended Dynkin diagram then by Theorem 1 in [3] the P-limiting number of the added vertex of G is equal to 1 . Therefore, the most interesting is the case of essential extensions. Note that in this case by the same theorem the P-limiting numbers of the added vertices belong to $(1, \infty)$.

Theorem 1 Let $G=E_{6} \cup(0, j)$ be an essential minimal extension of the Dynkin diagram E_{6}. Then the P-limiting number of the added vertex 0 is
the following:

$$
m_{G}^{(0)}=\left\{\begin{array}{cl}
1 \frac{2}{3}, & \text { if } \quad j=2,4 \\
3, & \text { if } \quad j=3 .
\end{array}\right.
$$

Theorem 2 Let $G=E_{7} \cup(0, j)$ be an essential minimal extension of the Dynkin diagram E_{7}. Then the P-limiting number of the added vertex 0 is the following:

$$
m_{G}^{(0)}=\left\{\begin{aligned}
3, & \text { if } j=2 \\
6, & \text { if } j=3 \\
3 \frac{3}{4}, & \text { if } j=4 \\
2, & \text { if } j=5 \\
1 \frac{3}{4}, & \text { if } j=7
\end{aligned}\right.
$$

Theorem 3 Let $G=E_{8} \cup(0, j)$ be an essential minimal extension of the Dynkin diagram E_{8}. Then the P-limiting number of the added vertex 0 is the following:

$$
m_{G}^{(0)}=\left\{\begin{array}{ccc}
2, & \text { if } & j=1 ; \\
7, & \text { if } & j=2 \\
15, & \text { if } & j=3 ; \\
10, & \text { if } & j=4 ; \\
6, & \text { if } & j=5 ; \\
3, & \text { if } & j=6 ; \\
4, & \text { if } & j=8 .
\end{array}\right.
$$

4. Proofs of the theorems. It follows from [1] - [3] that the P limiting number $m_{G}^{(0)}$ of a graph $G=E_{i} \cup(0, j)$ is the root of the equation (linear with respect to t) $\left|A_{i}^{j}(t)\right|=0$, where $A_{i}^{j}(t)$ is the symmetric matrix of the quadratic form $2 q_{G}^{(0)}(z, t)$. The determinant $\left|A_{i}^{j}(t)\right|$ is denoted by $D_{i}^{j}(t)$. In particular cases, we have:

$$
A_{6}^{2}(t)=\left(\begin{array}{ccccccc}
2 t & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 2 & -1 & 0 & 0 & 0 & 0 \\
-1 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 2
\end{array}\right)
$$

$D_{6}^{2}(t)=6 t-10 ;$

$$
A_{6}^{3}(t)=\left(\begin{array}{ccccccc}
2 t & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 2 & -1 & 0 & 0 & 0 & 0 \\
-1 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 2
\end{array}\right)
$$

$D_{6}^{3}(t)=6 t-18 ;$

$$
A_{7}^{2}(t)=\left(\begin{array}{cccccccc}
2 t & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 2
\end{array}\right)
$$

$D_{7}^{2}(t)=4 t-12 ;$

$$
A_{7}^{3}(t)=\left(\begin{array}{cccccccc}
2 t & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 2
\end{array}\right)
$$

$D_{7}^{3}(t)=4 t-24 ;$

$$
A_{7}^{4}(t)=\left(\begin{array}{cccccccc}
2 t & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 2
\end{array}\right)
$$

$$
D_{7}^{4}(t)=4 t-15
$$

$$
A_{7}^{5}(t)=\left(\begin{array}{cccccccc}
2 t & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 2
\end{array}\right)
$$

$$
D_{7}^{5}(t)=4 t-8
$$

$$
A_{7}^{7}(t)=\left(\begin{array}{cccccccc}
2 t & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 2
\end{array}\right)
$$

$$
D_{7}^{7}(t)=4 t-7
$$

$$
A_{8}^{1}(t)=\left(\begin{array}{ccccccccc}
2 t & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

$$
D_{8}^{1}(t)=2 t-4
$$

$$
A_{8}^{2}(t)=\left(\begin{array}{ccccccccc}
2 t & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

$D_{8}^{2}(t)=2 t-14 ;$

$$
A_{8}^{3}(t)=\left(\begin{array}{ccccccccc}
2 t & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

$$
D_{8}^{3}(t)=2 t-30
$$

$$
A_{8}^{4}(t)=\left(\begin{array}{ccccccccc}
2 t & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

$$
D_{8}^{4}(t)=2 t-20
$$

$$
A_{8}^{5}(t)=\left(\begin{array}{ccccccccc}
2 t & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

$D_{8}^{5}(t)=2 t-12 ;$

$$
A_{8}^{6}(t)=\left(\begin{array}{ccccccccc}
2 t & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

$$
D_{8}^{6}(t)=2 t-6
$$

$$
A_{8}^{8}(t)=\left(\begin{array}{ccccccccc}
2 t & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

$D_{8}^{8}(t)=2 t-8$.
It follows directly from the quantities of determinants of the above matrices the validity of Theorems $1-3$.

References

[1] Bondarenko V. M., Pereguda Yu. M. On P-numbers of quadratic forms // Proc. of Institute of Mathematics of NAN of Ukraine /Geometry, Topology, and their Applications/. - 2009. - 6, no. 2. - P. 474-477.
[2] Bondarenko V. M., Bondarenko V. V., Pereguda Yu. M. Local deformations of positive-definite quadratic forms // Ukrainian Math. J. - 2012. - 64, no. 7. - P. 1019 - 1035 (in Russian).
[3] Bondarenko V. M. On types of local deformations of quadratic forms // Algebra Discrete Math. - 2014. - 18, no. 2. - P. 163-170.
[4] Gabriel P. Unzerlegbare Darstellungen // Manuscripta Math. - 1972. 6. - P. $71-103$.

