Applied Aspects of Information Technology 2019; Vol.2 No.3: 186-205
Designing Information Technologies and Systems

UDC 004.4"2

Stanislav S. Velykodniy', Candidate of Technical Science, Associate Professor, Associate Professor of the
Department of Information Technologies, E-mail: velykodniy@gmail.com,

ORCID ID: https://orcid.org/0000-0001-8590-7610

'Odessa State Environmental University, 15 Lvivska Str., Odessa, Ukraine, 65016

ANALYSIS AND SYNTHESIS OF THE RESULTS OF COMPLEX EXPERIMENTAL RESEARCH
ON REENGINEERING OF OPEN CAD SYSTEMS

Abstract: The article presents the final results of scientific research on the development of models and methods of
reengineering, as well as technologies of multilingual recoding of open systems of automated design. The common feature of all
software systems lies in the fact that there is an evolutionary aging of the types of support under the influence of time and other
integral factors of information, namely, updating: operating systems, programming languages, principles of the operation of
distributed data processing systems, etc. Such a tendency leads to deterioration of speed, information and communication, graphic,
time and other characteristics, up to a complete system failure. Reengineering is a process that allows creating quickly and easily
new, improved software systems, using the experience of previous software products. The purpose of the article is to systematize the
results of the integration of reusable component, which have been accumulated by developers over a certain period of development
of sectoral computer-aided design systems in updating the software structures of ready-made resources. Based on the obtained
scientific and practical results, the analysis of the developed models and methods of reengineering of types of support for open
computer-aided design systems is performed. In general, reengineering includes the processes of reorganization and restructuring of
a software system, conversion of individual system components into another, more modern programming language, as well as the
modification or modernization processes of the structure and data system. The study involved the following methods: assembly,
specifying, synthesizing and compositional programming, methods of generative and recognizing grammars. At present time, the
process of a new software products design is not very effective without the use of the UML methodology, but when it is applied, the
speed of development increases by times. UML as a language for a graphical description for object modeling, in addition to simple
design, supports also the function of generating and reengineering code based on model data, as discussed in the article. The
distinctive feature of this research is the ability to support the work of more than ten most popular programming languages. In
applying these technologies, it is possible to automate the process of software components recoding and, therefore, to free the
working time of programmers from routine reprogramming and reduce the probability of occurrence of structural errors inherited
from the previous system. The use of the obtained results will improve significantly the efficiency of the application of automated
design systems in such fields of their use as: mechanic engineering, telecommunications, production and transport management,
education, etc. The developed models and methods will be useful to system architects and program engineers involved in redesigning
software already being in their multi-year operation.

Keywords: CAD systems reengineering; UML methodology, multilingual transcending; linguistic structures, generative
grammar

Introduction

The main goal set before the computer-aided
design (CAD) for any purpose is to reduce the
design time of the object and reduce the personnel
required for this design, and as a consequence, the
cost of the finished design object.

The common feature of all CADs is that under
the influence of time and other inevitable factors of
informatization (upgrades: operating systems,
programming languages, principles of the operation
of distributed data processing systems, etc.) there is
an evolutionary aging of the types of CAD
maintenance. This tendency leads to a deterioration
of speed, information and communication, graphic,
time and other characteristics, up to the complete
system failure.

Hence, it follows that the CAD should be one
that develops. According to the world tendencies of
development, CAD relies on a life cycle of 3-4
years. Of course, when updating the design

© Velykodniy, S., 2019

object — CAD is also updated. At this stage, the
question arises: what to do when the system is
tightly tied to the design object? There is one answer
to this question: it 1is necessary to apply
reengineering on the CAD.

CAD reengineering is the evolution of the
system through radical change in order to increase
the usability, maintenance or change of its functions.
It includes processes for the reorganization and
restructuring of the CAD, a transfer of individual
components of the system to another, more modern
programming language (PL), as well as processes
for updating or modernizing the structure and data
system. In this case, architecture the system may
remain unchanged.

CAD reengineering is a target for obtaining a
new component by executing a sequence of
operations for making changes, upgrades or
modifications [1], as well as reprogramming
individual components of the CAD. It is
implemented by a set of models, methods and

186

DOI:10.15276/aait.03.2019.2

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Designing Information Technologies and Systems

processes that change the structure and capabilities
of components in order to obtain a module with
updated capabilities. New components are identified
by the names that are used when creating component
configurations and frameworks of CAD [2].

From the technical point of view, reengineering
is a solution to the problem of CAD evolution by
modifying its components and adapting the
architecture to a new environment [3], in which
components are placed according to the
configuration of the operating system. The reason
for the evolution may be the change of the PL of
CAD (for example, outdated: Fortran, Cobol or even
C, etc.) with the transition into modern object-
oriented languages (Java, C #, Python, etc.).

The goal of the article is to systematize the
results of the integration of reusable component
(RUC), accumulated by developers at a specified
time of the industry CAD development, into new
program structures of finished resources.

Goal setting

One of the main tasks of modern programming
is the creation of theoretical and applied foundations
for construction of complex programs with simpler
program elements that are written in modern PLs. In
fact, solution of this problem is accomplished by
collection, combination or integration of
heterogeneous software resources and RUCs,
including modules and programs for the
implementation of a particular domain.

Linguistics, which studies language laws,
models and rules, is a scientific basis of any
language (including the programming language).
Generative linguistics, which was founded by
Avram Noam Chomsky (in the Soviet times,
sometimes was interpreted as “A. N. Khomsky”),
who created the revolution in language studies, is a
special branch of linguistics that should be used in
the structure of programming languages.

By way of the task of correct chains, formal
grammars are divided into generative and
recognizing. The generative grammars include those
ones by which it is possible to construct any correct
chain with an indication of its structure and it is
impossible to construct any wrong chains. For the
first time, the notion of generative grammar was
proposed by A. N. Chomsky. Recognizing grammar
is a grammar that allows to establish the correctness
of an arbitrary chain and, if it is correct, to find out
its structure. Formal languages include, in particular,
artificial languages for communication between the
operator and the computer (programming
languages).

The lingware of CAD considers the
construction of a software system with one or more
(mutually agreed) PLs, each of which is based on the
rules of a particular grammar and is considered by
the author of the presented article in [4] and [5].

The problem of CAD reengineering of various
industrial purposes has been discussed in detail in
[6]. The methodological principles for the CAD
reengineering have been laid down in [7]. Problems
of methods formation for conversion of software for
various software systems, for example, SCADA-
systems, was considered in [8].

Generalization of the stages of reengineering of
complex information systems and technologies is
given in [9]. Formation of the method for calculating
the indicators of project evaluation in the
implementation of reengineering software systems is
presented in [10]. Models and restrictions on the use
of reengineering on software systems are identified
n [11]. The method of presentation of an estimation
of reengineering of software systems using project
factors is formed in [12].

Analysis of recent research and publications

At present, there is a large number of software
that performs a large number of specialized tasks.
Some of them are tied to only one branch of
industry, while others are used in large numbers, but
the trend goes through the specialization of software
products in general [13].

Corporations that develop CAD, design a lot of
specialized software products, for example -—
AutoDesk. They have a complete set of programs for
work with engineering structure (Inventor),
architecture (ArchiCad), design (3dMAXx) and design
in a broad sense (AutoCad) [14].

Thanks to powerful computational tools in the
CAD using integrated modules containing banks and
databases (DB) of ready-made design solutions, it is
possible to quickly make adjustments to the necessary
parameters of products (sizes, form, order of
processing, etc.), which are manufactured; as well as
to the sequence of technological operations, that is to
reorient the whole production process [15], [16].

Such a reorientation (in the broadest sense) of a
CAD from a database can be defined as
reengineering of information provision [17].

Reengineering includes processes of
reorganization and restructuring of the software
system [18], the conversion of individual system
components into another, more modern
programming language, as well as processes for
updating or modernizing the structure and data
system [19].

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

187

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Designing Information Technologies and Systems

The methodology outlined in [20] is useful as a
basic trajectory of research. Principles [21] and
studies in [22] have suggested practical aspects of
reengineering models [23].

One of the important components of the CAD is
the computer graphics, which is a collection of tools
and techniques through which input, transformation
and output of graphic information from specialized
environments are carried out [24].

Computer graphics is an actual branch of design
and application of computing systems that are
intensively developing in recent times [25]. The term
“computer graphics” means computational processing
of information, as well as the output of results in the
form of various graphic images. The data necessary
for results displaying in a graphic format is created
based on graphical information [26].

Particular interest in computer graphics has
become apparent in connection with the intensive
development and introduction of currently free and
open CADs not only in engineering, instrumentation,
radio electronics, interior design, but also in other
areas of production and training [27].

One of such CADs is BRL-CAD, a specialized
cross-platform open source system. It represents a
powerful 3D CAD for solid modeling using CSG
methods. This CAD includes an interactive
geometric editor, parallel beam tracing, rendering,
and geometric analysis [28].

BRL-CAD was developed for about 40 years
and has been used by the US armed forces. The
entire BRL project works from the source code, thus
it can be used on any platform: GNU/Linux,
MacOS, Solaris, and Windows.

Here are some definitions of open source
software and their design technologies.

Source code (usually just “crumbled”, also
“sources”, “program code”, “text of the program”) -
any set of instructions or announcements written in
the programming language and in a human-readable
[29]. The source code allows the programmer to
communicate with the computer with the help of a
limited set of instructions [30].

Program source code is a set of files that are
required to convert from a human-readable form to
some types of computer executable code [31]. There
are two possible ways to execute a source code:
compiling into a computer code using a compiler
(designed for specific computer architecture) or
executing directly from the text with the help of an
interpreter [32].

One of the first CADs, capable of developing in
both these areas, appeared because in 1979 the US
Army Ballistic Research Laboratory (BRL), now the
United States Army Research Laboratory, expressed
a strong need for instruments and tools that could
help in computer simulation and engineering
analysis of weapons systems (tanks, rockets,
airplanes, etc.) and their working conditions [33].

When none of the CADs existing at that time
appeared to be ready for this purpose, BRL
developers began to collect a set of utilities capable
of interactively viewing and editing geometric
models trees. Programmers began to develop their
own suite of applications that were designed to
display, edit and combine geometric models. In this
way, the BRL-CAD, the application package for
Constructive Solid Geometry (CSG), was created.

The first public release was made in 1984. In
December 2004, BRL-CAD became an open source
project. It is very important that BRL-CAD is
licensed under the terms of BSD and GNU GPL.

From now on, this CAD has been constantly
evolving, and new opportunities have emerged, but
now the very linguistic provision of the database
submission (C language) in the BRL-CAD
environment requires the transfer (reengineering) to
high-level languages (C or C#).

Today, thanks to about a million lines of C
code, BRL-CAD has become the most powerful
graphical modeling package that has been used by
more than 2,000 organizations around the world.

Methods of research
The following methods have been used during
the research:

— method of assembly programming, which
explores the program elements, which are completed
with modules, objects, components, services, etc.;

— method of concretizing programming, used
in the presence of some universal software;

— method of synthesizing programming, which
is used from setting of problem, which is formed as
a model of calculation and specification of the
program for solving the set problem;

— method of composite programming, used in
the organization of functions and data in software
systems;

— method of assembly programming, used in
the presence of a bank of modules and components
of reuse;

— method of Chomsky’s generative and
recognizing grammars that are wused in the

188

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Designing Information Technologies and Systems

construction of linguistic chains for formal

programming languages.

Main material of the article

The most important action for skeletal structure
and reengineering is the creation of two diagrams
[34]: class diagrams and component diagrams. It is
from them that the code of the future software
product [35] is generated. All other diagrams have
an auxiliary (relief) role [36] and should be used at
someone’s own discretion.

The implementation of this phase depends on a
technical specification and modern market
requirements, built in the so-called top-list of the
most popular programming languages, which
include: Java; C#; C++; PHP; Python [37] and more.

The choice of a CASE-tool depends on the
user's preferences. According to the author’s opinion
[38], the most optimal CASE-tool that supports the
import and generation of code written in the
languages mentioned above is Enterprise Architect
(EA). It is EA (version 14.0) to be considered by us
as an effective transcoding tool.

Proceeding from the problem, in the selected
simulation environment, there should be a lot of
possibilities in addition to the standard set of
diagrams (15 pcs.), it is necessary to carry out
efficiency analysis, which is business diagrams,
synchronization diagrams, etc.

In one of the most well-known environments,
Rational Rose, business diagrams and all subsequent
metrics are not implemented effectively [39]. At the
moment, there are few CASE-tools that support the
correct code generation in many languages,
especially if you do not count on the language itself,
and a software product that is developing in this
direction and has the best prospects for learning. The
convenience of work and the simplicity of the
interface were equally important. Of course, in terms
of interface simplicity, EA fails to keep pace with its
counterparts, but it is completely overlapped by its
efficiency [40].

Process of code generation

UML, as a language for the graphical
description for object modeling [41], supports, in
addition to simple design, generation and
reengineering of code based on model data. As noted
earlier, code generation occurs from two diagrams —
class and components.

The component diagram serves as a convenient
link for us to connect classes and entire packages
that consist of similar modules. In the EA CASE-
tool, the component diagram does not have a direct
effect on code reproduction from the model, it only
performs auxiliary functions. Very revealing is the
fact, that when creating a complex software product,
it is not very convenient to reproduce a separate
class diagram, so further binding to the component
diagram consists precisely from the transfer of the
“Class” type modules to this diagram.

Therefore, in the EA software product, there is
such a convenient type of component, called
“Packaging Component” — this component has a
wide internal structure in the form of another
diagram. This internal diagram was created precisely
for the convenience of working with modules of the
“Class” type, but the possibilities of EA allow us to
create diagrams of any type there (if to investigate
the methodology in detail, it is quite convenient
because, for example, you can show the structure or
methodology of business diagrams) When you
create this component, a new component diagram
automatically appears inside it, which is very
convenient to load class modules. All modules that
will be created or moved to this diagram are
automatically tied to the component in which they
are located.

To generate a code, we will open a physical
location of modules of the “Class” type on the
screen, and then select all the necessary modules that
we want to play. Next, we indicate the location for
each element being created, and step by step we will
complete the generation (Fig. 1).

In essence, this process of code generation is
complete. However, how the skeleton structure of
our software product is related, it depends on what
types of communication and which variables,
operations, and attributes are specified in the class
diagram. It should not be forgotten that this is only a
general basis (template) for the code, all the main
code and processes must still be written by
programmers (Fig. 2).

The convenience of such a generation consist in
a general form structuring, the assistance in the
distribution of template tasks between programmers,
and almost complete exclusion of the problem of the
incompatibility of modules, because the entire
structure is already connected initially.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

189

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Designing Information Technologies and Systems

'@ Start Page

RF*Class Model x

7 t
Class1 < Generate Code X
Attrt: int ; Q Path
b biiocd | D:\DokropekantMybmmkaut\DHNUAHAIT\OS_2019\Class1 java
Advanced
Target language Details [l et |
- 1 Wi
Class2 Class3 cH s e
Atte: int L3 . At int e
+ Method20: void + Method3() void :
Import(s) / Header(s) Close
i Help

Fig. 1. Process of code generation

Ej *Classl.java X

A8 Ba2EE

’
I %

LAZEEL AP L DL EEE I L EE LA TR E P 8T 8B EE e LT -~

2//
34/
4//
5//
6//

Classl. java

Created on:
Original author:

THLELELLLLLELE 0P8 T8I L LT 8L i Eiiiiiiitiiiiiiiis

Implementation of the Class Classl
Generated by Enterprise Architect

29-Yep-2019 13:52:46
Rys

8

9 using System;

10 uzing System.Collections.Generic:
11 using System.Text;

12 using System.IO;

13

14 public class Classl {

15

16 private int Attrl;
17

13 public Classi(){
19

20 }

4 B

22 ~Class1(){

23

F4] X

25

26 public woid Mechodil(){
27

28 }

29

0}//end Classl

Fig. 2. Generation result

Decomposition BRL-CAD software into
components

Class diagram

In order to create new software based on the old
one, you need to analyze the structure of the primary
software product. The structure of BRL-CAD is
presented as program code in C language and is
divided into a large number of modules, each of
which contains one or more classes interrelated or
related to other modules. In addition to each module
understanding, the individual task is to understand
the relationship between classes and make a

coherent presentation. Since this is a direct work
with the code, we will represent the structure on
diagrams created especially for this: the diagrams of
classes and components.

The very general class diagram for the primary
software product is to be compiled first, so that it is
rather difficult to compose the immediately
connected diagram of the classes and components in
terms of the complexity of the work, while, as
experience has shown, the effectiveness of such
action does not exceed the time costs for work with
individual diagrams. That is, when decomposing any

190

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Designing Information Technologies and Systems

product, the best decision will be decomposing into
components, while, when generating a new product,
it is better to create an exact and complex
interrelation.

To begin with, we need to find a “generalizing”
module (if, of course, it is present). Module, in
which all the main working submodules are
represented, is called generalizing. This kind of
representation is almost always used in the work of
open source software products for more
understandable and rapid parsing and further
modification of the code. It was decided to adhere to
this rule, and since it is precisely the same as
building an open source code, then you need to
structure the code as best as possible, that is to make
it “clean”.

In BRL-CAD, the entire C programming
language is located in the “incude” folder. Open the
file “brlcad.h”, which is our “generalizing” module
and see what kind of connection it has:

/* system headers presumed to be available
/* basic utilities */
/* vector mathematics */
/* non-manifold geometry */
/* basic numerics */
/* database format storage types */
/* raytrace interface constructs */
/* trimmed nurb routines */
/* the write-only database
interface */
/* in-memory representations of
database geometry objects. these

* are subject to change and should not be
relied upon.
/* database object functions.

library

the

There is a connection of submodules
responsible for certain operations here. Moreover, as
we have already mentioned above, even explanatory
comments are provided for improving the
convenience of working with the code.
Consequently, it is from here that the generation of a
new structure will begin. Each submodule represents
a whole set of files with related classes associated
with them, so all of these files will be presented as
“Interacting Packets” in the easiest way on the
diagram.

When creating the first package, which is called
“include” (in the name of the folder where the entire
executable code is located), it is proposed to select
the type to be used in the subsequent, internal,
diagram (Fig. 3).

=
New Diagram &
Name: Packagel [E]
Type
Select From Diagram Types.
(@ UML Structural
(& UML Behavioral ?3 Class
g Edended 38 Object
g Archimate L [ﬁ Composte Structure
(@ BPMN 10 =| | ®8 Component
@ SeaML %5 Deployment
(g BPMN 1.1

L,h Data Flow Diagrams

gy Eriksson-Penker Extensions

'h Entity Relationship Diagram

(@ MindMapping

(@ somF20 =

UML Package Diagrams describe the organization of
packages, their elements and their comesponding
relationships.

[ok][cancel |[heb

Fig. 3. Selection of the diagram type inside the
package

Since all subsequent modules will be separate
(interacting only at the data package transmission
levels) classes of relationships, it is more likely to
create them in the form of the same packages. When
creating these packages, you must again select the
type of diagram that will be used internally. Next,
choose a class diagram, so the interaction inside
these modules already takes the form of classes with
their operations and attributes. After adding all the
major packages, the project browser looks like it is
shown in Fig. 4.

Project Browser X
H2BE % 3G 1) @
= lgg Model
= B Class Model
&5 Class Model

] include
gP structure
] bn.h
] bu.h
] common
] db.h
] nmg.h
] nurb.h
| raytrace.h
] rtfunc.h
] rtgeom.h
] vmath.h
] wdb.h

r‘-“h Project Browser | §3 Resources

Fig. 4. Project browser after adding packages

Now when the main structure is complete,
proceed in particular to each package, with its
breakdown by classes and interconnections.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

191

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Designing Information Technologies and Systems

Relations between packages will be considered after
their internal structure is determined.

Let's start with the packages. The first package
is called “bn.h” and on the hard disk it is represented
by a single file with the same name. The first thing
to do is to restore its structure using the command
“Import C File” from the “Source Code
Engineering” graph.

In the end, we get the result, from which it is
evident that just one class has recovered, which is
strange. The file we tried to recover was not fully
read, as evidenced by the error graph. The report
window was also opened (Fig. 5).

[Reverse Engineering Progress =]

Curment Action

classes:
=importing C\ngram Files (x86)\BRL-CAD\7.18.(Ninclude \bn |
There was an emor parsing C:\Program Files (86)\BRL-CAD\7. 13 Minclude’\bn h on line 154. Unexpected symk
Adding: Class -bn
Adding: Class - bn_tel
Resolve relationships:
—felationships for bn
—felationships for bn_tol
—linking with existing attrbutes
—fesolve generalizations
—fesolve realisations
Complete!

T b

Fig. 5. Reverse engineering report

In it, we see that besides reproduction of this
class, all the possible types of connections are
reproduced in the same way and all types of
relations are restored. However, this is not enough,
so when we open the window of the physical file of
the code location, we see that there are many more
classes there. The very first difference that arrests
attention is that the class played on the screen is the
only one that defines some variables, while all the
following use the #define command, which serves to
declare any constant. This constant can be taken
from other modules.

The file that we are interested in consists
mainly of constructs such as:

a) Struct bn_tol — class declaration;

b) BN _EXPORT BU EXTERN
anim_tran, (mat_t m)) — process declaration;

¢) #Define bn_cx_add (ap, bp) {(ap) > re + =
(bp) -> re; (ap) -> im + = (bp) -> im;} — declared
constants.

Since we are not satisfied with the results of the
reverse engineering, we have to complete the
analysis on the diagrams manually. To do this, we
need to understand what exactly to look for in the
files. First of all, of course, the declared classes and
their variables are of interest, the general structure
and the shape of the diagram depend on it. After the

(void

classes and variables are recreated, it is necessary to
take on the processes that the given classes will take.

The process of reproduction of a full-fledged
structure up to each variable is not necessary, in the
reengineering it is important to understand the
process of software modules work and to make the
most understandable scheme, which will be
convenient to work not only on someone’s own, but
also to explain the principles to the programmers
who will reproduce the new modules. Therefore, we
will not specify many small classes and processes or
we will combine them into larger diagram processes.

The example of a schematic association of
processes.

The program code contains
processes with explanations such as:

many small

BN_EXPORT BU_EXTERN(void anim_dy p_r2mat,
(mat_t m,
double vy,
double p,
double r));

/**
* @brief Make a view rotation matrix,
given desired yaw, pitch and

* roll. (Note that the matrix is a
permutation of the object rotation
* matrix).
*/
BN_EXPORT BU_EXTERN(void anim_dy_p_r2vmat,
(mat_t m,
double yaw,
double pch,
double ril));
/**
* @brief Make a rotation matrix
corresponding to a rotation of "'x"
* radians about the x-axis, "y" radians

about the y-axis, and then
* "z" radians about the z-axis.
*/

The comments clearly indicate: what each
process replies for (once again remember that this is
one of the conveniences of working with open
source software, although this convenience has a
number of shortcomings). In our example, these
processes are responsible for rotation of the selected
object in the given coordinate system: X, Y, Z, under
which it is monitored, any deviation.

In the diagram, we generally call this a Rotation
process and will not go into details, because at least
later, when working with programmers we will have
to develop a new model, taking into account the
specificity of the programming language. By doing
this, we will facilitate and reduce the process of
developing the diagrams, because there are more
than thirty such processes in one such “bn.h” file.

We begin to construct the diagram, taking into
account combination of non-essential classes. Let's
show the stages in detail on one of the classes
(Fig. 6; Fig. 7):

192

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Designing Information Technologies and Systems

struct bn_unif {
unsigned long magic;
long msr_seed;
int msr_double_ptr;

double *msr_doubles;
int msr_long_ptr;
long *msr_longs;};

General | Detail | Constraints | Tagged Values |

St sonie e O™ L

#define BN_CK_UNIF(p) BU_CKMAG(_p,
BN_UNIF_MAGIC, “bn_unif”)
#define BN_CK_GAUSS(p) BU_CKMAG(_p,

BN_GAUSS_MAGIC, “bn_gauss’)

The final representation of the class diagram for
the file “bn.h” is shown in Fig. 8.

Name: isr_double ptr

o - [[1Derived [Static
Type: int v ([[[Propetty [T]Const
Scope: [PLbic v]

Stereotype: > &

Containment: Not Specified v

Initial:

Arbutes

Notes: (B [U*A Zi= x %@

Name Type

¥ magic unsigned long
@ “msr_doubles double

¥ msr_longs long
@msr_double_ptr int
@msr_long_ptr int
¢msr_seed long

Inttial Value |

[oo [Cocel][tep |

Fig. 6. Filling in the attributes of bn_unif class

class bn.h

bn_unif

magic: unsigned long
*msr_doubles: double
*msr_longs: long
msr_double_ptr: int
msr_long_ptr: int
msr_seed: long

Fig. 7. Final representation of bn_unif class

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

193

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Designing Information Technologies and Systems

class bn.h /

bn_table

+ magic: unsigned long
+ nx: int

bn_poly

bn_multipoly : int
cf[BN_MAX_POLY_DEGREE+1]: double
dgr: int

magic: unsigned long

+ + o+ 0

«structy»
bn_tol

dist: double

dist_sq: double
magic: unsigned long
para: double

perp: double

+ + + + o+

bn_complex

+ im: double
+ re: double

bn_multipoly

**cf: double

dgrs: int

dgrt: int

magic: unsigned long

+ + + o+

Processes

/

bn_unif

magic: unsigned long

P

+ assignments() : void
renaming variables() : void
structuring variables() : void

*msr_doubles: double

*msr_longs: long
msr_double_ptr: int
msr_long_ptr: int
msr_seed: long

bn_tabdata

+ magic: unsigned long
+ ny: int

bn_gauss

+ o+ o+ o+ o+ o+

*msr_gauss_doubles: double
*msr_gausses: double
magic: unsigned long
msr_gauss_dbl_ptr: int
msr_gauss_ptr: int
msr_gauss_seed: long

Fig. 8. Class diagram for “bn.h”

It should be taken into account that this diagram
is not a complete reflection of the entire file,
therefore less significant classes take a lot of space,
but they are not essential in the reflection. The same
applies to processes — there are more than two
hundred of them, while they only announce or
structure the data, so they are schematically
displayed, but due to the fact that each class is
inclined to influence any processes, it is necessary to
show it on the diagram (Fig. 9).

“Association” is chosen as communication,
because this communication carries information
about the relation between objects within the
software. Associations can be specified and display
which class is it and how it is related to others.

Project Browser
) 2 %8 @

™ 2-@- 13 @©

5.] bnh

+

+

&3 bnh

& bn_complex
bn_gauss
bn_multipoly

(0] [}

@ *cf
@ dgrs

@ dgrt

¥ magic
bn_poly
bn_tabdata
bn_table
astruct» bn_tol

() T ()) (D

bn_unif

] buh
_] common

] db.h
@ Project Browser | @ Resources

m

Fig. 9. Diagram in the form of a browser

194

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Designing Information Technologies and Systems

After completing the analysis of the first file
called “bn.h”, the last step in working with it is to
show the connection of this “package” with others.
At the beginning of the file, there are the following
lines:

/* interface headers */
#include “bu.h” /*
BU_EXTERN, BU_CKMAG */
#include “vmath.h” /* required for mat_t,
vect t */

required for

This entry indicates that we have a relation with
other packages included in this diagram, so this link
should also be displayed. It is necessary to use the
type of connection “dependency”, so the execution
of mathematical and other functions in the file
depends on these two connected components. As a
result, in the package diagram, this will look the
same as in Fig. 10.

pkg structure /

bu.h

vmath.h

E + bn_unif
E + Processes

Fig. 10. Relationship of “dependence” between
packages

In some cases, the relationship between classes
can be neglected because the work with them is at
the presentation level of the files (packages), which
means that access to the class from the “bmath.h”
file will not occur from the inside, but from the
outside, for example from the “bn.h” file. Similarly,
in some cases, the links will be displayed in the title,
for example, the relationship between super- and
child classes (Fig. 11).

That is, the “rt_revolve internal” class is the
descendant of the “rtgeom” class.

At this stage of the study, the “bu.h” and
“vmath.h” packages are not yet filled with classes
and functions, so their reflection, so far, is purely
schematic.

Thus, it was investigated how to restore files
from C language manually. All files in this software

project were considered similarly to display the
complete diagram (Fig. 12).

class rtgeom.h -~

«struct»
rtgeom::
rt_revolve_internal

ang: fastf_t

axis2d: vect2d_t
axis3d: vect_t
magic: unsigned long
r: vect_t

v2d: point2d_t

v3d: point_t

[

«struct»
+ sk rt_sketch_internal*
+ sketch_name: bu_vls

Fig. 11. Descendant class

Component diagram

Component diagram is the second diagram that
participates in generating the code of the future
software product and for this purpose it should be
associated with the first diagram — a class diagram.
We will analyze a component diagram for the
primary software product according to the classical
canons [42], with a breakdown into 3 parts:

a) deployments that ensure the direct execution
of the system's functions — such components may be
shared libraries with the “*.d1l” extension;

b) work products are usually files with source
code programs, for example, with the extension
“* h” for the C language;

¢) executive, representing modules with the
extension “*.exe”.

In the first step, not so much the program code
is necessary as the physical location and the overall
software architecture (Fig. 13).

There are 4 folders in this structure in addition
to executable files (“archer” and “brlcad”). The
“bin” folder contains the main and auxiliary “exe”-
files that run separate modules (the specifics of a
software product: each module does not integrate
into the interface but connects to a separate
window).

The folder “include” contains a work product -
files with texts in “C” programming language. The
folder “lib” contains the library files, and the folder
“share” contains text documents with descriptions,
license agreements, pages on the Internet, generally
auxiliary files.

Having considered this structure, you can
already build a “skeleton” of the diagram and it will
look like on Fig. 14.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

195

Applied Aspects of Information Technology
Designing Information Technologies and Systems

2019; Vol.2 No.3: 186-205

rtfunc.h
B [5] + bot_rec
=]+ ab .
=] + exported_pipept
- £] + record

(frominclude)

[enn]

+ bn_complex
+bn_gauss

+ bn_multipoly
+ bn_poly

+ bn_tabdata
+ bn_table

+ bn_tol =

=
=
=
=
=
-
=
=
E

>~ (fromincludey

C standard library

[=] + FILE
=
5] + float

+ bu_bitv
+ bu_hist

+ bu_image_file
+ bu_list

+ bu_mapped_file
+ bu_structparse

5] - fros t
=] + stdio

El + stanib

+ processes

+ bn_unif T~ P + struct
+ Processes =~ //,—/ + struct
7 (fromu:'ncwde) ‘}\ ’,i—/:’\«/"""’b‘“—l - //’%m,?ncmus}\\
/// :I ’\,\\/”’/ E g :xzzimexabaupt //// ; A ,’ drom .CIUGE)
’ [\ 1 - ! / |
7 - \ 1 - I| / f
pc.h - : \\ '| , (fromincludey, © 1 ! :
= 1 \ 1 e // \ ~ 1 |
-E :<:nonymous> : \\ : // /// \\ ~o ; :
"E *::Cipcise(e~ _ : \\ : ,/ /// \\ \\\ : // :
T~ _._\‘;% - \ ! 1
(frominclude) | T~ raytrace.h \\ ! :
; B ot | Y T !
db5.h e I . constraint_Intemal T T *+ripnts_intemal |
== - ————" = N 1
E R | wrorfinend® "X < :
1 1 \\ ~ - \\ (frummc\lfde) :
.' ((v =T \ \ N I
(frominclude) 1 [} _x \\ \ \ \\ 1
| — T ~ A A T —
vmath.h L= ((\\\ N \\ \\ // B'::rep
|5 A <—————(4(- ————————— *\—————————*—\————————\V\————\'\— _______ I" ______ +brep,specific
/ AN SN Y \ /
(frominclude) V\\\\i \ AN N \ / (from include)
I~ ~
+ <anonymous> \\\\
T Zanenymens” + bezier_2d_list
Dmemmene S 77T = REC
+nmg
e (rominciudey e
Fig. 12. Full diagram of project packages
. bin
include The next step in working on this diagram is to
fib fill the packets with data. Let's start with the most
h
. T important package — “include”, which contains
\ archer
W executable files.
& uninstall Let’s rebuild the structure inside the folder and
bind the entire class diagram to it. Since all
Fig. 13. Physical location of the application executable files are written in C language, that is, in
one format, then we will not create a large number
of components — we limit ourselves to one. We will
[omp Component tocet /7 name it the general name “Source code” and indicate
bin in the specification that it is the language “C” and
then we bind the class diagram, which contains the
P entire code of the component.
T The overall sequence is:
V2l ia0e . . .
g = a) in the project manager, choose a diagram
sexecutables e o .
uninstai exe containing the required classes;

b) find the component to which the diagram
will be attached;

¢) transfer the diagram to the batch component.
At the moment of the transfer, the following

process takes place: the diagram itself goes into the

Fig. 14. Primary structure

component hierarchy, and all classes remain in the
old place, in their subdivision of the diagrams
(Fig. 15).

196

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Designing Information Technologies and Systems

The convenience of such a structure is that the
diagrams have been connected, that is, the transition
to a class diagram can be done only through a
dedicated component, but the classes themselves
have not moved, which has greatly facilitated
readability, and in the future, a change in the
structure.

All major modules have been upgraded and
only some of the details have to be completed, so the
folder besides the code contains another folder with
configuration files that directly affect the code.
Therefore, we will create a folder called “config”,
fill it with the components of the corresponding file
and continue to divide the links in the data packet
(Fig. 16).

In the “config” folder, the files do not interact
with each other, so internal connections are not
required, but in general, each of these files interacts
with the component “Source code”, which means
their connection. It remains only to determine the
type of connection.

In any of the files in the “config” folder there is
a set of numbers to which executable files are
referred, that is, when changing the number, the
code itself changes. For this kind of interaction,
there is a special type of connection, called
“dependency”. Therefore, we will place it on the
diagram, indicating that the “Source code” batch
component depends on the “config” folder (Fig. 17).

In the same way, we implement other 3 folders
on the diagram — “lib”, “bin” and “‘share”. However,
there are some differences. In the “lib” folder, there
is a huge amount of libraries, each of which can be

Project Browser x

EatE h R-G- +34 @
= @ Meodel -
= B4 Class Model
=] include
#p structure
[_] C standard library
] bn.h
(] brep.h
] buh
] common.h
3 db.h
= db5.h

+
+)
&
+)
+)
+)
<
i] nmg.h
+)
.
+|
3
+
+)
+|

m

] nurb.h
_J pch
1 raytrace.h
] rtfunc.h
] rtgeom.h
] vmath.h
£ wdb.h
= @] Component Model
=8 Component Model
+] Internal Structures
3 bin
=] include

&) Project Browser | $@ Resources

G8g Project Browser | % Resources

represented as an independent component, but it can
be done only manually and it takes a lot of time, so
let's go by the path of least resistance — transferring
all the libraries to the diagram as “artifacts”.

Artifact is any artificially created element in the
system. Artifacts can be any type of file, even
elementary pads, quite apart from code files and
libraries. In this case, it would be entirely justified to
apply structuring exactly in this way, but even
though such a move makes it easier to work, you
need to specify a type, or as it is called in UML, a
stereotype of the file (Fig. 18). Reproducing each
artifact, we set its specification.

After playing the modules in the diagram, we
set up the links between them. As it was seen from
Fig. 13, the folder contains the “Uninstall.exe” file.
If it is activated, then the uninstallation of the CAD
occurs, that is, this file affects every other physical
(and not only) location of the software system.

As a result, all other folders and files are
associated with this component as a “dependency”
connection. All we have to do is to link our main
packages. Therefore, the “bin” package is a folder
with the main and auxiliary “exe” files, and two
other packages — “lib” and “include” (libraries and
executable files with code) “realize” the “bin”
package. For this, there is a special type of
connection with the similar name “realize”.

Now the packages are recreated, the links are
also binded to the class diagram executed. The result
of the work in general is shown in Fig. 19.

BliaPE % B-G- 43 @
+-] brep.h -
] bu.h
] common.h
3] db.h
3 (] db5.h
] nmg.h
+] nurb.h
@ [pe.h
¥ [_] raytrace.h
#-] rtfunc.h
%] rtgeom.h
#-] vmath.h
+] wdb.h
= |&] Component Model
o Component Model
4 || Internal Structures
] bin
= (] include
€8 include

m

B structure
] lib

€] «executable» uninstall.exe

Fig. 15. Changes in project manager

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

197

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Designing Information Technologies and Systems

cmp conf /

FILE

E CMakeLists |_;]
«file» El E
HOST «file» «file»
COUNT BrlicadConfig.tmpl
«scripty»
make

«file» «file» «filex
23 MINOR PATCH

«file» «file» «file»

USER MAJOR PATH

Fig. 16. Presentation model of the “config” folder

cmp include

=]

Component1

Fig. 17. Interaction within the “include” folder

198

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Designing Information Technologies and Systems

@
® B START DESIGN LAYOUT PUBLISH CONFIGURE CONSTRUCT CODE SIMULATE EXECUTE EXTEND
V| I .“. ;-.. Generate All === # Run = e |
70 | .
Window Scipting D _3‘
: Mot | o Properties
Show To¢ General table.tel
T Rule; t Stereolype: | script brary
equirements
Mor o i
Constraints Status: Proposed
4+ Component Scenarios o
2l [F=s= 2 X)
B Package = Related B REs == X e % Alias:
Files
& Packaging Compor Links Stereotype for table.tcl X Keywords
%] Component
B Class Stereotypes Author: Rys z
; Interface Profile: EAUML Complexity Easy
Object
Q@ Port Stereotypes a | Apply to Language: C
T2 Expose Interface [AuditedCheckhist artifact - e 10
B Anifac [BPSim artifact =
E x [] BPSmCustomReport artifact Phase: 1.0
(3 Document Artifact] BPSimAeport attifact
Component Relationsh Checklist artifact

Common [database connection

[] EAMatrixSpecification

artifact
artifact
artifact
documentartifact
artifact
kil

Package: Class Model

Created: 29,06.2019 16:31:19
Modihed 29.06.2019 16:31:19

Help

Artifacts
] EARepontSpecification
[] EAUserStory
[EAwarkingSet
L Lot o iimioh
Mew. ok
Fig. 18. Stereotype and
Discussion

The present article summarizes the process of
reverse engineering on the example of the open
BRL-CAD. The study has been carried out using the
UML methodology using Enterprise Architect
CASE-tool. The UML methodology is quite
voluminous and the project has considered several
diagrams that are used to design a new product.

The main focus was on the class and
component diagrams. This is due to the fact that the
code generation and subsequent work of
programmers will occur directly from these
diagrams, while other auxiliary diagrams serve only
to explain complex project specifications, which,
however, does not deemphasize their significance in
the project.

In the most progressive countries of the world,
new products have not been developed “from
scratch” for a long time, for them systems that help
to create any necessary structure much more quickly
and efficiently are used. The UML methodology and
related software products serve to improve the
design and structuring of data. This methodology
has been actively used since recently, but very
quickly integrated into the overall design structure.
The convenience of the reengineering methodology

program profile selection

is that it is not tied to any of the development
methods and is very flexible in use.

The development of the UML methodology for
reverse engineering is typical for the West and parts
of Europe. At the beginning of the research (that is,
in 2010), specialists from our country have just
begun to work on the active exploitation of this
methodology in the form in which it is presented
now.

The open and free BRL-CAD has served as an
excellent prototype for work. The advantage of such
systems is that they are distributed under a free
license and there are no legal issues with copying,
modification or other actions related to the software
code. Similarly, it should be noted that because the
code was made open, the developers tried to make it
also understandable. This is due to the large number
of comments in the program code.

One of the major disadvantages of BRL-CAD is
the lack of a clear graphical product interface,
corrected and improved in the prospects for software
product reengineering. However, developers and
designers usually develop the interface from the
middle of the project, or even closer to the end,
when the full full functionality and working
principles are already known.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

199

Applied Aspects of Information Technology
Designing Information Technologies and Systems

2019; Vol.2 No.3: 186-205

cmp Component Model /

bin

- + 2dm-g.exe

. + archer

. + archer.bat

. + asonmg.exe

. + asc2g.exe

. + asc2pix.exe

- + bolt.exe

. + bot-bldxf.exe
. + bot_dump.exe
. + bot_shell-vtk.exe
l + bottest.exe

. + brep_cube.exe
. + brep_simple.exe
- + breplicator.exe
. + bricewall.exe
. + biclsh.exe

. + bw-pix.exe
. + bwish.exe
- + bwmod.exe
. + cat-fb.exe
. + cell-fb.exe
. + clutter.exe
. + cmap-fb.exe
. + coil.exe
. + contours.exe
. + conv-vg2g.exe
. + oy-g.exe
. + dbupgrade.exe
. + df-g.exe
. + enf-g.exe
. + euclid-g.exe
- + eudlid_format.exe
. + euclid_unformat.exe
. + fastd-g.exe
- + fo-bw.exe

+ fb-cmap.exe
. + fo-fo.exe
- + fo-orle.exe
. + fb-pix.exe
. + fb-png.exe
. + fo-rle.exe
. + fbanim.exe

. + foclear.exe
. + focmap.exe
. + fbomrot.exe

. + foframe.exe

. + fofree.exe

. + fogamma.exe

. + fbgammameod.exe
. + fbgrid.exe

- + fbhelp.exe

- + folabel.exe

. + foline.exe

. + foscanplot.exe

. + foserv.exe

l + bw-fb.exe <j.

. + fbcbars.exe /

- + fofade.exe <]_

«realizes

«arealizes

lib

. + itcl24.1ib

. + itclstub34.lib
- + itk34.1ib

. + itkstub34.1ib
. + libadrt.lib
. + libanalyze.lib
. + libbn.lib

. + libbu.lib

. + libdm.lib

- + libfb.lib

B +libgovlib
B +libasd.lic
- + liboptical.lib
. + liberle.lic
. + liborle.lib
B + libekg lic
B +'ibeng.lic

___ . + libregex.lib

B oo
B - libsysv.lic

g]

«executables
uninstall.exe

. + libtcicad.lib
B + libutshre lio
e e e e T B liowdbllio

. + libz.lib

ZE AN
N\

I
\ Ay
|
|
|

. + opennurbs.lib
. +tcl85.lib
. + tolstub85.lib

N B +ves.ib

Ay - + tkhtml.lib
N . + tkpng.lib

\ . + thstub85.lib
AY - + titable.lib

\ N itd2s
\ N itee

\ N + iwidgets4.0.2
\ . +1cl8.5

\
\ . + a5
\ N + thimi2.0

A N + Tidable2.10

share

. + AUTHCRS
. + COPYING
+ HACKING

. + INSTALL
. + NEWS
. + README

.+db

N +cec
. + html
. + tlscripts

i + viont

Fig. 19. Complete diagram of BRL-CAD components

200

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Designing Information Technologies and Systems

Conclusions

The article analyzes and summarizes the results
of complex experimental research of new methods
of multi-linguistic transcoding of open source
software. The distinctive feature of the studies under
review is the ability to support the work of more
than ten most popular programming languages.
When applying these technologies, it is possible to
automate the process of recoding software
components and, therefore, to free programmers
from routine reprogramming and reduce the
probability of occurrence of structural errors
inherited from the previous system.

In the article, the technology of multi-linguistic
transcoding has not been only given, but also
analyzed. The problem of this field for our country
is the lack of any educational materials; although
this situation allows to use software products and
build or restore code, but it hides some interesting
and useful features from users. Therefore, the task
was to consider and systematize the process and the
logic of reverse engineering and to form the basis of
a scientific paradigm, which allows the system
architect to understand the principles of this
reengineering.

Reengineering is a process that allows to create
new, improved software systems quickly and easily,
using the experience of previous software products.
With the introduction of this methodology, we can
conclude that the efficiency and speed of work has
grown considerably also because of the fact that
UML is a convenient language that coordinates the
actions of all employees and helps to distribute tasks
between performers.

From an economic point of view, reengineering
is generally advantageous — it is a significant time
and effort savings for programmers, it helps in
project coordination, and optimizes the number of
employees, although there are some situations where
software reengineering is not the best solution. In
any case, before performing the evolutionary
improvement, it is necessary to evaluate the
feasibility of a software project reengineering - this
is also a series of publications by the author of this
article.

At this time, the process of designing new
software products is not very effective without the
use of the UML methodology, but with its use - the
speed of development increases at times.

Summing up the results, we can state that in the
article:

1) Generalization of the results of experimental
studies at the level of presentation of classes and
components presented using a unified modeling

language — UML, with processing and interpretation
of results at CASE-tools level has been performed;

2) The results of source code conversions have
been analyzed and summarized, the main of which is
the reduction of labor productivity of the CAD
creation;

3) The generation of new linguistic structures
has been improved, based on reconstructed unified
diagram models, which allows to preserve the
properties of relations between classes and between
components.

4) Methods of importing encapsulated
components of the CAD that allows re-encoding the
components regardless of the programming language
have been developed further.

Using the results will significantly improve the
efficiency of the CAD use in such fields of their use
as: mechanic engineering, telecommunications,
production and transport management, education,
etc.

The developed models and methods will be
useful to system architects and program engineers
involved in redesigning software already being in
their multi-year operation.

Properly executed reengineering is
characterized by the achievement of practical
results:

a) Reducing the risk of errors in the future
update of the CAD;

b) Reduction of the product cost due to the
repeated use of software components in the
development of a new CAD;

¢) Reduction of the labor productivity of the
creation of the CAD due to the almost complete
elimination of routine reprogramming operations of
many already identified components.

Thus, the main problem of the study was the
systematization of methods of reengineering
software components into new software structures,
systems and ready-made information resources
accumulated by humanity at a specified time. This
new direction does not yet have standard solutions to
the problem of the gradual transformation of the
multi-linguistic description, the implementation of
generation, debugging, and integration for the final
software system.

Therefore, the possible directions of the
research continuation and the prospects for the
development of the following studies on the
following topics are:

1) Industrial testing for fault tolerance and
practical testing of implementation of software
systems multi-linguistic transcoding that will allow
them to be improved on an industrial basis;

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

201

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Designing Information Technologies and Systems

2) Creation of reengineering models for each
other types of CAD provisioning that will be
redesigned.

Complete reengineering of the CAD will
overcome the contradiction between the pace of
science and technology and design processes
development, improve the efficiency of technical
support of software systems, and reduce operating
costs.

References

1. Link, D., Behnam, P., Moazeni, R., & Boehm,
B. (2019). “The Value of Software Architecture
Recovery for Maintenance” (Submitted on 23 Jan
2019 in Cornell University). [Electronic Resource].
— Access mode: https://arxiv.org/abs/1901.07700. —
Active link — 27.06.2019.

2. Lavrishcheva, E. M., & Grishchenko, V. N.
(2009). “Sborochnoe programmirovanie. Osnovy
industrii programmnyh produktov”. [Assembly
programming. Fundamentals of the software
industry], Kiev, Ukraine, Naukova dumka, 372 p. (in
Russian).

3. Subriadi, A. P., Mugtadiroh, F. A., & Dewi,
R. S. (2019). “A model of owner estimate cost for
software development project in Indonesia”.
[Electronic Resource]. — Access mode:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.
2175. — Active link — 27.06.2019.

4. Velykodniy, S., & Tymofieieva, O. (2017).
“The paradigm of linguistic supply submission by
generative grammar assistance”, American Scientific
Journal, No. 17. pp. 4-7.

5. Velykodniy, S., & Tymofieieva, O. (2017).
“Reengineering Models of Linguistic Providing
Software Systems”. Advances in Quantum Systems
in Chemistry, Physics and Mathematics, Ser.:
Progress in Applied Mathematics and Quantum
Optics, Eds. A. Glushkov, O. Khetselius, V.
Buyadzhi. Kharkiv, Ukraune, FOP Panov, pp. 385-
388.

6. Velykodniy, S. S. (2014). “Problema
reinzhiniringa vidov obespecheniya sistem
avtomatizirovannogo proektirovaniya”. [The
reengineering problem of ensures types

CAD/CAM/CAE-systems], Control Systems and
Computers, No. 1, pp. 57-61, 76 (in Russian).

7. Velykodniy, S. S. (2014). “Metodo-
logicheskie osnovy reinzhiniringa sistem avtoma-
tizirovannogo proektirovaniya. [The method-logical
bases of reengineering CAD/CAM/CAE-systems],
Control Systems and Computers, No. 2, pp. 39-43
(in Russian).

8. Velykodniy, S., & Tymofieieva, O. (2017).
“Multilingual recording method designed for
SCADA-system’s software upgrade”, Automation of
technological and business-processes, Vol. 9, Iss. 1.
pp. 17-22.

9. Velykodniy, S., & Tymofieieva, O. (2017).
“Sposib multylinhvistychnoho perekoduvannia
prohramnoho zabezpechennia skladnykh
informatsiinykh system ta tekhnolohii”. [The way of
multilingual software transcoding for complex
information systems and technologies], O. S.
Popov’s ONAT Scientific Works, No. 2. pp. 153-
159 (in Ukrainian).

10. Velykodniy, S., Tymofieieva, O., &
Zaitseva-Velykodna, S. (2018). “Metod rozrakhunku
pokaznykiv otsinky proektu pry vykonanni
reinzhynirynhu prohramnykh system”. [The
calculation method for indicators project estimation
in the implementation of software systems
reengineering], Radio electronics, computer science,
control, No. 4. pp. 135-142. (Web of Science). Doi:
10.15588/1607-3274-2018-4-13 (in Ukrainian).

11. Velykodniy, S. (2019). “Idealizovani modeli
reinzhynirynhu prohramnykh system”. [The
idealized models of software systems
reengineering], Radio electronics, computer science,
control, No. 1. pp. 150-156. (Web of Science). Doi:
10.15588/1607-3274-2019-1-14 (in Ukrainian).

12. Velykodniy, S. (2019) “Method of
presenting the assessment for reengineering of
software systems with the project coefficients help”,
Innovative technologies and scientific solutions for
industries, No. 1 (7), pp. 34-42. Doi:
10.30837/2522-9818.2019.7.034.

13. Afshari, A. R., Brtka, V., & Cockalo-
Hronjec, M. (2018). “Project risk management in
Iranian software projects”, Journal of Engineering
Management and Competitiveness (JEMC), Vol. 8.,
No. 2, pp. 81-88.

14. Blum, B. (2019). “Software engineering: a
holistic view”. [Electronic resource]. — Access
mode:
https://dl.acm.org/citation.cfm?id=SERIES9569.128
915. — Active link — 24.06.2019.

15. Klein, M. (2019). “Reengineering metho-
dologies and tools. A Prescription for Enhancing
Success”. [Electronic resource]. — Access mode:
https://www.tandfonline.com/doi/abs/
10.1080/10580539408964633. — Active link —
23.06.2019, doi: 10.1080/10580539408964633.

16. Boechm, B. (2019). “Software
Management”. [Electronic resource]. —
mode:
https://link.springer.com/chapter/10.1007%2F3-540-

Risk
Access

202

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Designing Information Technologies and Systems

51635-2 29. — Active link — 24.06.2019, doi:
10.1007/3-540-51635-2_29.

17. Grover, V., & Malhotra, M. (2019).
“Business process reengineering: A tutorial on the
concept, evolution, method, technology and
application”. [Electronic Resource]. — Access mode:
https://www.sciencedirect.com/science/article/abs/pi
1/50272696396001040. — Active link — 23.06.2019,
doi: https://doi.org/10.1016/S0272-6963
(96)00104-0.

18. Manganelli, R., & Klein, M. (2019). “The
Reengineering Handbook: A Step-by-Step Guide to
Business Transformation”. [Electronic resource]. —
Access mode: https://www.sciencedirect.com/
science/article/pii/SO0https://journals.lww.com/jhqo
nline/Citation/1995/03000/The Reengineering Han
dbook A Step by Step Guide.ll.aspx. — Active
link — 26.06.2019. Doi: 10.1097/01445442-
199503000-00011.

19. Jacobson, 1., Ericsson, M., & Jacobson, A.
(2019). “The Object Advantage: Business Process
Reengineering with Object Technology”. ACM

Press. [Electronic resource]. — Access mode:
http://eaststemcell.com/files/storage.cloud.php?id=
MDIwWMTQyMjg5SMQ==. — Active link -
20.06.2019.

20. Boehm, B. (2000). “Spiral Development:
Experience, Principles and Refinements”, Special
Report: CMU / SEI-2000-SR-008, 37 p.

21. Hammer, M., & Champy, J. (2019).
“Reengineering the corporation: A manifesto for
business revolution”. [Electronic resource]. — Access
mode: https://www.sciencedirect.com/science/
article/pii/S0007681305800643?via%3Dihub. -
Active link — 21.06.2019. Doi: 10.1016/S0007-
6813(05)80064-3.

22. Selby, R. W. (2017). “Software
Engineering: Barry W. Boehm's Lifetime
Contributions to Software Development,

Management and Research”, Publ. John Wiley &
Sons, New Jersey, 818 p.

23. Boehm, B. (1986). “A Spiral Model of
Software Development and Enhancement”, ACM
SIGSOFT Software Engineering Notes, Vol. 11, Iss.
4. pp. 14-24. Doi: 10.1145/12944.12948.

24. Nevlyudov, I. Sh., Velykodniy, S. S., &
Omarov, M. A. (2010). “Ispol'zovanie
CAD/CAM/CAE/CAPP pri formirovanii upravlyay-
ushchikh programm dlya stankov s ChPU”. [Using
CAD / CAM / CAE / CAPP when forming control
programs for CNC machines], Eastern-European
Journal of Enterprise Technologies, Vol. 2, Issue 2
(44), pp. 37-44 (in Russian).

25.(2014). “Unigraphics Direct Interface:
Reference Manual”, Southampton: ICEM Ltd.,

392 p.

26. Werner, J. (2003). “The Case for Verifying
and Optimizing Tool Paths”. Irvine: CGTech, 5 p.

27. Velykodniy, S. S., Tymofieieva, O. S.,
Zaitseva-Velykodna, S. S., & Niamtsu, K. Ie.
(2018). Porivnyalniy analiz vlastivostey vidkritogo,
vilnogo ta komertsiynogo programnogo
zabezpechennya. [A comparative analysis of the
properties of open, free and commercial software],
Information Technology and Computer Engineering,
No. 1(41), pp. 21-27 (in Ukrainian).

28. Velykodniy, S. S., Burlachenko, Zh. V., &
Zaitseva-Velykodna, S. S. (2019). “Reinzhyniryng
grafichnyh baz danyh u seredovyshhi vidkrytoi'
systemy avtomatyzovanogo proektuvannja BRL-
CAD. Modeljuvannja povedinkovoi' chastyny”.
[Graphic data-bases reengineering in BRL-CAD
open source computer-aided design environment.
Modeling of the behavior part], Transactions of
Kremenchuk Mykhailo Ostrohradskyi National
University, No. 2(115). pp 117-126. Doi:
10.30929/1995-0519.2019.2.117-126 (in Ukrainian).

29. Miles, R., & Hamilton, K. (2006). “Learning
UML 2.0”. O'Reilly Media, 2006. 288 p.

30. Hay, D. C. (2011). “UML and Data Mode-
ling: A Reconciliation Technics Publications”,

242 p.

31. Haigh, T. (2010). “How Data Got its Base:
Information Storage Software in the 1950s and
1960s”, IEEE Annals of the History of Computing,
Vol. 31, Iss. 4, pp. 6-25. Doi:
10.1109/MAHC.2009.123.

32. Date, C. J. (2006). “Date on Database:
Writings 2000 — 20067, New York City: Apress,

566 p.

33. Velykodniy, S. S., Burlachenko, Zh. V., &
Zaitseva-Velykodna, S. S. (2019). “Reinzhyniryng
grafichnyh baz danyh u seredovyshhi vidkrytoi'
systemy avtomatyzovanogo proektuvannja BRL-
CAD. Modeljuvannja strukturnoi chastyny”.
[Graphic data-bases reengineering in BRL-CAD
open source computer-aided design environment.
Modeling of the structural part], Transactions of
Kremenchuk Mykhailo Ostrohradskyi National
University, No. 3(116), pp. 130-139. Doi:
10.30929/1995-0519.2019.3.130-139 (in Ukrainian).

34. Carroll, E. R. (2005). “Estimating Software
Based on Use Case Point”. OOPSLA '05:
Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming,
systems, languages, and applications, San Diego,
CA, pp. 257-265. Doi: 10.1145/1094855.1094960.

35. Cohn, M. (2005). “Agile Estimating and
Planning”, Publ. Prentice Hall, NY, 368 p.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

203

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Designing Information Technologies and Systems

36. Clemmons, R. (2016). “Project Estimation
with Use Case Points”. Cross Talk, Vol. 2, Iss.
February, pp. 18-22.

37. Kalnauz, D., & Speranskiy, V. (2019).
“Productivity estimation of serverless computing”,
Applied Aspects of Information Technology, Vol. 2,
No.1, pp. 20-28. Doi: 10.15276/aait.02.2019.2.

38. Velykodniy, S. S., Burlachenko, Zh. V., &
Zaitseva-Velykodna, S. S. (2019). “Software for
automated design of network graphics of software

40. Fauler, M. (2011). “UML. Osnovy. Kratkoe
rukovodstvo po standartnomu yazyku ob’ektnogo
modelirovaniya” [UML. Basics. A quick guide to
the standard object modeling language], Moscow,
Russian Federation, Simvol-Plyus, 192 p.

41. Robinson, S. Kornz, O., & Glinn, J. (2005).
“C# dlya professionalov”. [C# for professionals],
Moscow, Russian Federation, Lori, 1000 p.

42.(2013). “Object Management Group. OMG
Unified Modeling Language (OMG UML). Version

systems reengineering”. Herald of Advanced
Information Technology. Vol. 2, No. 2. pp. 95-107.
Doi: 10.15276/hait.02.2019.2.
39. Boggs, W., & Boggs, M. (2008). “UML &
Rational Rose”. SPb., Lori,. 600 p.

2.5”. Object Management Group, 831 p.

Received 29.04.2019

YK 004.42

'Beauxoanuii, Cranicaas CepriiioBuy, KaHIuIaT TEXHIY. HAYK, JIOLEHT, JIOLEHT Kadeapu inpopmariiitnux
texHoJorii, E-mail: velykodniy@gmail.com,

ORCID ID: https://orcid.org/0000-0001-8590-7610

'Onecbkuil nepsxaBHUI eKOIOriYHMI yHIBepcuTeT, By JIbBiBChbKa, 15, M. Oneca, Ykpaina, 65016

AHAJII3 TA Y3ATAJIBHEHHA PE3YJIBTATIB KOMINVIEKCHUX EKCITIEPUMEHTAJIBHUX
JOCJIIKEHD 3 PEIHX KUHIPUHI'Y BIIKPUTUX CUCTEM ABTOMATU30BAHOI'O
INPOEKTYBAHHA

Anomauia. Y cmammi nooaiomscs 3aKa0uHi pe3yabmamu Hayko8o2o 00CTiOJNCeH sl 3 po3poonents mooenell ma memooie
PEIMdCUHIpUHZY, A MAKOJC MEXHON02IU MYTbMUNIHSGICMUYHO20 NePeKOOY8aAHHA BIOKPUMUX —CUCHEM ABMOMAMU308AHO20
npoexmyeants. CRilbHOI pucoio 015 YCiX NPOSPAMHUX CUCMEM € me, W0 NI 6NIUBOM YACYy MA IHWUX HeGi0 €EMHUX (akmopie
iH(hopmamu3zayii, a came OHOGIEHHS. ONEPAYIUHUX CUCMEM, MO8 NPOSPAMYBAHHS, NPUHYUNIE Oii PO3NOOIIEHUX cucmem 0OpoOKuU
danux mowjo, 8i00ysacmuvca eonoyiline cmapinua eudie 3abesneuenns. Taka menoeHyiss npuzgode 00 NOSIPUIEHHA WBUOKICHUX,
iHGOPMAYILIHO-KOMYHIKAYIUHUX, 2PADIYHUX, YACOBUX MA IHWUX XAPAKMEPUCTUK, adic 00 NOGHOI 8I0M06uU cucmemu. Peinowcunipune —
ye npoyec, AKUll 003608€ 3PYUHO U WBUOKO CMEOPIO8AMU HOGI, VOOCKOHANEHI NPOSPAMHI CUCHEMU, SUKOPUCTOBYIOUU 00C8i0
nonepeomix npocpamuux npooykmis. Mema cmammi — cucmemamu3syéamu pe3yibmamu inmezpayii KOMHIOHEHMiE NOB8MOPHO20
BUKOPUCAHHS, WO HAKONUYEHO PO3POOHUKAMU 3a SUSHAYEHUL YaAC POZGUMKY 2AIY3e6UX CUCTEM AGMOMAMUZ08AHO20 NPOEKNYBANHS
Y OHOBIEHI NPOSPAMHI CIIPYKIMYPU 20MOBUX PECYpCi6. 3a OMPUMAHUMU HAYKOSUMU MA NPAKMUYHUMU Pe3YTbmamamil GUKOHYEMbCS
ananiz pospobaenux mooenei ma memooie peindiCuHipunzy 6udie 3abesneueHHs GIOKPUMUX CUCTEM ABMOMAMU308AHO20
NpoeKmy6ants. 3aeanom, peindxicuHipune micmume y cobi npoyecu peopeanizayii ma pecmpykmypuzayii npoepamuol cucmemu,
nepeeeoeHHs OKpeMux KOMNOHEHMI8 CUCMEeMU 6 [HULY, CYYACHIWY MOBY NpOSPAMYSAHHA, A MAKOMdC npoyecu moougixayii abo
MoOepHizayii cmpykmypu i cucmemu oOauux. B Oocnidsceni 3adiani macmynui memoou: CKIA0ANbHO20, KOHKPEMu3yiouozo,
CUHME3YI04020 MA KOMNO3UYILIHO20 NPOSPAMYBAHHS, MemOOU NOPOOICYBANbHUX U PO3NI3HABANbHUX epamamuk. Ha yeii yac, npoyec
NPOEKMYBAHHA HOBUX NPOSPAMHUX NPOOYKMiI6 € He HaAOmo egexmuenum 0Oe3 euxopucmanua UML-memodonocii, ane npu ii
3acmocysanti weuoKicms po3pobku niosuwyemoca y pasu. UML, sk mosa epaghiunozo onucy 011 06'ekmnoeo mMooento8anHs, okpim
NPOCMO20 NPOEKMYSAHHA, NIOMPUMYE we 1 (PYHKYI0 cenepayii ma peiHdCUHIpuHzy KOOy HA OCHOSI OaHUX Moodenell, came sKi
po3enanymo y nooauit cmammi. BiOMiHHO0 0cobIugicmio HagedeHux O00CiONCeHb € MONCIUGICMb NIOMPUMKU pobomu Oinvule
OecAmu HAUNONYIAPHIWUX MO8 npoepamysanns. TIpu 3acmocysanni HageOeHUx mMexHONO02il 60AEmMbCs ASMOMAMU3Y8aAmu npoyec
nepexooyeanHs KOMNOHEHMIE NpOcpaMHO20 3abe3neuenHs Ma, 3d PaxyHoOK Yb020, GUBLTbHUMU poOOHUIl 4acC npozpamicmie 6i0
PYMUHHO20 Nepenpocpamy6ants i 3MeHWUmy Gipo2ioHiCMy GUHUKHEHHS CMPYKMYPHUX NOMUIOK, WO YCNAoKO8YIOMbCa Gi0
nonepeonvoi cucmemu. Bukopucmanns ompumanux pe3ynomamie Haoacmv 3HA4He NIOBUWEHHS e@eKmUBHOCI 3acmOoCy8anHs
cucmem agmMoMamu308anH020 NPOEKMYBAHHA Y MAKUX 2aTY3AX X GUKOPUCMANHA AK: MAWUHOOYOyeanHs, cghepa menekoMyHiKayil,
VAPAGNIHHA BUPOOHUYMEOM MA MPAHCNOpmMOM, oceima mowjo. Pospobaeni modeni ma memoou cmawymov y HA200i CUCHIEMHUM
apximexmopam ma indceHepam-npoepamicmam, Axi 3a0isani y nepenpoexkmy8anii npoepamHoco 3a0e3nevents, Wo 8ice 3HaAX00AMbCs
Y KITbKapiuHitl ekcniyamayii.

Kniouosi cnosa: peingcunipune cucmem asmomamu3o6anozo npoekmyeants; memooonozis UML; 6acamomosne mpanc
KOOY8AHHL; NiH2GICMUYHA CIMPYKMYPA, NOPOOICYBANbHA SPAMAMUKA

204 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186-205
Designing Information Technologies and Systems

YK 004.4'2

'Beaukonnpiii, Cranucaas CepreeBud, KaHAWIAT TEXHWY. HayK, JOIEHT, JOUEHT Kadeapsl
nHPOPMAIMOHHBIX TEXHOIOTUH, e-mail: velykodniy@gmail.com,

ORCID ID: https://orcid.org/0000-0001-8590-7610;

'Onecckuil rocy1apcTBEHHBIH SKonorMueckuii yausepeurer yi1. JIbBoBckas, 15, r. Onecca, Ykpauna, 65016

AHAJIN3 U OBOBINEHUE PE3YJIbTATOB KOMINVIEKCHBIX SKCIIEPUMEHTAJIBHBIX
HUCCJIEJOBAHUMU ITIO PEUHXXKUHUPHUHI'Y OTKPBIThIX CUCTEM
ABTOMATHU3UPOBAHHOI'O TPOEKTUPOBAHUA

Annomayun. B cmamve npedcmasnensvl 3aKnouumensHle pe3yabmamsl HAYYHOLO UCCIe008aHUA NO paspadomke mooeneil u
Memo008 peuMdNCUHUPpUHEa, A MAKdXHCe MEeXHONO2UU MYTbMUTUHSBUCUYECKO20 —NePeKOOUPOBAHUA — OMKDLIMbIX — CUCHEM
A6MOMAMU3UPOBAHH020 npoekmuposanus. Obuell uepmoil 015l 6cex NPOSPAMMHBIX CUCTEM ABNAEMCA MO, YMO NOO GIUAHUEM
epeMenu U Opyeux HeomvemiemMbix QaKmopos UHOOpMamusayuu, a UMEHHO OOHOBIEHUe: ONEPAYUOHHBIX CUCTHEM, SA3bIKOG
NPOSPAMMUPOBAHUS, NPUHYUNOE OeliCBUs PACHpeOeNieHHbIX Cucmem 00pabomKu OAHHBIX U Op. NPOUCXOOUM 3IBONOYUOHHOE
cmapenue 6u0o8 obecneuenus. Takas meHOeHYUs NPuBOOUm K YXYOUEHUIO CKOPOCHBIX, UHQOPMAYUOHHO-KOMMYHUKAYUOHHBIX,
epaguueckux, 6peMeHHbIX U Opyeux Xapakmepucmuk, 8nioms 00 NOIHO20 OMKA3A CUCMeMbl. PeuHdCuHupuHe — smo npoyecc,
KOMOopblil no38oasAem yOooHO u 6bicmpo c030a6amb HOBble, YCOBEPUIEHCIBOBAHHbIE NPOSPAMMHbIE CUCHIEMBbI, UCHOAb3YA ONbIM
npeovlOyWUx NpocpamMmMHulX npodykmos. ILlenb cmamvu — cucmemamuzupogamsv pe3yrbmamvl UHmMezpAyuu KOMNOHEHMO8
NOBMOPHO20 UCNONL306AHUS, HAKONACHHBIX pA3PADOMYUKAMU 34 ONpeoefieHHOe 6peMsl pa3eumus Ompaciegvlx CUCHmem
A6MOMAMUBUPOBAHHO20 NPOEKMUPOBAHUS 8 ODHOBNIEHHbIE NPOSPAMMHbBLE CIPYKIMYPbl 20MOEbIX pecypcos. 110 nonyuenHbiM HayuHbIM
U NPAKMUeCKUM pe3yIomamam GulNOIHACMCA AHANU3 PA3PAOOMANHBIX MOOeell U Memo008 PEUHICUHUPUHEA 8U008 0becneyeHUs
OMKPLIMBIX CUCTNEM — A8MOMAMUSUPOBAHHO20 NpoeKmuposanus. B yenom, peunswcunupune exniouaem 6 cebs npoyeccol
peopeanuzayuy U pecmpykmypusayuu npoepammHoli CUCIeEMbl, Nepesod OmOeIbHbIX KOMNOHEHMO8 cucmemvl Ha Opyzou, 6oee
COBPEMEHHDBIIL A3bIK NPOSPAMMUPOSAHUS, d MAKICE NPOYECCHL MOOUDUKAYUY UL MOOEPHUAYUL CIPYKIMYPbL U cUCmeMbl OaHHbIX. B
UCCIe008anul 3a0eliicmeosansl Ciedyouue Memoobl: c60POYHO20, KOHKDEMUSUPYIOWE20, CUHMESUPYIOUe0 U KOMNOSUYUOHHOZO
NPOSPAMMUPOBAHUS, MeMOObl NOPONUCOAIOWUX U PACNOSHAWUX 2PAMMAMUK. B Hacmosujee eépems, npoyecc npoeKmuposaHus
HOBIX NPOSPAMMHBIX NPOOYKMOG He CIUUKOM dghpexmusen 6e3 ucnonvzosanus UML-memooonozuu, 00Hako npu ee npumeHeHuu
ckopocmb paspabomxu nogviaemcs 6 pasvl. UML, kak A3vlKk epaguueckozo onucanus 0nsa 00beKmHo20 MOOeIUpOsaAnUs, Kpome
npPOCMO20 NPOEKMUPOsanUs, noooepaicusaem ewje QYHKYuu ceHepayuil U peurHNICUHUpUHea Ko0a HA OCHOBE PACCMOMPEHHBIX 6
Oannoll cmamoee mooenei. OmauuumenvHol 0COOEHHOCbIO NPUBEOEHHBIX UCCIe008aHUM, ABNAEMCA 803MONCHOCL NOOOEPIHCKU
pabomel Oecamu CamblX NONYIAPHBIX A3LIKOS Npozpammuposanus. IIpu npumenenuu YKA3aHHbIX MEXHOIO2UU yoaemcs
ABMOMAMUZUPOBAMb NPOYECC NePEeKOOUPOBAHUSL KOMHOHEHIMO8 NPOZPAMMHO20 0DeCneyeHus, U 3a cyem 3Mmoz2o, 8blc80600UNb
pabouee 8pems NPOSPAMMUCIOE OM DYMUHHO20 NEPENnPOSPAMMUPOBAHUS, A MAKNHCE YMEHbUUMb BEPOSNMHOCHTL 803HUKHOBEHU
CMPYKMYPHBIX OWUOOK, KOMOpble HACIeOYIOMcs om npedvloywell cucmemvl. Mcnhonv3osanue noayueHHoblX pe3yibmamos no360aum
SHAYUMENILHO NOBLICUMb IPPHEKMUBHOCb NPUMEHEHU CUCEM ABMOMAMUZUPOBAHHOLO NPOEKMUPOBAHUS 8 MAKUX 0OIACMAX UX
UCNONb306AHUSA KAK: MAWUHOCMPOEHUe, chepa MeneKOMMYHUKAYULl, YRpasienus. npou3sso0CmeoM u mpaHcnopmom, oopazosanue u
op. Paspabomannvie modenu u memoowbl NpueooAMcs CUCHEMHbIM APXUMEKMOPAM U UHICEHePaAM-NPOSPAMMUCAM, KOMOpble
3a0eticmeosanyl 6 nepenpoeKmupo8aHUY NPOSPAMMHO20 0DECneYeHUs, HAXO0OAWE20CA 8 MHO20IemHell IKCIIYAmayuu.

Knrouesvie cnosa: peunsicunupune cucmem agmomamusuposaHHo20 npoekmuposanus; memooonoeus UML; muozosasviunoe
MPAHCKOOUPOBAHUE, TUHSBUCIIUYECKAS CIMPYKIMYPA, NOPOHCOAIOWAS SPAMMAMUKA

Stanislav Sergeyevich Velykodniy, Candidate of Technical Science,

Associate Professor

Research field: software design, software analysis and testing, software project
management

ISSN 2617-4316 (Print) 205
ISSN 2663-7723 (Online)

