7. Parikh R. On Context-Free Languages// J. of the ACM, 13, #4, 1966. — PP. 570-581.

8. Кривой С.Л. Критерий совместности систем линейных диофантовых уравнений над множеством натуральных чисел// Доповіді НАНУ, 1999. — № 5. — С. 107-112.

9. Krivoi S. A criteria of Compatibility Systems of Linear Diophantine Constraints // Lecture Notes in Comp. Science. — 2002, № 2328. — C. 264-271.

10. Летичевський О.А. Сучасні проблеми кібернетики. Нормативний курс. Навчальна електронна бібліотека факультету кібернетики Київського національного університету ім. Тараса Шевченка// http://www.unicyb.kiev.ua/Library/.

УДК 621.313.333

АНАЛИЗ РАБОТЫ АСИНХРОННОГО ДВИГАТЕЛЯ ПО ДАННЫМ КАТАЛОГА

Китаев А.И., Глухова В.И.

Разработка системы автоматического управления или электропривода связана с выбором оптимального приводного электрического двигателя. Эта задача решается на основе рассмотрения ряда вариантов построения системы. Причем на этапе проектирования нужных двигателей в наличии может и не быть. Поэтому оценка их функциональных возможностей на основе лабораторных испытаний исключается. И тогда перед разработчиками стоит проблема получения необходимой информации по параметрам схемы замещения и характеристикам двигателя расчетным путем, располагая лишь данными каталога.

Ниже приведено решение такой задачи применительно к асинхронным двигателям (АД), для которых в каталоге оговариваются следующие показатели: номинальное напряжение; номинальная мощность на валу - P_{2H} ; перегрузочная способность λ_M или отношение максимального момента M_M к номинальному M_H ; коэффициент кратности пускового момента M_Π к номинальному с обозначением λ_Π ; коэффициент кратности пускового тока $I_{1\Pi}$ к номинальному I_{1H} с обозначением K_I ; коэффициент мощности соз φ_{1H} и к.п.д. в номинальном режиме работы η_H .

Попытки решения этой задачи предлагались. Например, в [1] дана методика построения моментной и механической характеристики АД по каталожным данным на основе упрощенной формулы Клосса. Однако автор, предложив свой прием, не сделал акцент на большое расхождение между расчетными и єкспериментальными (каталожными) данными. Например, если критическое скольжение s_k выбрано по условию обеспечения λ_m , то значения λ_n будут отличаться между собой примерно в два раза.

В настоящей работе раскрываются причины этих расхождений и дается методика более развернутого исследования АД с определением параметров схемы замещения, векторной диаграммы и их использованием для расчета рабочих характеристик

Решение построено на использовании метода эквивалентного генератора (МЭГ) и отвечает на основные, сформулированные выше вопросы.

Определение моментной и механической характеристики или зависимостей момента M от скольжения s и частоты вращения ротора n_2 .

Как известно [1-3], для расчета момента АД обращаются к исходной формуле:

$$M = \frac{m_1 I_2'^2 R_2'}{\omega_1 s},$$
 (1)

где m_1 - число фаз; I'_2 - приведенное значение тока роторной цепи; R'_2 - приведенное значение активного сопротивления в цепи ротора; ω_1 - угловая скорость вращения магнитного поля статора.

Далее ведут поиск тока I'_2 , обращаясь к Т-образной схеме замещения АД (см. рис.1 а,б), подставляют его в уравнение (1), выполняют исследование функции на экстремум по переменной *s* и в итоге получают приближенные аналитические соотношения для определения критического скольжения s_K , максимального момента M_M и формулы Клосса [3].

Изменим подход и найдем ток I'_2 , используя МЭГ, в соответствии с которым возможна замена схемы замещения согласно рис.1 на более простую схему замещения активного двухполюсника (см. рис.1 в). Отсюда следует

$$I_{2}' = \frac{U_{20}'}{\sqrt{\frac{R_{2}'^{2}}{s^{2}} + z_{BX}^{2} + 2\frac{R_{2}'}{s} z_{BX} \cos \varphi_{BX}}} , \qquad (2)$$

где U'_{20} - приведенное значение напряжения холостого хода на зажимах обмотки ротора; z_{BX}, φ_{BX} - модуль и аргумент входного сопротивления.

Рис. 1 Схемы замещения АД

Тогда после подстановки I'_2 в формулу (1) и последующего исследования функции M = f(s) получим без ущерба для точности те же показатели в более простой и компактной форме, а именно:

$$s_{K} = \frac{R'_{2}}{z_{BX}}, \quad (3); \quad M_{M} = \frac{K}{2(1 + \cos\varphi_{BX})}, \quad (4); \quad \frac{M}{M_{M}} = \frac{2(1 + \cos\varphi_{BX})}{\frac{s_{K}}{s} + \frac{s}{s_{K}} + 2\cos\varphi_{BX}}, \quad (5)$$

где $K = \frac{m_1 U'_{20}^2}{\omega_1 z_{BX}}$ - коэффициент.

Используем (5) для составления следующих выражений для λ_M и λ_{Π}

$$\lambda_{M} = \frac{1 + k_{S}^{2} + 2k_{S}\cos\varphi_{BX}}{2(1 + \cos\varphi_{BX})k_{S}}; \qquad \lambda_{\Pi} = \frac{(1 + k_{S}^{2} + 2k_{S}\cos\varphi_{BX})s_{H}}{1 + (k_{S}s_{H})^{2} + 2k_{S}s_{H}\cos\varphi_{BX}};$$

где k_{z} -коэффициент связи между критическим и номинальным скольжениями, т.е. $k_{z} = \frac{s_{k}}{s_{H}}$

Исследуем поведение λ_M и λ_{Π} , приняв диапазон изменения k_s от двух до десяти, а $\cos \varphi_{BX}$ от нуля до единицы при дискретности соответственно 1 и 0,1. Результаты вычислений при выборе $s_H = 0,025$ представлены в графическом изображении на рис.3 и убеждают в том, что λ_M и λ_{Π} - это два самостоятельных семейства кривых, не имеющих общих зон. Следовательно, АД при изменении скольжения меняет значения критического скольжения, входного сопротивления и $\cos \varphi_{BX}$, что необходимо учитывать при расчете моментной характеристики. Это определило потребность в разработке нового алгоритма с последовательностью операций, перечисленных в таблице 1.

Как показали результаты расчетов M = f(s), новая методика позволила исключить упомянутые выше расхождения, поскольку аналитические соотношения увязаны с заданными каталожными данными.

Таблица 1

Алгоритм расчета моментной характеристики				
N⁰	Наименование опера-	Порядок определения или расчетная	Примечание	
	ции	формула		
1	Расчет значений но-	$M - \frac{P_{2H}}{M} \cdot M = \lambda \cdot M \cdot M$	s_H , λ_M , λ_Π бе-	
	минального, макси-	$M_H = \frac{1}{\omega_1(1-S_H)}, M_M = \mathcal{N}_M - \mathcal{M}_H,$	рутся по каталогу	
	мального и пускового	$M_{II} = \lambda_{II} \cdot M_{II}$		
2	МОМЕНТОВ		D	
2	Расчет номинального и	$I_{1H} = \frac{P_{2H}}{\Gamma}; I_{1n} = K_I \cdot I_{1H}$	$P_{2H}, \cos \varphi_{1H},$	
	пускового токов ста-	$\sqrt{3} \cdot U_{1H} \cdot \eta_H \cdot \cos \varphi_{1H}$	η_H и K_i берутся	
	торной обмотки		по каталогу	
3	Определение K _{sn} по	Через λ_{π} проводится линия параллель-	Из-за узости диа-	
	заланому значению	ная оси абсписс. Точки её пересечения с	пазона возможен	
	λ_{π} и кривым рис 3	кривыми семейства $\lambda_{T} = f(K_{c})$ лают	выбор $K_{S\!\varPi}$ по	
			среднему значе-	
		диапазон возможных значении $\mathbf{K}_{S\Pi}$.	нию	
4	Расчет активного со-	$M_{II} \cdot \omega_{I}$	Делается допу-	
	противления обмотки	$K_2 = \frac{1}{m_1 \cdot I_2'}$	щение, что	
	ротора	1 211	$I_{2\Pi}^{\prime 2} = I_{1\Pi}$	
5	Определение модуля	U_{1H} D DU V $\sqrt{\pi^2 - D^2}$	Полагается, что	
	<i>Z_к</i> и составляющих	$Z_{K} = \frac{1}{\sqrt{3} \cdot I}; R_{K} = 2R_{2}; X_{K} = \sqrt{Z_{K}^{2} - R_{K}^{2}}$	по схеме замеще-	
	<i>R_и X_и</i> сопротивления	$\sqrt{3}$ $I_{1\Pi}$	ния AD – сим-	
			метричный четы-	
	короткого замыкания.		рехполюсник	
6	Определение модуля	$Z_{PV} = \sqrt{R_2'^2 + X_1^2}$;		
	Z _{BX} и аргумента	DA V Z K'		
	$arphi_{BX\Pi}$, входного со-	$\varphi_{BXII} = arctg \frac{\Lambda_K}{R}$		
	противления при пуске	R'_2		
7	Расчет коэффициента	$M_{II}(s_{KII}^2 + 1 + 2s_{KII}\cos\varphi_{RVII})$	$S_{K\Pi} = K_{S\Pi} \cdot S_H$	
	Κ	$K = \frac{K_{\rm M}}{S_{\rm M}}$		
8	Pacuet cos a	K = 2M		
	$1 actor \cos \varphi_{BXK}$	$\cos \varphi_{BXK} = \frac{\pi 2M_M}{2M}$		
0			По изрестной ро	
2	определение Λ_{SK} по	через N_M проводится линия параллель-	$\frac{110}{110} \text{ MSBCC1HOM BC}$	
	известным значениям	ная оси аосцисс. Точки ее пересечения с		
	λ_M, M_H, K и $\cos \varphi_{BXK}$	кривои семеиства $\lambda_M = J(K_S)$ при	ходится критиче-	
		$\cos \varphi_{\scriptscriptstyle BXK}$ дает искомое значение $K_{\scriptscriptstyle SK}$.	c = K c	
10			$s_{KH} - \kappa_{SK} \cdot s_{H}$	
10	Расчет восходящей	$M = \frac{K \cdot s \cdot s_K}{1 - 1 - 1 - 1}$	Принято допу-	
	ветви зависимости	$s_K^2 + s^2 + 2s \cdot s_K \cos \varphi_{BXK}$	щение о неиз-	
	M = J(s) в диапазоне		менности S _K	
11	USSSK Decucer of a ferror of a ferror	V		
11	и асчет спадающей вет-	$M = \frac{\mathbf{x} \cdot \mathbf{s}_{kt} \cdot \mathbf{s}}{2}$	принят линси- ный закон изме-	
	M = f(s) в лиапазоне	$(s_{Kt}^2 + s^2 + 2s_{Kt} \cdot s \cdot \cos\varphi_{BXt})$	нения К и	
	$f = \int (0) B d f f f (0) d f $			
	SKH ~ S ~ 1		$\cos \varphi_{BX}$ в указан-	

При известной характеристике M = f(s) не прилагают усилий по поиску аналитического соотношения механической характеристики $n_2 = f(M)$ и получают ее на основе метода перестроения, поскольку при любом избранном значении момента Mскольжение *s* известно из характеристики M = f(s), а величина n_2 найдется по формуле $n_2 = n_1(1-s)$.

Для удобства сопоставимости и изображения моментных и механических характеристик АД разной мощности, полюсности и исполнения имеет смысл перейти на относительные значения момента и скорости μ и v_2 , где $\mu = M / M_M$, а $v_2 = \omega_2 / \omega_1$. Графическое изображение таких характеристик приведено на рис.3.

Рис. 3 Моментная и механическая характеристики АД в относительных значениях

Определение параметров схемы замещения. Расчет тока холостого хода

Установленная выше переменность значений s_{κ} при изменении скольжения *s* означает, что параметры схемы замещения могут быть определены лишь при оговорке определенного режима работы АД. Примем, что в качестве такового избран номинальный режим. Тогда решение задачи по расчету тока холостого хода можно выполнить на основе использования уравнений энергетического баланса, составленных для активной и реактивной мощности АД:

$$\Sigma P = \frac{P_{2H}}{\eta_H} - P_{2H}, \qquad Q_O = \sqrt{3} U_{1H} I_{1H} \sin \varphi_{1H} - m_1 I_{1H}^2 X_K,$$

где ΣP – суммарные потери в магнитопроводе P_C и в обмотках P_M ;

*Q*₀ – реактивные потери, приходящиеся на ветвь намагничивания.

Активные потери в обмотке ротора P_{M2} найдем, используя формулу для номинального момента: $M_H = \frac{P_{M2}}{s\omega_1}$ или $P_{M2} = s\omega_1 M_H$.

Поскольку при расчетах подобного рода принято считать, что активные потери в обмотках статора и ротора примерно одинаковы, то $P_M = 2P_{M2}$, а $P_C = \Sigma P - P_M$. Отсюда составляющие тока холостого хода I_{Oa} и I_{Op} и сам ток I_{10} найдутся по соотношениям:

$$I_{Oa} = \frac{P_C}{\sqrt{3}U_{1H}}, \qquad \qquad I_{Op} = \frac{Q_0}{\sqrt{3}U_{1H}}, \qquad \qquad I_{10} = \sqrt{I_{Oa}^2 + I_{Op}^2}.$$

Положение вектора тока I_{10} на комплексной плоскости задается углом φ_{10} , который

отсчитывается от оси мнимых чисел и рассчитывается по формуле $\varphi_{10} = arktg \frac{I_{0p}}{I_{0a}}$.

Значения параметров ветви намагничивания R_0 и X_0 в свою очередь определятся из условия сохранения активных и реактивных мощностей, т.е.:

$$R_0 = \frac{P_C}{m_1 I_{10}^2}, \qquad X_0 = \frac{Q_0}{m_1 I_{10}^2}.$$

Расчет тока в обмотке ротора

При решении этой задачи следует иметь в виду, что ток в обмотке статора I_{1H} при номинальном режиме работы АД уже определен и имеет своими составляющими I_{10} (ток холостого хода) и I'_2 (ток в обмотке ротора, приведенный к числу витков обмотки статора). Отсюда расчет последнего легко выполнить на основе обращения к теореме косинусов (см. рис 4a): $I_{1H}^2 = I'_2{}^2 + I_{10}^2 + 2I'_2I_{10} \cos\theta$, где θ – угол между векторами I'_2 и I_{10} , рассчитываемый по формуле: $\theta = \varphi_{10} - \psi_2$, где ψ_2 – угол, отсчитываемый также от оси мнимых чисел и определяющий положение вектора I'_2 . Числовое значение ψ_2 находится по соотношению $\psi_2 = arktg \frac{s_H \sin \varphi_{BX}}{s_K + s_H \cos \varphi_{BX}}$, которое следует из векторной диаграммы (рис. 46). В итоге решение квадратного уравнения даст величину тока $I'_2 = -I_{10} \cos\theta + \sqrt{I_{10}^2 \cos^2 \theta + I_{1H}^2 - I_{10}^2}$ и полагать, что активное сопротивление обмотки статора R_1 совпадает с ним.

Построение векторной диаграммы для номинального режима работы

Результаты выполненных расчетов позволяют построить векторную диаграмму АД, придерживаясь следующей последовательности:

- вдоль оси действительных чисел комплексной плоскости откладывается вектор магнитного потока Φ_m , модуль которого определяется по формуле:

$$\Phi_m = \frac{U_{1H}}{4,44\sqrt{3}\kappa_{o\bar{o}}W_1f_1},$$

где $\kappa_{o\delta}$ - обмоточный коэффициент обмотки статора с числом витков w_1 ;

 f_1 - частота сети;

- под углом φ_{10} к мнимой оси откладывается ток холостого хода I_{10} ;

- вдоль оси мнимых чисел откладывается вектор напряжения холостого хода на зажимах обмотки ротора, модуль которого находится по формуле: $U'_2 = I_{10}\sqrt{R_0^2 + X_0^2}$;

- под углом ψ_2 к вектору $\underline{U'}_{20}$ откладывается вектор тока $\underline{I'}_2$;

- векторное сложение $\underline{I'}_2$ и \underline{I}_{10} даст положение вектора тока \underline{I}_{1H} ;

- под углом φ_{1H} к току \underline{I}_{1H} откладывается вектор фазного напряжения \underline{U}_{1H} / $\sqrt{3}$;

- из конца последнего вектора на направление тока \underline{I}_{1H} опускается перпендикуляр до пересечения с линией, проведенной из конца вектора \underline{U}'_{20} параллельно тому же току; полученные при этом два взаимно перпендикулярных отрезка определят соответственно падения напряжения на активном и индуктивном сопротивлении обмотки статора.

Рис.4 Векторные диаграммы АД

Что же касается индуктивных сопротивлений тех же обмоток X_1 и X'_2 , то их также считают примерно равными, а их сумма X_K была найдена выше при рассмотрении пускового режима работы АД.

Построение рабочих характеристик

Под рабочими характеристиками понимаются зависимости $s, n_2, M, I_1, P_1, \cos \varphi_1, \eta = f(P_2)$. Возможна запись этих показателей в аналитическом виде. Однако некоторые из них приобретают громоздкий и потому малоудобный для анализа вид. Более разумно здесь воспользоваться методом перестроения, который уже упоминался при рассмотрении механической характеристики АД. С этой целью выразим указанные показатели (в том числе и P_2) в функции скольжения s, сохраняя обращение к МЭГ.

Результаты выполненной работы обобщены в таблице 2, а на рис.5 приведено графическое изображение этих характеристик в относительных значениях, причем в качестве базовых показателей избраны:

- угловая частота вращения магнитного поля статора ω_1 ;

- максимальный момент M_M и ток I'_{2K} при критическом скольжении s_K .

Числовое значение коэффициента коррекции κ_{K} (см. формулу для определения $\cos \varphi_{1H}$ в таблице 2) легко находится на основе сопоставления расчетного показателя с заданным по каталогу.

Таблица 2

Формулы для расчета рабочих характеристик АД в относительных значениях			
Наименование показателя	Аналитическое выражение		
Относительное значение угловой скорости	v = 1 - s		
вращения ротора, v			
Относительные значения момента, µ	$\mu = \frac{2ss_K(1 + \cos\varphi_{ex})}{s_K^2 + s^2 + 2s_K s\cos\varphi_{ex}}$		
Относительные значения мощности на валу	$p_2 = \mu v$		
ротора, p ₂			
Относительное значение потребляемой	$p_1 = \mu + p_0$		
мощности, р ₁			
К.П.Д., η	$\eta = \frac{p_2}{p_1}$		
Относительное значение тока в обмотке ро-	o S		
тора, β	$\rho = \frac{1}{\sqrt{s_K^2 + s^2 + 2s_K s \cos \varphi_{ex}}}$		
Относительное значение тока в обмотке	$\beta_{\rm r} = \sqrt{\alpha^2 + \beta^2 + 2\alpha\beta\cos\Theta}$		
статора, β ₁			
Коэффициент мощности, соsq1	$\cos\varphi_1 = \frac{p_1}{K_K \beta_1}$		
$v = \frac{\omega_2}{\omega_1}; \mu = \frac{M}{M_M}; p_2 = \frac{P_2}{M_M \omega_1}; p_1 = \frac{P_2 + \sum P}{M_M \omega_1}; p_0 = \frac{P_C}{M_M \omega_1};$			

Формулы для расчета рабочих характеристик АД в относительных значениях

Выводы

1. Приведенных в каталогах данных на асинхронные двигатели вполне достаточно для выполнения полного и достоверного анализа их схем замещения, векторных диаграмм и характеристик.

2. Критическое скольжение АД зависит от режима работы машины и может меняться в достаточно широких пределах, что означает одновременно переменность параметров схемы замещения и возможность их определения лишь для конкретно оговоренного режима.

3. При построении характеристик АД удобно использование относительных значений.

It is rotined in the article, that information of catalogue is fully enough for comprehensive research of indexes of work of asynchronous engine. On his results an evident graphic image can be given моментной, mechanical and all of workings descriptions, the parameters of chart of substitution are certain, vectograms are built et cetera. From the practical point of view the resulted material will be interesting for specialists on an electromechanic and systems of automatic control.

1. Важнов А.И. Электрические машины. –Л.: "Энергия", 1969, -с.767.

2. Костенко М.П., Пиотровский Л.М. Электрические машины. –Л.:" Энергия", 1973, -с.647.

3. Петров Г.Н. Электрические машины. –М.:ГЭИ, 1963, -с.416.