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Transversality and Lipschitz-Fredholm
maps

We study transversality for Lipschitz-Fredholm maps in the context of
bounded Fr�echet manifolds. We show that the set of all Lipschitz-Fredholm
maps of a �xed index between Fr�echet spaces has the transverse stability
property. We give a straightforward extension of the Smale transversality
theorem by using the generalized Sard's theorem for this category of man-
ifolds. We also provide an answer to the well known problem concerning
the existence of a submanifold structure on the preimage of a transversal
submanifold.

Âèâ÷à¹òüñÿ ïîíÿòòÿ òðàíñâåðñàëüíîñòi âiäîáðàæåíü Ëiïøèöà-
Ôðåäãîëüìà ó êîíòåêñòi îáìåæåíèõ ìíîãîâèäiâ Ôðåøå. Äîâåäåíî, ùî
ìíîæèíà âñiõ âiäîáðàæåíü Ëiïøèöà-Ôðåäãîëüìà ôiêñîâàíîãî iíäåêñó
ìiæ ïðîñòîðàìè Ôðåøå ìà¹ âëàñòèâiñòü ñòiéêîñòi òðàíñâåðñàëüíèõ
ïåðåòèíiâ. Äàíî ïðÿìå óçàãàëüíåííÿ òåîðåìè Ñìåéëà ïðî òðàíñ-
âåðñàëüíiñòü, äëÿ äîâåäåííÿ ÿêîãî âèêîðèñòîâó¹òüñÿ óçàãàëüíåííÿ
òåîðåìè Ñàðäà íà öþ êàòåãîðiþ ìíîãîâèäiâ. Òàêîæ îòðèìàíî âiä-
ïîâiäü íà âiäîìå ïèòàííÿ ïðî iñíóâàííÿ ñòðóêòóðè ïiäìíîãîâèäó íà
ïðîîáðàçi òðàíñâåðñàëüíîãî ïiäìíîãîâèäó.

1. Introduction

In [1] we proved a version of the classical Sard-Smale theorem
for a category of generalized Fr�echet manifolds, bounded (orMCk)
Fr�echet manifolds, introduced in [2]. Our approach to the theo-
rem's generalization is based on the assumption that Fredholm
operators need to be globally Lipschitz. A reason for this interest
is that there exists an appropriate topology on L(E,F ), the space
of all linear globally Lipschitz maps between Fr�echet spaces E and
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F , that leads to the openness of the set of linear isomorphisms in
L(E,F ), [1, Proposition 2.2]. This result in turn yields the open-
ness of the collection of Fredholm operators in L(E,F ), [1, Theo-
rem 3.2]. The other reason is that Lipschitzness is consistent with
the notion of di�erentiability, bounded (or MCk-) di�erentiabil-
ity, that we apply. If E,F are Fr�echet spaces and if U is an open
subset of E, a map f : U → F is called bounded (or MC1-) dif-
ferentiable if it is Keller-di�erentiable, the directional derivative
d f(p) belongs to L(E,F ) for all p ∈ U , and the induced map
d f : U → L(E,F ) is continuous. Thus, we can naturally de�ne
the index of a Fredholm map between manifolds.
We should point out that the mentioned results stems from the

essential fact that under a certain condition we can endow the
space L(E,F ) with a topological group structure. Also, the group
of automorphisms of a Fr�echet space E, Aut(E), is open in L(E,E)
[3, Proposition 2.1]. But, in general, the group of automorphisms
of a Fr�echet space does not admit a non-trivial topological group
structure. Thus, without some restrictions it would be impossible
to establish openness of sets of linear isomorphisms and Fredholm
operators. This is a major obstruction in developing the Fredholm
theory for Fr�echet spaces.
A crucial step in the proof of an in�nite dimensional version

of Sard's theorem is that, roughly speaking, for a Fredholm map
f : M → N of manifolds, at each point p ∈ M , we may �nd local
charts (p ∈ U ⊆ M,φ) and (f(p) ∈ V ⊆ N,ψ) such that in the
charts f has a representation of the form f(u, v) = (u, η(u, v)),
where η : φ(U) → Rn is a smooth map. This is a consequence
of an inverse function theorem. One of the main signi�cance of
the category of bounded Fr�echet manifolds is the availability of
an inverse function theorem in the sense of Nash and Moser [2,
Theorem 4.7]. However, the bounded di�erentiability is strong
and in some cases the class of bounded maps can be quite small,
e.g. when the identity component of L(E,F ) contains only the
zero map [3, Remark 2.16].
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We have argued that why we have utilized this particular cat-
egory of Fr�echet manifolds. A salient example of these manifolds
is the space of all smooth sections of a �ber bundle over closed or
non-compact manifolds ( [2, Theorem 3.34]). On the other hand,
it turns out that these generalized manifolds can surpass the ge-
ometry of Fr�echet manifolds. On these manifold we are able to
give a precise analytic meaning to some essential geometric objects
(such as connection maps, vector �elds and integral curves), [4].
Therefore, we would expect their applications to problems in global
analysis.
The present work studies the di�erential topology of Lipschitz-

Fredholm maps in the bounded Fr�echet setting. We show that
the set of Lipschitz-Fredholm operators of index l between Fr�echet
spaces E and F is open in the space of linear globally Lipschitz
maps endowed with the �ne topology (Proposition 3.5). We say
that a set of maps has the transverse stability property for the �ne
topology if maps in a �ne neighborhood of a given map have the
same transversality property i.e. if f : E → F is a map transversal
to a closed subspace F of F , then any map in a �ne neighbor-
hood of f is transversal to F. We then prove that the set of all
Lipschitz-Fredholm maps of a �xed index between Fr�echet spaces
has the transverse stability property (Theorem 3.6). We also study
transversality for Lipschitz-Fredholm maps between manifolds. We
give a straightforward generalization of the Smale transversality
theorem ( [5, Theorem 3.1]) by using our generalized Sard's the-
orem (Theorem 3.9). Finally, we prove that if f : M → N is an
MCk Lipschitz-Fredholm map of manifolds which is transversal to
a �nite dimensional submanifold A of N , then f−1(A) is a sub-
manifold (Theorem 4.2).
We stress that these results can not be proved without strong

restrictions. However, the basic concepts of in�nite dimensional
di�erential topology such as submanifold and transversality can
be simply come over from the Banach setting.
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Our motivation for the present work, in the light of [4], lay in
the desire to develop transversality tools for the degree theory, in-
cluding the Leray-Schauder degree, for Lipschitz-Fredholm maps,
to derive applications to the study of solutions to systems of non-
linear partial di�erential or integral equations on spaces of smooth
sections which are not linear.

2. Preliminaries

We shall recall the required de�nitions from the category of
MCk manifolds brie�y but in a self-contained way for the conve-
nience of the reader, which also give us the opportunity to establish
our notations for the rest of the paper. For more studies we refer
to [1, 2, 4].
Let (F, d) be a Fr�echet space whose topology is de�ned by a

complete translational-invariant metric d. A metric with abso-
lutely convex balls will be called a standard metric. Every Fr�echet
space admits a standard metric which de�nes its topology. We
shall always de�ne the topology of Fr�echet spaces with this type
of metrics.
Let (E, g) and (F, d) be Fr�echet spaces and let Lg,d(E,F ) be

the set of all linear maps L : E → F such that

Lip(L)g,d := sup
x∈E\{0}

d(L(x), 0)

g(x, 0)
<∞.

The transversal-invariant metric

Dg,d(L,H) = Lip(L−H)g,d (2.1)

on Lg,d(E,F ) turns it into an Abelian topological group ( [1, Re-
mark 2.1]). A map ϕ ∈ Lg,d(E,F ) is called Lipschitz-Fredholm
operator if its kernel has �nite dimension and its image is closed
and has �nite co-dimension. The index of ϕ, Indϕ, is de�ned by
Indϕ = dim kerϕ− codim Imgϕ. We denote by LF(E,F ) the set
of all Lipschitz-Fredholm operators, and by LFl(E,F ) the subset
of LF(E,F ) consisting of those operators of index l.
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Proposition 2.1. [1, Proposition 2.2] The set of linear iso-
morphisms from E into F , Iso (E,F ), is open in Lg,d(E,F ) with
respect to the topology induced by the Metric (2.1).

Theorem 2.2. [1, Theorem 3.2] LF(E,F ) is open in Lg,d(E,F )
with respect to the topology de�ned by the metric (2.1). Further-
more, the function T → IndT is continuous on LF(E,F ), hence
constant on connected components of LF(E,F ).

A subset G of a Fr�echet space F is called topologically comple-
mented (or it splits in F ), if F is homeomorphic to the topological
direct sum G ⊕ H, where H is a subspace of F . We call H a
topological complement of G in F .

Theorem 2.3. [2, Theorem 3.14] Let E be a Fr�echet space. Then

(1) Every �nite-dimensional subspace of E is closed.
(2) Every closed subspace G ⊂ E with

codim(G) = dim(E/G) <∞

is topologically complemented in E.
(3) Every �nite-dimensional subspace of E is topologically comple-

mented.
(4) A linear subspace G of E has a topological complement H if

and only if there exists a continuous projection Pr of E onto
H, see [6].

Let E,F be Fr�echet spaces, U an open subset of E, and

P : U → F

a continuous map. Let CL(E,F ) be the space of all continuous
linear maps from E to F topologized by the compact-open topol-
ogy. We say P is di�erentiable at the point p ∈ U if the directional
derivative dP (p) exists in all directions h ∈ E. If P is di�eren-
tiable at all points p ∈ U , if dP (p) : U → CL(E,F ) is continuous
for all p ∈ U and if the induced map

P ′ : U × E → F, (u, h) 7→ dP (u)h
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is continuous in the product topology, then we say that P is Keller-
di�erentiable. We de�ne P (k+1) : U × Ek+1 → F in the obvious
inductive fashion.
If P is Keller-di�erentiable, dP (p) ∈ Lg,d(E,F ) for all p ∈ U ,

and the induced map dP (p) : U → Lg,d(E,F ) is continuous, then
P is called bounded di�erentiable. We say P is MC0 and write
P 0 = P if it is continuous. We say P is an MC1 and write P (1) =
P ′ if it is bounded di�erentiable. Let Lg,d(E,F )0 be the connected
component of Lg,d(E,F ) containing the zero map. If P is bounded
di�erentiable and if V ⊆ U is a connected open neighborhood
of x0 ∈ U , then P ′(V ) is connected and hence contained in the
connected component P ′(x0)+Lg,d(E,F )0 of P

′(x0) in Lg,d(E,F ).
Thus, the map Qx0 : V → Lg,d(E,F )0 de�ned by

Qx0(y) = P ′(y)− P ′(x0)

is again a map between subsets of Fr�echet spaces. This enables a
recursive de�nition: if P is MC1 and V can be chosen for each
x0 ∈ U such that Qx0 : V → Lg,d(E,F )0 is MCk−1, then P is

called an MCk-map. We make a piecewise de�nition of P (k) by

P (k) |V := (Qx0)(k−1) for x0 and V as before. The map P is MC∞

(or smooth) if it is MCk for all k ∈ N0. We shall denote the
derivative of P at p by DP (p). Note that MCk-di�erentiability
implies the usual Ck-di�erentiability for maps of �nite dimensional
manifolds.
Within this framework we can de�ne MCk Fr�echet manifolds,

MCk-maps of manifolds and tangent bundle over MCk manifolds
in obvious fashion way. We assume that manifolds are connected
and second countable.
Let f : M → N (k = 1) be an MCk-map of manifolds. We

denote by Txf : TxM → Tf(x)N the tangent map of f at x ∈ M
from the tangent space TxM to the tangent space Tf(x)N . We
say that f is an immersion (resp. submersion) provided Txf is
injective (resp. surjective) and the range Img(Txf) (resp. the
kernel ker(Txf)) splits in Tf(x)N (resp. TxM) for any x ∈ M .
An injective immersion f : M → N which gives an isomorphism
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onto a submanifold of N is called an embedding. A point x ∈ M
is called a regular point if D f(x) : TxM −→ Tf(x)N is surjective.
The corresponding value f(x) is a regular value. Points and values
other than regular are called critical points and values, respectively.
Let M and N be MCk manifolds, k = 1. A Lipschitz-Fredholm

map is an MC1-map f : M → N such that for each x ∈ M the
derivative D f(x) : TxM −→ Tf(x)N is a Lipschitz-Fredholm oper-
ator. The index of f , denoted by Ind f , is de�ned to be the index
of D f(x) for some x. Since f is MCk and M is connected in the
light of Theorem 2.2 the de�nition does not depend on the choice
of x.

3. Transversality and openness

Let F1 be a linear closed subspace of a Fr�echet space F that
splits in F . Given MCk manifold M modelled on F , a subset
M1 of M is a submanifold of M modelled on F1 provided there
is MCk-atlas {(Ui, φi)}i∈I on M that induces an atlas on M1, i.e.
for any i ∈ I there are open subsets Vi,Wi of F, F1 such that
φi(Ui) = Vi⊕Wi and φi(Ui∩M1) = Vi⊕{0} is open in F1. We say
that M1 is a submanifold of Banach type if F1 is a Banach space,
and a submanifold of �nite type if F1 = Rn for some n ∈ N.
Let C(E,R+) be the set of all continuous functions from E into

R+, h ∈ Lg,d(E,F ) and ε ∈ C(E,R+). A map f ∈ Lg,d(E,F ) is
called a ε-approximation to h if d(f(x), h(x)) < ε(x) for all x ∈ E,
we write d(f, h) < ε for short. If we take the ε-approximation to h
to be a neighborhood of h in the set Lg,d(E,F ), then we obtain a
topology. This topology is called the �ne topology and we denote
the resulting space by L0

fine(E,F ).

Let M and N be MCk manifolds modelled on Fr�echet spaces
E and F , respectively. Let MCk(M,N), 1 5 k 5 ∞, be the set
of MCk-maps from M into N . Two maps f, h ∈MCk(M,N) are
said to be k-equivalent at x ∈ M if T kx f = T kxh, where T

k is the
k-th tangent map. We de�ne the k-jet of f at x, jkxf , to be the
equivalence class of f . Let dk be a �ber metric on the tangent
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space T kxM that induces a Fr�echet topology which is isomorphic
to E. We describe the �ne topology of order k on MCk(M,N) as
follows. Let ϕ ∈ MCk(M,N) and Ω := {Vi}i∈I be a locally �nite
cover of M . Let εi : Vi → R+ be continuous for all i ∈ I. Then,
the sets

Θ(ϕ, Vi, εi) := {φ ∈MCk(M,N) | dk(jkxφ, jkxϕ) < εi(x), x ∈ Vi}

constitute a basis for �ne open neighborhoods of ϕ. In this case
we say that φ in a �ne neighborhood of ϕ is an MCk �ne approx-
imation to ϕ.

Lemma 3.1. The �ne topology is �ner than the topology induced
by the Metric (2.1).

Proof. We must show that if N(f, δ) is a δ-neighborhood of f , then
we can �nd ε > 0 such that if Dg,d(f, h) < ε, then h ∈ N(f, δ).
Given a map h ∈ Lg,d(E,F ), let

ε := min

{
1, inf
x∈E\{0}

δ(x)

g(h(x), 0)

}
.

Now suppose Dg,d(f, h) < ε, then we can easily see that d(f, h) < δ
and hence h ∈ N(f, δ). �

Remark 3.2. We know that (Proposition 2.1) Iso(E,F ) is open in
Lg,d(E,F ) endowed with the topology induced by the metric (2.1).
By the preceding lemma the �ne topology is �ner than the metric
topology, thereby, Iso(E,F ) is open in L0

fine(E,F ).

De�nition 3.3. Let f : E → F be a Lipschitz-Fredholm operator
of Fr�echet spaces. We say that f is transversal to a closed subspace
F0 ⊆ F and write f t F0 if

(1) Img(f) + F0 = F , and
(2) either F0 splits in F or f−1(F0) splits in E.

The following result characterizes the transversality of Lipschitz-
Fredholm operators.
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Proposition 3.4. Let ϕ ∈ LFl(E,F ). Suppose F0 ⊆ F is a closed
subspace such that Img(ϕ) + F0 = F . Then ϕ t F0 if and only if
there are closed subspace F1 ⊆ F and E0 ⊆ E with F = F0 ⊕ F1

and E = E0⊕ (E1 := ϕ−1(F1)) such that ϕ1 := ϕ|E1 ∈ Iso(E1, F1).

Proof. Assume that such a closed subspace F0 is given and ϕ t F0.
(Img(ϕ) ∩ F0) splits in F0 because

m = dim(F0/ Img(ϕ)) 5 dim(F/ Img(ϕ)) <∞

and hence by Theorem 2.3(2) there exists a subspace F ⊆ F0 of
dimension m such that F0 = (Img(ϕ) ∩ F0)⊕ F. Since

Img(ϕ) ∩ F ⊆ Img(ϕ) ∩ F0,

it follows that Img(ϕ) ∩ F = {0}. Also,

Img(ϕ) + F = (Img(ϕ) + (Img(ϕ) ∩ F0)) + F
= Img(ϕ) + F0 = F.

Thus, Img(ϕ)⊕ F = F , therefore,

codim Img(ϕ) = m, dim ker(ϕ) = l +m.

Moreover, there exists a closed subspace E ⊆ E such that

E = ker(ϕ)⊕ E.

The operator Φ := ϕ|E ∈ L(E, Img(ϕ)) is injective onto Img(ϕ),
hence, by virtue of open mapping theorem is a homeomorphism
and therefore Φ ∈ Iso(E, Img(ϕ)). Let

E0 := Φ−1(Img(ϕ) ∩ F0) ⊆ E,

then E0 = ϕ−1(Img(ϕ) ∩ F0) = ker(ϕ)⊕ E0.
As E0 is complemented in E0, there is a continuous projection

Pr1 of E0 onto E0 (see Theorem 2.3(4)). If E0 is complemented
in E, then there exists a continuous projection Pr2 of E onto E0.
Thus, Pr1 ◦ Pr2 is a continuous projection from E to E0 and its
restriction to E is a again continuous projection onto E0, thereby,
E0 is complemented in E. This means there is a closed subspace
E1 ⊆ E (which is also closed in E) such that E = E1 ⊕ E0.
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By the same argument we have, if F0 is complemented in F , then
(Img(ϕ) ∩ F0) is complemented in Img(ϕ) because (Img(ϕ) ∩ F0)
is complemented in F0. This means there is a closed subspace
F1 ⊆ Img(ϕ) (which is also closed in F ) such that

Img(ϕ) = F1 ⊕ (Img(ϕ) ∩ F0).

Therefore, we have

E = ker (ϕ)⊕ E0 ⊕ E1 = E0 ⊕ E1,

F = (Img(ϕ) ∩ F0)⊕ F⊕ F1 = F0 ⊕ F1

and ϕ1 = Φ|E1 ∈ Iso(E1, F1). Moreover, E1 = ϕ−1
1 (F1). The

converse is obvious. �

Proposition 3.5. LFl(E,F ) is open in L0
fine(E,F ).

Proof. Let ϕ ∈ LFl(E,F ). We show that there exists ε > 0
such that any φ ∈ Lg,d(E,F ) which is ε-approximation to ϕ is
a Lipschitz-Fredholm operator of index l.
First we prove for the case l = 0, then we show that the general

case can be reduced to the case l = 0. Let L : E → F (called a
corrector) be a linear globally Lipschitz map having �nite dimen-
sional range such that K := L+ϕ is an isomorphism. Such a linear
map always exists. Indeed, L can be any linear globally Lipschitz
map from E into F such that

ker(L)⊕ ker(ϕ) = E, Img(L)⊕ Img(ϕ) = F.

Choose ε ∈ (0, 1/2Lip(K−1)) small enough and suppose that φ,L ∈
L(E,F ) are ε-approximation to ϕε-approximation to ϕ, and the
dimension of the image of L is �nite. Then K = L + φ satis�es

d(K(x),K(x)) < 1/Lip(K−1),

for all x ∈ E, thus K is an isomorphism (see Remark 3.2) and
hence φ ∈ LF(E,F ) and Ind(φ) = 0.
Now suppose l > 0, de�ne the linear globally Lipschitz operators

ϕl, φl : E → F × Rl by ϕl(x) := (ϕ(x), 0) and φl(x) := (φ(x), 0).
Then ϕl is a Lipschitz-Fredholm operator of index 0. By the above
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argument φl is a Lipschitz-Fredholm operator of index 0 and hence
φ is a Lipschitz-Fredholm operator of index l. Likewise, the case
l < 0 can be proved. �

Theorem 3.6. Let ϕ ∈ LFl(E,F ), and suppose that F0 ⊆ F
is closed and ϕ t F0. Then any φ ∈ Lg,d(E,F ) in some �ne
neighborhood of ϕ is transversal to F0.

Proof. By Proposition 3.4 there exist closed subsets

E0 ⊆ E, F1 ⊆ F, E1 := ϕ−1(F1)

such that

F = F0 ⊕ F1, E = E0 ⊕ E1, ϕ1 := ϕ|E1 ∈ Iso(E1, F1).

There is a continuous function δ(x) such that every linear globally
Lipschitz map ψ : E1 → F1 which is δ-approximation to ϕ1 is an
isomorphism (see Remark 3.2). Let π : F → F1 be the projection
given by π(f0 + f1) = f1, and let κ = IdF − π. It is immediate
that π is linear and globally Lipschitz and Img(κ) = F0. Choose
ε ∈ (0, δ/Lip(π)) small enough, in view of Proposition 3.5, we
can assume that each φ ∈ L(E,F ) which is ε-approximation to ϕ
belongs to LFl(E,F ).
Now we show that each such φ is transversal to F0. Let

Φ := (π ◦ ϕ)|E1 ∈ L(E1, F1).

Then d(Φ, ϕ1) 5 Lip(π)ε < δ and so Φ ∈ Iso(E1, F1) (see Re-
mark 3.2). Thus, we only need to prove F = Img(φ) + F0. Let
f ∈ F = F0 ⊕ F1 so f = f0 + f1, where fi ∈ Fi(i = 0, 1).
We have Φ−1(f1) = e1 ∈ E1 ⊆ E, x = φ(e1) ∈ Img(φ), and
y = f0 − κ(x) ∈ F0. Whence,

x+ y = π(x) + κ(x) + f0 − κ(x) = f0 + Φ(e1) = f0 + f1 = f,

therefore F = Img(φ) + F0. �

Now we prove the transversality theorem for MCk-Lipschitz-
Fredholm maps. It is indeed a consequence of the Sard's theorem
for these maps, [1, Theorem 4.3]. A careful reading of the proof of
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the theorem shows that the minor assumption of endowing man-
ifolds with compatible metrics is super�uous and the theorem re-
mains valid for manifolds without compatible metrics. Thus, the
statement of the theorem is as follows:

Theorem 3.7 (Sard's Theorem). Let M and N be MCk man-
ifolds, k = 1. If f : M → N is an MCk-Lipschitz-Fredholm map
with k > max{Ind f, 0}. Then, the set of regular values of f is
residual in N .

De�nition 3.8. Let f : M → N be a Lipschitz-Fredholm map
and let ı : A ↪→ N be an MC1 embedding of a �nite dimensional
manifold A. We say that f is transversal to ı and write f t ı if
D f(x)(TxM) + D ı(y)(TyA) = Tf(x)N , whenever f(x) = ı(y). It
is also said that the submanifold A := ı(A) is transversal to f .

The following theorem is the analogous of the Smale transver-
sality, [5, Theorem 3.1]. Its proof is just a slight modi�cation of
the argument of Smale.

Theorem 3.9. Let M and N be MCk manifolds modelled on
spaces (F, d) and (E, g), respectively. Let f : M → N be an MCk-
Lipschitz-Fredholm map and let ı : A ↪→ N be an MC1-embedding
of a �nite dimension manifold A with k > max{Ind f + dimA, 0}.
Then there exists an MC1 �ne approximation g of ı such that g is
embedding and f t g. Furthermore, Suppose S is a closed subset
of A and f t ı(S), then g can be chosen so that ı = g on S.

Proof. Since manifolds are second countable we only need to work
in local coordinates. Assume that y ∈ A and n = dim ı(A). Since
ı(A) is an embedded submanifold of �nite type of N , we may �nd
an open neighborhood U ⊂ Rn about y, a chart about ı(y) and a
splitting E = Rn⊕E1 such that ı(y) = ı(y, 0) in the neighborhoods.
Let π2 : E → E1 be the projection onto E1. Let V ⊂ U be a
neighborhood of y, and h a smooth real valued function which is 1
on V and 0 outside of U . Since π1 ◦f is locally Fredholm-Lipschitz
it follows by Sard's Theorem (Theorem 3.7) that there is a regular
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value z for π1 ◦ f which is close to 0. Now de�ne

g(y) = h(y)(z, y) + [1− h(y)]ı(y).

It is immediate that f t g on V , and for z su�ciently close to 0,
g is MC1 �ne approximation to ı. The second statement follows
by our de�nition of g. �

4. Transversal submanifolds

We will need the following inverse function theorem.

Theorem 4.1. [2, Theorem 4.7], Inverse Function Theorem for
MCk-maps. Let (E, g) be a Fr�echet space with standard metric g.
Let U ⊂ E be open, x0 ∈ U and f : U ⊂ E → E an MCk-map,
k ≥ 1. If f ′(x0) ∈ Aut (E), then there exists an open neighborhood
V ⊆ U of x0 such that f(V ) is open in E and f |V : V → f(V ) is
an MCk- di�eomorphism.

To avoid some technical complications we consider only mani-
folds without boundary in the sequel.

Theorem 4.2. Let M and N be MCk manifolds modelled on
spaces (F, d) and (E, g), respectively. Suppose that f : M → N
is an MCk-Lipschitz-Fredholm map of index l. Let A be a sub-
manifold of N with dimension m and let ı : A ↪→ N be the in-
clusion. If f is transversal to A, then f−1(A) is a submani-
fold of M of dimension l + m. For all x ∈ f−1(A) we have
Tx(f−1(A)) = (Txf)−1(Tf(x)A).

Proof. If f−1(A) = ∅ the theorem is clearly valid so let us assume
that f−1(A) 6= ∅. Let (ψ,U) be a chart at f(x0) ∈ A in N with
the submanifold property for A. Let U1, U2 be open subsets of
E,Rm such that ψ(U) = U1 ⊕ U2, ψ(U ∩ A) = U1 ⊕ {0}, and
ψ(f(x0)) = (0, 0). Let (V, ϕ) be a chart at x0 in M such that
ϕ(x0) = 0, ϕ : V → ϕ(V ) ⊂ F and f(V ) ⊂ U . Let

f := ψ ◦ f ◦ ϕ−1 : ϕ(V )→ ψ(U)
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be the local representative of f . Then f(0) = (0, 0) and by hy-
pothesis f is a Lipschitz-Fredholm map, in particular, D f(0) ∈
LFl(F,E). The tangent map Tf(x0)ı : Tf(x0)A → Tf(x0)N is in-
jective with closed split image. Hence Tf(x0)A can be identi�ed
with a closed split subspace of Tf(x0)N . Thus D f(x0) is transver-
sal to Tf(x0)A. Therefore, keeping in the mind the de�nition of
the di�erential in terms of tangent maps, D f(0) is transversal
to Tψ(Tf(x0)A) = U1 ⊕ {0} =: E1. Then, by virtue of Proposi-
tion 3.4 there are closed subsets F1 ⊂ F , E0 ⊂ E such that F =
F1⊕(F0 := D f(0)(E0)), E = E1⊕E0, ∆ := D f(0) |F0∈ Iso(F0, E0)
and ∆1 := D f(0) |F1∈ Iso(F1, E1). Moreover, dimF0 = m+ l.
Consider the projection π : F → F1 given by

π(f0 + f1) = f1.

Since F1 and F0 are closed and complementary it follows that
obviously the map κ = IdF − π is the unique projection with
Img (κ) = F0 and ker(κ) = F1. Let π1 : E → E0 be the projection
given by π1(e0 + e1) = e0. Then, Π := ∆−1 ◦ π1 ◦ D f(0) is a pro-
jection with Img (Π) = F0 and F1 ⊆ ker (Π). Since F = F0 ⊕ F1,
it follows that F1 = ker (Π) and therefore Π = κ.
Now de�ne the map H : ϕ(V )→ F of class MCk by

H(x) = π(x) + ∆−1 ◦ π1 ◦ f(x).

We obtain that H(0) = 0 and

DH(0) = π + ∆−1 ◦ π1 ◦D f(0) = π + κ = IdF .

If we choose V small enough, then by Theorem 4.1 H is an MCk-
di�eomorphism onto an open neighborhood U ⊆ ψ(U) of ψ(f(x0) =
(0, 0). Let Φ = H ◦ ϕ−1, then (Φ,F0) is a chart for x0 on V with
the submanifold property. Because we have

x ∈ f−1(A) ⇔ ψ(f(x)) ∈ U1 ⊕ {0} ⇔ f(ϕ(x)) ∈ U1 ⊕ {0}
⇔ H(ϕ(x)) ∈ F0.
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Let p ∈ A, γ : R → M a smooth curve sending zero to p, and j1
pγ

the 1-jet of γ at p.

j1
pγ ∈ TpA⇔ j1

ϕ(p)(ϕ ◦ γ) = Tϕ(j1
pγ) ∈ ϕ(V )× F, ϕ ◦ γ ⊂ ϕ(V )

⇔ T f(j1
ϕ(p)(ϕ ◦ γ)) ∈ ψ(U)× E

⇔ f(ϕ ◦ γ) = ψ(f ◦ γ) ⊂ ψ(U)

⇔ d

dt
ψ(f ◦ γ) |t=0= v =

d

dt
ψ([ψ−1(ψ(f(x)) + tv)]),

ψ(f ◦ γ) ⊂ ψ(U)

⇔ j1
f(p)(f ◦ γ) = j1

p [ψ−1(ψ(f(p)) + tv)] ∈ Tf(p)A

⇔ j1
pγ ∈ (Tpf)−1(Tf(p)A)

This proves the second assertion. �

If manifolds have nonempty boundary we just need to modify
the proof by extending the considered maps.

Corollary 4.3. Let f : M → N be an MCk-Lipschitz-Fredholm
map of index l. If y is a regular value of f , then the level set
f−1(y) is a submanifold of dimension l and its tangent space at x
is kerTxf .

Proof. The set {y} is transversal to f so the result follows from
the theorem. �

Corollary 4.4. Let f : M × N → O be a smooth Lipschitz-
Fredholm map of manifolds, we write fx := f(·, x), and let A be a
closed �nite dimension submanifold of O. Assume that f t A and
for all (m,n) ∈ f−1

n (A) the composition

(TmM
D fn(m)−−−−−→ Tfn(m)O

Q−→ Tfn(m)O/TnS)

is Lipschitz-Fredholm. Then there is a residual set of n in O for
which the map fn : M → O is transversal to A.

Proof. By hypothesis the kernel of Q ◦ D f(x) is complemented
for all x ∈ f−1(A). By the preceding theorem B := f−1(A) is a
Fr�echet submanifold. The map f |B is smooth Lipschitz-Fredholm,
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therefore by Sard's theorem there is a residual set of regular values
of it in O. If n ∈ N is a regular value of f |B, then fn is transversal
to A. �
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