Збірник праць Інституту математики НАН України 2017, т. 14, № 2, 163–171

УДК 539.3

Свободные колебания цилиндрической оболочки переменной толщины

Ю.В. Троценко *

Институт математики НАН Украины, Kues; trots@imath.kiev.ua

An algorithm of finding the eigen frequencies and modes of a cylindrical shell with a variable thickness is proposed. An approximate solution of the corresponding spectral problem is constructed by employing a variational method. The solutions are analysed and compared with existing ones, which were obtained by a direct numerical integration.

Запропоновано алгоритм визначення частот і форм власних коливань циліндричної оболонки змінної товщини. Наближений розв'язок відповідної спектральної задачі будується на основі варіаційного методу. Проведено аналіз розв'язків та їх порівняння з існуючими розв'язками, які отримані шляхом чисельного інтегрування вихідних рівнянь.

Введение

В настоящей работе рассматривается задача о собственных колебаниях тонкостенной круговой цилиндрической оболочки длиной l, радиусом R_0 и толщиной h(s), непрерывно изменяющейся по образующей. Изменения толщины оболочки в окружном направлении не происходят.

Для решения подобных спектральных задач в литературе нашли пирокое применение различного рода численные методы [1], [2]. Так в работе [2] предлагается разбить интервал интегрирования исходных уравнений на конечное число подинтервалов. При этом зависимость h = h(s) заменяется кусочно-постоянной функцией. Решение исходной задачи сводится к построению общих решений уравнений для каждого участка с постоянной толщиной оболочки и подстановкой

^{*}Работа выполнена при частичной поддержке НИР № 0117U004077

[©] Троценко Ю.В., 2017

этих решений в граничные условия на торцах оболочки и в условия сопряжения решений на смежных границах введенных подобластей. Условия сопряжения обеспечивают непрерывность геометрических и силовых факторов. В результате этого решение спектральной задачи сводится к решению системы алгебраических уравнений, порядок которой зависит от числа разбиений интервала интегрирования исходных уравнений. Основной трудностью при таком подходе является построение общих интегралов в подобластях, структура которых зависит от корней соответствующего характеристического уравнения, меняющихся при изменении параметров оболочки и частоты собственных колебаний.

Эффективность применения вариационного метода к решению спектральных задач теории оболочек постоянной толщины продемонстрирована в работах [3], [4]. В данной работе применяется метод Ритца к решению задачи для цилиндрической оболочки переменной толщины.

1 Постановка задачи

В дальнейшем изучаются установившиеся гармонические поперечные колебания оболочки с частотой ω . В этом случае компоненты вектора перемещений оболочки $\{u(s,\varphi,t), v(s,\varphi,t), w(s,\varphi,t)\}$ представляются в виде

$$u(s, \varphi, t) = u(s) \cos n\varphi \sin \omega t,$$

$$v(s, \varphi, t) = v(s) \sin n\varphi \sin \omega t,$$

$$w(s, \varphi, t) = w(s) \cos n\varphi \sin \omega t,$$

(1)

где n – число волн в окружном направлении; s, φ – координаты точки на срединной поверхности оболочки; t – время.

В рамках технической теории оболочек система уравнений в безразмерных величинах для определения частот и форм колебаний тонкой оболочки имеет вид [5]

$$-\frac{d}{ds}\left\{h\left[\frac{du}{ds}+\nu(nv+w)\right]\right\}-\frac{(1-\nu)}{2}h\left(n\frac{dv}{ds}-n^{2}u\right)-\lambda^{2}hu=0;\\-\frac{(1-\nu)}{2}\frac{d}{ds}\left[h\left(\frac{dv}{ds}-nu\right)\right]+h\left(n^{2}v+nw+\nu n\frac{du}{ds}\right)-\lambda^{2}hv=0;\\-h\left(nv+w+\nu\frac{du}{ds}\right)+\frac{1}{12}\frac{d^{2}}{ds^{2}}\left[h^{3}\left(\nu n^{2}w-\frac{d^{2}w}{ds^{2}}\right)\right]+\frac{n^{2}(1-\nu)}{6}\times$$

$$\times \frac{d}{ds} \left(h^3 \frac{dw}{ds} \right) - \frac{1}{12} h^3 \left(n^4 w - \nu n^2 \frac{d^2 w}{ds^2} \right) - \lambda^2 h w = 0;$$

$$\lambda^2 = \frac{\rho R_0^2 (1 - \nu^2) \omega^2}{E},$$
(2)

где $E,\,\nu,\,\rho$ – соответственно модуль упругости, коэффициент Пуассона и плотность материала оболочки.

К уравнениям (2) необходимо добавить еще соответствующие граничные условия, выражающие собой условия упругого закрепления торцов оболочки.

2 Вариационная формулировка задачи

Для формулировки вариационной задачи воспользуемся принципом возможных перемещений

$$\delta \Pi - \delta A = 0, \tag{3}$$

где $\delta\Pi$ — вариация потенциальной энергии оболочки, δA — работа внешних сил на возможных перемещениях.

Общую потенциальную энергию деформации оболочки определяем по формуле [6]

$$\Pi = \frac{E}{2(1-\nu)} \iint_{\Sigma} \left[(\varepsilon_1 + \varepsilon_2)^2 - 2(1-\nu) \left(\varepsilon_1 \varepsilon_2 - \frac{\omega^2}{4} \right) \right] h d\Sigma + + \frac{E\nu^2}{24(1-\nu^2)} \iint_{\Sigma} \left[(\varkappa_1 + \varkappa_2)^2 - 2(1-\nu) (\varkappa_1 \varkappa_2 - \tau^2) \right] h^3 d\Sigma.$$
(4)

Здесь Σ – срединная поверхность оболочки, ε_1 , ε_2 , ω , \varkappa_1 , \varkappa_2 и τ – компоненты деформации срединной поверхности оболочки.

Формула (4) справедлива для оболочки как с постоянной, так и с переменной толщиной стенки.

В соответствии с принципом Д'Аламбера работа внешних сил на возможных перемещениях имеет вид

$$\delta A = -\rho \iint_{\Sigma} \left(\frac{\partial^2 u}{\partial t^2} \delta u + \frac{\partial^2 v}{\partial t^2} \delta v + \frac{\partial^2 w}{\partial t^2} \delta w \right) h d\Sigma.$$
 (5)

После отделения угловой координаты и перехода к безразмерным величинам вариационное уравнение (3) можно представить в следующей форме:

$$\frac{1}{2}\delta\left\{\int_{0}^{l}h\left[(\varepsilon_{1}+\varepsilon_{2})^{2}-2(1-\nu)\left(\varepsilon_{1}\varepsilon_{2}-\frac{\omega^{2}}{4}\right)\right]ds+\right.$$
$$\left.+\frac{1}{12}\int_{0}^{l}h^{3}[(\varkappa_{1}+\varkappa_{2})^{2}-2(1-\nu)(\varkappa_{1}\varkappa_{2}-\tau^{2})]ds\right\}-$$
$$\left.-\lambda\int_{0}^{l}h(u\delta u+v\delta v+w\delta w)ds=0,$$

где в рамках технической теории оболочек деформации срединной поверхности оболочки определяются по формулам

$$\varepsilon_1 = \frac{du}{ds}; \quad \varepsilon_2 = nv + w; \quad \omega = -nu + \frac{dv}{ds};$$

$$\varkappa_1 = -\frac{d^2w}{ds^2}; \quad \varkappa_2 = n^2w; \quad \tau = n\frac{dw}{ds}.$$

3 Построение решений

Для решения вариационного уравнения (6) представим функци
и $u(s), v(s), \, w(s)$ в виде отрезков обобщенных рядов

$$u(s) = \sum_{j=1}^{N} x_j U_j(s), \ v(s) = \sum_{j=1}^{N} x_{j+N} V_j(s), \ w(s) = \sum_{j=1}^{N} x_{j+2N} W_j(s).$$
(7)

Здесь x_j $(j = \overline{1, 3N})$ – неопределенные постоянные, U_j , V_j и W_j – системы координатных функций, которые подчинены лишь геометрическим граничным условиям задачи. Силовые граничные условия являются естественными граничными условиями для функционала задачи, и поэтому нет необходимости их априорного выполнения.

В итоге решение исходной задачи сводится к решению спектральной алгебраической задачи

$$(A - \lambda^2 B)\vec{X} = 0, \quad \vec{X} = (x_1, x_2, \dots, x_{3N})$$
 (8)

с симметричными матрицами A и B. Симметричность матрицы A следует из симметричности оператора задачи. Собственные значения задачи (8) являются верхними границами для первых 3N собственных значений рассматриваемой спектральной задачи.

В дальнейшем будем предполагать, что оба края оболочки жестко защемлены. Координатные функции $U_j(s)$, $V_j(s)$ и $W_j(s)$ выберем в форме:

$$U_{j}(s) = V_{j}(s) = s(l-s)P_{j}\left(\frac{2s}{l_{s}}-1\right);$$

$$W_{j}(s) = s^{2}(l-s)^{2}P_{j}\left(\frac{2s}{l_{s}}-1\right); \quad (j = \overline{1, N}).$$
(9)

Здесь $P_j(s)$ – смещенные на единицу по индексу j многочлены Лежандра, вычисление которых и их первых двух производных можно проводить с помощью рекуррентных соотношений

$$P_{j+2}(s) = \frac{1}{j+1} [(2j+1)sP_{j+1}(s) - jP_j(s)],$$

$$P'_{j+2}(s) = sP'_{j+1}(s) + (j+1)P_{j+1}(s),$$

$$P''_{j+2}(s) = sP''_{j+1}(s) + (j+2)P'_{j+1}(s),$$

$$P_1(s) = 1; \quad P_2(s) = s, \quad (j = \overline{1, N-2}).$$
(10)

Для эффективного вычисления элементов матрицы A введем в рассмотрение дифференциальные операторы следующего вида:

$$\begin{split} \Psi_{11}(p,q) &= \frac{dp}{dz}\frac{dq}{dz} + \nu_1 n^2 pq; \quad \Psi_{12}(p,q) = \nu np\frac{dq}{dz} - \nu_1 n\frac{dp}{dz}q; \\ \Psi_{13}(p,q) &= -\nu p\frac{dq}{dz}; \quad \Psi_{23}(p,q) = npq; \quad \Psi_{22}(p,q) = n^2 pq + \nu_1 \frac{dp}{dz}\frac{dq}{dz}; \\ \Psi_{33}(p,q) &= pq + c^2 \bigg[\bigg(\frac{d^2p}{dz^2} - \nu n^2 p \bigg) \frac{d^2q}{dz^2} + \bigg(n^4 p - \nu n^2 \frac{d^2p}{dz^2} \bigg) q + \\ &+ 2 \big(1 - \nu \big) n^2 \frac{dp}{dz} \frac{dq}{dz} \bigg], \quad z = s, \quad c^2 = \frac{h^2(s)}{12R_0^2}, \end{split}$$

где $\nu_1 = (1 - \nu)/2; p$ и q – произвольные функции.

Элементы матриц А и В, которые расположены на главной диа-

гонали и выше ее, будут вычисляться по следующим формулам:

$$a_{i,j} = \int_{0}^{l} h\Psi_{11}(U_j, U_i)rds, \quad a_{i,j+N} = \int_{0}^{l_s} h\Psi_{12}(V_j, U_i)rds,$$
$$a_{i,j+2N} = \int_{0}^{l} h\Psi_{13}(W_j, U_i)rds, \quad a_{i+N,j+N} = \int_{0}^{l} h\Psi_{22}(V_j, V_i)rds,$$
$$a_{i+N,j+2N} = \int_{0}^{l} h\Psi_{23}(W_j, V_i)rds, \quad a_{i+2N,j+2N} = \int_{0}^{l} h\Psi_{33}(W_j, W_i)rds,$$

$$b_{i,j} = \int_{0}^{l} hU_{j}U_{i}rds, \quad b_{i,j+N} = b_{i,j+2N} = b_{i+N,j+2N} = 0,$$

$$b_{i+N,j+N} = \int_{0}^{l} hV_{j}V_{i}rds, \quad b_{i+2N,j+2N} = \int_{0}^{l} hW_{j}W_{i}rds.$$

4 Некоторые результаты расчетов

Приведем некоторые результаты расчета частот и форм собственных колебаний цилиндрической оболочки по предложенному алгоритму, полагая при этом, что толщина оболочки изменяется вдоль образующей по следующему закону

$$h(s) = h_0 \left(1 - a \frac{s}{l} \right),$$

где a – безразмерный параметр изменения толщины оболочки, h_0 – толщина оболочки при s = 0. Все вычисления проводились при $\nu = 0.3$ и $R_o/h_0 = 100$.

В таблице 1 представлены значения первых пяти частот колебаний оболочки λ_i , полученных при $l/R_0 = 10$, n = 2, a = 0.9 в зависимости от числа членов N в разложениях (7). Приведенные результаты расчетов свидетельствуют о достаточно быстрой сходимости последовательностей Ритца (7). При этом обеспечивается устойчивость вычислительного процесса при удержании в разложениях до шестидесяти

Свободные колебания цилиндрической оболочки переменной... 169

N	λ_1	λ_2	λ_3	λ_4	λ_5
10	.03931	.09761	.17204	.25268	.33613
12	.03917	.09731	.17134	.25199	.33446
14	.03909	.09714	.17098	.25164	.33392
16	.03904	.09704	.17078	.25146	.33365
18	.03901	.09698	.17066	.25136	.33350
20	.03899	.09694	.17059	.25130	.33343
22	.03897	.09692	.17055	.25127	.33339
24	.03896	.09690	.17053	.25125	.33336
26	.03895	.09689	.17052	.25124	.33335
28	.03895	.09688	.17051	.25123	.33334
30	.03895	.09688	.17050	.25122	.33334
32	.03894	.09687	.17049	.25122	.33333
$\overline{34}$.03894	.09687	.17049	.25122	.33333

Таблица 1. Значения первых пяти частот колебаний оболочки λ_i , полученных при $l/R_0 = 10$, n = 2, a = 0.9 в зависимости от числа членов N в разложениях (7).

координатных функций без потери точности решения алгебраической системы (8). Это обстоятельство позволяет проводить расчеты частот и форм собственных колебаний с высокой точностью для достаточно широкого диапазона входных параметров оболочки. Используемая подпрограмма для решения обобщенной алгебраической задачи (8) обеспечивает контроль за точностью ее решения и получение всех ее собственных значений и собственных векторв без каких-либо существенных затрат машинного времени.

n/S	4	6	7	8	*
8	.2215	.2182	.2170	.2168	.2147
9	.2164	.2127	.2115	.2112	.2089
10	.2213	.2170	.2158	.2153	.2127

Таблица 2. Значения частот λ первого тона колебаний оболочки для различных значений чисел n, полученных при $l/R_0 = 1$, a = 0.9.

В таблице 2 сравниваются частоты, полученные с использованием численного метода [2] (Ю.Ю. Швейко) при разном количестве S равных по длине участков разбиения оболочки и в настоящей работе

(обозначены звездочкой). При этом считалось, что $l/R_0 = 1$, a = 0.9, а число волн в окружном направлении n варьировалось. Толщина оболочки на каждом из участков считалась постоянной и равной полусумме значений толщин на границах соответствующего участка.

Различие между приведенными данными составляет немногим более 1% и обусловлено по-видимому недостаточным количеством участков разбиения.

Рис. 1. Поведение формы собственных колебаний w в зависимости от параметра a при n = 9 и $l/R_0 = 1$.

Поведение формы собственных колебаний w в зависимости от параметра a при n = 9 и $l/R_0 = 1$ показано на рис. 1. Значение a = 0 соответствует оболочке с постоянной толщиной по ее образующей. Как и следовало ожидать, при увеличении параметра a наблюдается смещение координаты точки максимума формы в сторону уменьшения толщины оболочки. Аналогичная картина наблюдается и для форм колебаний u и v.

Зависимость частоты λ от параметра *a* и числа волн в окружном направлении *n* при $l/R_0 = 1$ представлена на рис. 2.

Таким образом, из приведенных результатов следует, что предложенный в настоящей работе метод расчета собственных частот и форм колебаний цилиндрической оболочки с переменной толщиной по ее образующей обеспечивает необходимую для практических расчетов точность вычислительного процесса. Сопоставление получен-

Рис. 2. Зависимость частоты λ от параметра *a* и числа волн в окружном направлении *n* при $l/R_0 = 1$.

ных расчетных данных с данными, приведенными в работе [2] свидетельствует о достоверности получаемых результатов.

- Григоренко Я. М., Беспалова Е. И., Китайгородский А. Б., Шинкарь А. И. Свободные колебания элементов оболочечных конструкций. — К.: Наук. думка, 1986. — 172 с.
- [2] Швейко Ю. Ю., Брусиловский А. Д. О собственных колебаниях цилиндрических оболочек, подкрепленных поперечными ребрами жесткости // Расчеты на прочность. — 1971. — Вып. 15. — С. 312–327.
- [3] Троценко В. А., Троценко Ю. В. Решение задачи о собственных колебаниях незамкнутой оболочки вращения в условиях ее сингулярного возмущения // Нелінійні коливання. — 2005. — 8, № 3. — С. 415–432.
- [4] Троценко В. А., Троценко Ю. В. Равномерно сходящийся метод Ритца в задаче об осесимметричных колебаниях оболочки вращения в форме купола // Акустичний вісник. — 2008. — 11, № 2. — С. 45–57.
- [5] *Власов В. З.* Общая теория оболочек и ее приложения в технике. М.–Л.: Гостехиздат, 1949. 784 с.
- [6] Новожилов В. В. Теория тонких оболочек. Л.: Судостроение, 1962. — 431 с.