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PROGNOSIS METHOD OF UNFAVORABLE AIRBORNE EVENTS
DURING FLIGHT BASED ON CONVOLUTIONAL
AND RECURRENT NEURAL NETWORKS

This paper contains formal problem definition of predicting unfavorable airborne events during flight. Restrictions and
assumptions are put into the prognosis method of unfavorable airborne events during flight. Mathematical apparatus used to
build prognosis method is suggested. As a basic mathematical apparatus it is suggested to use, recurrent neural networks
(RNN) based on LSTM modules and convolutional neural networks (CNN). Analysis of these neural networks has shown
that RNN based on LSTM modules are mostly effective when analyzing structured text, such as report of investigation of
airborne accidents. In its turn, CNN are effective when analyzing unstructured text, such as text messages about the flight
situation based on the information from external sources. Prognosis method of unfavorable airborne events during flight
based on convolutional and recurrent neural networks is developed. In case of solving the task of prediction of unfavorable
airborne events during flight RNN are used for initial setup of the Embedding layer of the structured training data in the
process of hybrid neural network training. CNN are used during the direct operation of hybrid neural network model of
prediction of unfavorable airborne events during flight.

Keywords: deep neural network; convolutional neural network; recurrent neural network; prognosis; unfavorable

airborne event; hyperparameter; accuracy factor.

Introduction

Problem statement. From different reports and
researches on airborne events it is clear that civil
aviation flight’s safety is unsatisfactory [1-3].
Automatization of the prognosis of unfavorable airborne
events during flight based both at the ground control
post and at the aircraft is one of the modern approaches
to solve the problem how to increase flight’s security.
With this, emphasis is made on use of right processes of
methods and models of artificial intelligence for
formalization of these reports, especially with methods
and models based on deep neural networks.

Among other things, this paper recommends to use
convolutional and recurrent neural networks within the
framework of deep neural network to formally represent
the processes of solving the task of prognosis of
unfavorable airborne events during flight [4-9]. The
prognosis of the rapid emergence of airborne event of
some class is recommended to be examined as an
analysis of text messages, being formed on results of
data, gathered from different sources during air traffic
control. Learning pattern and function of deep neural
network has special meaning for quality prognosis.
Simultaneously, usage of networks of this class to
predict unfavorable airborne events during flight are
underexamined. At this context, the paper introduces the
prognosis method of unfavorable airborne events during
flight based on convolutional and recurrent neural
networks.

Actual scientific researches and issues analysis.
The problem of automatization of solving the task of
preventing airborne events is mentioned in literature
quite often and many works are dedicated to it [10-12].
For example, paper [13] examines in detail question of
designing the system that predicts and prevents airborne

events during organization and process of air traffic.
With this, question of usage of deep neural networks to
solve the task of prognosis and prevention of
unfavorable airborne events during flight are
underexamined and require further researches.

Purpose of the article. Development of prognosis
method of unfavorable airborne events during flight
based on convolutional and recurrent neural networks.

Main part

Formally, the task of prognosis of unfavorable
airborne events can be represented as follows. It is
required to create a N classifier, which will predict the
initiation of airborne accident of some class Ks. The
analysis, made in paper [13], shows that the chain that
leads to the airborne event includes next main elements:

- exposure of factors ( H;), which are an initiating
event for the airborne accident;

- an intermediate event ( £, );

- escalation, that leads to the end-state event (/)

of the airborne accident.
In this case, the result of the prognosis can be
depicted as

Fo ARG = (LB

The process of prognosis of unfavorable airborne
event of some class itself in this work recommended to
be examined as an analysis of text messages, being
formed on results of data, gathered from different
sources during air traffic control. In this setting, analysis
of text messages consists of picking up key words
which describe elements H;, E,, [ i followed by

automatic definition of possibility of initiation of
airborne event of defined class K.
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The airborne event is formally depicted as
following finite sequence

K, Datey ,Timey,, Countryy , Placey,,

ACCy, =

Typedir, , Regy,, Airline , Flight;,, )}, (2)

(EAEAMT)

where K — class of an airborne event; Date;, — date of
an airborne event; Time; — time of an airborne event;
Country; — country, where airborne event happened;
Place;, — place of an airborne event; Typedir, —type of
aircraft; Reg, — aircraft registration; Airline;, — airline,
which was operating aircraft; Flight, — flight number;
{H;} U{E}u {11’} — description of an airborne event.

Restrictions and assumptions adopted during the
development of prognosis method of unfavorable
airborne events during flight:

- questions of gathering, processing and forming
text messages for prognosis of unfavorable airborne
events during flight are taken as solved and are not
examined in this work;

- this work takes as a text message both
unstructured and structured set of data organized as
short sentences with a big number of learning examples;

- developed prognosis model can be used either

during situational air traffic control ({H;}U{E;}), or

for classification of unfavorable airborne events during
flight that have already happened, during their

investigation ({Hl-} U{E, } u{lj}) .

Deep neural networks (convolutional neural
network (CNN) and recurrent neural network (RNN)
with LSTM blocks) are used as methods to develop a
model of prognosis of unfavorable airborne events
during flight based on the analysis of text messages.

Nowadays, CNN are considered highly effective
when analyzing unstructured text. In the context of
solving the problem of prognosis of unfavorable
airborne events during flight this type of network is
effective when using it in function of hybrid neural
network model of prognosis of unfavorable airborne
events during flight when unstructured data is the input
data. With this, trained beforehand layer Embedding,
based on structured learning data as a vector layer.

RNN based on LSTM modules are considered
mostly effective first of all when analyzing structured
text. In the context of solving the problem of prognosis of
unfavorable airborne events during flight these networks
are effective for initial setup of Embedding layer based
on learning data when training hybrid neural network
model of prognosis of unfavorable airborne events during
flight. Common structure of method of prognosis of
unfavorable events during flight based on hybrid neural
network model with use of convolutional and recurrent
neural networks is presented on the Fig. 1. This method
includes next main procedures and methods:

1) Procedure of defining basic architecture of
neural network model used for prognosis of unfavorable

events during flight. The result of this procedure is fully
determined by the results of the research of
mathematical apparatus to develop a model of prognosis
of unfavorable events during flight. According to the
results of the research the architecture of the model for
prognosis of unfavorable events during flight is based
on hybrid model on the basis of CNN, used for
functioning of hybrid neural networking model of
prognosis of unfavorable events during flight and
LSTM, used for training hybrid neural networking
model for prognosis;

2) Procedure of defining of hyperparameters for
hybrid neural networking model for prognosis of
unfavorable airborne events with use of CNN and
LSTM;

3) Procedure of training of hybrid neural
networking model and forming weight values for
Embedding layer for prognosis of unfavorable airborne
events during flight with learning data, received after
use of method of learning data (this method is presented
in [14]). With that, LSTM topology is used as base
topology of neural network;

4) Procedure of building vector model of text
messages from external sources during prognosis of
unfavorable airborne events in flight. This procedure is
similar to the procedure of building vector model of text
messages on learning examples, which is executed when
forming learning data [14];

5) Procedure of prognosis of unfavorable airborne
events during flight based on function of trained hybrid
neural network model with use of CNN and pre-trained

layer of LSTM.

Defining basic architecture of
hybrid neural network used for
prognosis

!

Defining hyperparameters for
connectionist network model
used for prognosis

4 A 4

Building vector model of text
messages based on the data of
external sources

Forming training sample
based on structured data

4 A 4

Teaching hybrid model to predict
basing on RNN

| Prognosis of events with use of trained
model based on CNN

v

C

Fig. 1. Common structure of method of prognosis
of unfavorable events during flight based
on hybrid neural network model

It is recommended to consider next indicators as
accuracy factors of prognosis:
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1. Index of precision — ratio of t, to (tp +fp) ,

where t, — number of true positive values and f » —

number of false positive values. This means that index

of precision characterizes how many of received

positive answers from the prognosis model are correct;
2. Index of completeness — ratio of t, to

(t ' In ), where f,, —number of false positive values.

Index of completeness defines prognosis model’s
capability to predict as many positive true answers as
possible;

3. Support of measure — number of data for each
of classes or smallest closed array, which this measure
is focused on.

Let us look upon most complex and important
procedures of training hybrid neural networking model
for prognosis of unfavorable airborne events during
flight with use of trained hybrid neural network model
in details.

Training procedure for hybrid neuro networking
model for prognosis of unfavorable airborne events is
fully determined by training algorithm for neural
network based on LSTM module. Structured data in a
form of reports on results of investigation of
unfavorable airborne events during flight (many training
examples include 100 to 5000 learning examples) is
used as learning data. Thereafter, based on transfer
learning technology, to predict unfavorable airborne
events during flight, Embedding layer, prepared
beforehand is sent to CNN input. CNN continues to
learn with use of learning data given as unstructured
data about current situation during flight (in this case an
array of learning examples may consist of 100 to 500
learning examples). The scheme of this procedure is
presented as Fig. 2.

@

Training RNN based on LSTM
module with use of
backpropagation algorithm

v

Transfer of training from RNN to
CNNC with use of of Embedding
layer based on transfer learning

v

Continuation of training of CNN
using backpropagation algorithm

Fig. 2. Structural chart of realization
of hybrid neural networking model for prognosis
of unfavorable airborne events during flights

Training of RNN based on LSTM modules is
similar to training classical neural network [6]. Thereby,
as a basic training algorithm is used back propagation
algorithm [4, 6]. This algorithm is based on a principle,
which allows calculating vector of partial derivatives
(gradient) of the error function of network. Error function
is a difference between current neural network’s output
value and wanted value, which has to be received. During
training process, cascade compensations of weight
quotients takes place and error function decreases
stepwise.

The value of error function is weighed sum L
between localization error Ly, (for example, error Smooth
L) and trust error L, (for example, error softmax).

In RNN, because same parameters are used for all
periods of time in the network, each gradient on the
output depends not only from calculations of current
step, but also from previous time steps. For example, to
find gradient with t=4, the error has to be spread over 3
steps and these gradients have to be summarized. This
algorithm is known as Back propagation Through Time
(BPTT).

What has also to be taken into account is that
recurrent neural networks trained with BPTT have
difficulties with training of longtime dependencies (for
example when defining dependencies between steps,
which are far away from each other) because of gradient
dying-away.

Function and training of RNN based on LSTM
modules are beased on realization of next stages:

-layer of vector representation of words
Embedding converts each input (tensor of & works) in
tensor k N — dimensional vector representations of
words (N — size of representation);

- each word, typical for messages about the results
of investigation on airborne events, is associated with
weight vector, that has to be learned while training
neural network;

— creation of tensor, that represents the message
about the results of investigation on airborne events;

—immediate setup of LSTM wages is executed
with use of RNN layers based on blocks of LSTM
modules (with use of Dropout layer) while learning with
use of BPTT. RNN layer is opening dynamically,
receiving at the input of & — vector representations and
gives M —dimensional vectors, where M — is a number
of LSTM modules per block, in general case;

— vector Softmax is realizing output of RNN layer
with averaging through k time steps. Tensor with M
dimensions is formed to calculate possibilities for
prognosis of unfavorable airborne events during flight.

Procedure of prognosis of unfavorable airborne
events during flight with use of hybrid neural
networking model is realized through execution of next
operations (Fig. 3):

1) conversion of input words at the data layer as a

three-dimensional array (tensor) Wict X H picy X D

ict pict pict >
vector representation of words (vector model of text
messages)based on the data from external sources;

2) realization of forward pass of CONV and ReLU

layers. Number of CONV and ReLU layers is defined
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by architecture of CNN wused for prognosis of
unfavorable airborne events during flight;

Formatting input data

Realization of forward pass of CONV’
and ReL U layers

Realization of forward pass of
MaxPOOL layer

Realization of “inception” I* type
module function

Realization of “inception” 2™ type
module function

Realization of “inception” 3" type
module function

realization of forward trace of
additional CONV layers without ReLU
layers

Realization of forward trace of
AvgPOOL layer

Realization of Softmax layer

Fig. 3. Structural chart of prognosis of unfavorable airborne
events during flight procedure

Training convolutional neural
network

3) realization of forward pass of MaxPOOL layer
in accordance to the architecture of CNN used for
prognosis of unfavorable airborne events during flight;

4) realization of “inception” 1% type module
function which represents “network in network”.
Number of layers in “inception” 1% type module is
determined in accordance with CNN architecture;

5) realization of “inception” 2™ type module
function which represents “network in network”.
Number of layers in “inception” 2™ type module is
determined in accordance with CNN architecture;

6) realization of “inception” 3™ type module
function which represents “network in network”.
Number of layers in “inception” 3™ type module is
determined in accordance with CNN architecture;

7) realization of forward trace of additional CONV
layers without ReLU layers. Number of CONV layers is
defined by features extraction subnet Fuzzy Inception-
SSD;

8) realization of forward trace of AvgPOOL layer
in accordance to CNN architecture;

9) feature maps, calculated on the output of
AvgPOOL layer, are joined in one general layer of
identifiers. It goes to input of hidden directly connected
layer and then to the neural network output layer
Softmax where resulting class markers for prognosis of
unfavorable airborne events during flight are calculated.

Conclusions

Formal problem definition of prognosis of
unfavorable airborne events during flight is completed.
The process of prognosis of unfavorable airborne events
during flight of some class is recommended to be
examined as an analysis of text messages, being formed
on results of data, gathered from different sources
during air traffic control.

The analysis of text messages itself involves
picking up key words followed by automatic definition
of possibility of initiation of airborne event of defined
class. Restrictions and assumptions adopted during the
development of prognosis method of unfavorable
airborne events during flight.

Use of developed method allows to provide
effective prognosis of unfavorable airborne events
during flight in future based on use of hybrid neural
network.

Development of proposals to use computer
facilities to realize process of prognosis of unfavorable
airborne events during flight directly on the aircraft can
be a direction for future research.

REFERENCES

1. Interstate Aviation Committee (2018), State of safety in civil aviation of the States Parties to the agreement on civil aviation
and the use of airspace in the first half of 2018, Moscow, 29 p., available at: https://mak-iac.org/upload/iblock/5b0/bp-18-1.pdf.

2. Joyce A. (2014), Safety Report 2013, IATA, Montreal-Geneva, 60 p., available at:
https://www.iata.org/about/documents/iata-annual-review-2013-en.pdf

3. BCA (2009), Statistical Summary of Commercial Jet Airplane Accidents, Worldwide Operations 1959-2008, Boeing
Commercial Airplanes, Seattle, Washington 98124-2207, USA.

4. Britz, D. (2017), Understanding convolutional neural networks for NLP, available at:
http://www.wildml.com/2015/11/ understanding-convolutional-neural-networks-for-nlp

5. Manning, C. and Socher, R. (2018), Natural language processing with deep learning, available at:

http://web. stanford.edu/class/cs224n

107



Advanced Information Systems. 2019. Vol. 3, No. 1 ISSN 2522-9052

6. Olah, C. (2017), Neural networks, recurrent neural networks, convolutional neural networks, available at:
http://colah.github.io

7. Sivaram, M., Porkodi, V., Mohammed, A.S. and Manikandan V. (2019), “Detection of Accurate Facial Detection Using
Hybrid Deep Convolutional Recurrent Neural Network”, ICTACT Journal on Soft Computing, Vol. 09, Issue 02, pp.1844-
1850, DOI: http://doi.org/10.21917/ijs¢.2019.0256

8. Sivaram, M., Batri, K., Amin Salih, Mohammed and Porkodi V. (2019), “Exploiting the Local Optima in Genetic
Algorithm using Tabu Search”, Indian Journal of Science and Technology, Volume 12, Issue 1, doi:
http://doi.org/10.17485/ijst/2019/v12i1/139577

9. Sivaram, M., Yuvaraj, D., Amin Salih, Mohammed, Porkodi, V. and Manikandan V. (2018), “The Real Problem Through a
Selection Making an Algorithm that Minimizes the Computational Complexity”, International Journal of Engineering and
Advanced Technology, Vol. 8, Iss. 2, 2018, pp. 95-100.

10. Kuklev, E.A. (2003), “Evaluation of the level of safety of flights in civil aviation in risky situations based on chains of
random events”, Science and technology of transport, No. 2, pp. 4-14.

11. Sharov, V.D. (2011), “Methodology of application of the combined FMEA-FTA method for analyzing the risk of an aviation
event”, Scientific Herald of MSTU GA, series “Air Transport Operation. Safety of flights”, No. 174, pp. 18-24.

12. Zubkov, B.V. (2010), Theory and practice of determining risks in airlines when developing a safety management system,
MGTU GA, Moscow, 196 p.

13. Sharov, V.D. (2007), “Methodology for estimating the probability of aircraft rolling out of the runway during landing”,
Scientific Herald of MSTU GA, Series "Operation of air transport and repair of aviation equipment. Flight safety”, No. 122,
pp- 61-66.

14. Pavlenko, M., Shilo, S., Borosenets, I. and Dmitriev O. (2018), “Directions of development of intellectual models and
methods of information processing for management of the information support process for decision-making in automated air
traffic control”, Control, navigation and communication systems, PNTU, Poltava, Vol. 5 (51), pp. 24-28.

Received (Hapniiinma) 16.01.2019
Accepted for publication (ITpuitasita mo apyky) 20.03.2019

Merton nporHo3yBaHHsl HeCIPUATIMBUX aBialiiiHUX nogiil B NoaboTi
HA OCHOBI 3rOPTKOBHX i pEKYPEHTHHX HeliDOHHHX Mepex

€. O. I'punmanos, T. Kanimynis, 1. B. 3axapuenko

V naniif po6oTi BUKOHaHa (opMalibHA MOCTAHOBKA 3a]adi IPOrHO3YBAaHHS HECIPUSTIMBUX aBialliiHUX MOJIH B MOJBOTI.
BBeneHo oOMEXEeHHsA 1 JONYIIEHHS NP pO3poOLl METOAY IPOTHO3YBaHHS HECHPUSATIMBHUX aBialliiHUX MOAIN B IIOJNBOTI.
3anpornoHoBaHO MaTeMaTHYHUN anapar uis no0ya0oBH MOJENl NPOrHO3yBaHHs HECIPUSATIMBHUX aBialliiHUX IOJIH B mosboti. B
AKOCTi 0a30BOr0 MaTeMAaTHYHOIO aIapaTry 3alpOIOHOBaHO BMKOPHCTOBYBATH DPEKYPEHTHI HelpoHHI Mepexi RNN nHa 6a3i
moxyaiB LSTM i 3roprkoBoi HeiiporHoi Mepexxi CNN. AnHaii3 MoxIMBOCTeH Mepex rmokasas, mo RNN na 6a3i moxynis LSTM
edeKTHBHI, HacamIepes, IPHU aHali3i CTPYKTYPOBAHOTO TEKCTY, B SIKOCTI SIKOIO pPO3IVIIJAIOTHCS 3BITH IPO pE3yNbTaTH
po3ciigyBaHHs aBiauiiiHux noxiil. ¥ cBoro yepry CNN edeKTuBHI pu aHali3i HECTPYKTYPOBAHOI'O TEKCTY, B SIKOCTi SKOTO B
PpoOOTI PO3TIIIAIOTECS TEKCTOBI ITOBIOMIICHHS NP0 CHTYallii B MOJIBOTI 32 JaHHUMH BiJ 30BHILIHIX JDkepeln. Po3pobiieHo Merox
MPOTHO3YBAaHHS HECNPUTIMBUX aBlalliiiHUX MOl B IOJbOTI HA OCHOBI 3rOPTKOBUX 1 PEKypeHTHHX HeHpoHHHX Mepexx RNN B
KOHTEKCTi BHPpIIICHHS 3aBJaHHA HPOTHO3YBaHHS HECHPUSATIMBHX aBlallMHMX MOXIH B MOJBOTI BUKOPUCTOBYIOTBHCS JUIS
[OYaTKOBOI'O HAJIAIITYBAHHS IPUXOBAHOTO APy HA CTPYKTYPOBAaHMX HaBYAJIbHUX NPHKIANAX B MPOLECI HABYAHHS IiOpHIHOL
HelipomepexxeBoi Mozeni, CNN BUKOPHCTOBYIOThCS B IpoLeci Oe3nocepetHboro GyHKIiOHyBaHHs riOpuaHoi HeifipoMepexeBoi
MO IPOrHO3YBaHHS HECIIPUSATIIMBHX aBialliifHUX MOAIN B MOJIBOTI.

Kaw4yoBi caoBa: rimboka HeHpoHHA Mepeka; 3rOpPTKOBAa HEHpPOHHA Mepeka; PEeKypeHTHa HEHpOHHA Mepexa;
MIPOrHO3YBaHHS; HECTIPUATIINBA aBialliifHa OIS, rineprnapaMerp; OKa3HUK TOYHOCTI.

Merton nporHo3upoBaHust HeGIAroNPHUATHHIX ABMALMOHHBIX COOBITHI B NoJIeTe
HA OCHOBE CBEPTOYHBIX U PEKYPPEHTHBIX HeiipOHHBIX ceTeil

E. O. I'pummanos, T. Kanumynun, U. B. 3axapuenko

B nanHoii paGore BbInonHeHa (OpMaibHAsE MOCTAHOBKA 3aJadd IIPOrHOZUPOBAHMS HEOJIArONPUATHBIX ABHUAIIMOHHBIX
coObITHII B monere. BBeneHbl orpaHMueHUs M JOMYLIEHUS IPH Pa3paOOTKe METOJa HPOTHO3MPOBAHHSA HEONaronpHATHBIX
aBHALIMOHHBIX CcOObITHII B mosere. [IpeuiokeH MareMaTHUYeCKuil ammapar mjis IOCTPOCHHS MOJENHM IPOrHO3UPOBAHMS
HEOIaronpusTHBIX aBUALMOHHBIX COOBITHH B monere. B kadectBe 0a30BOro MaTeMaTH4ecKOro armapara HpeIOKEHO
HCITOJB30BaTh peKyppeHTHbIe HelipoHHble ceTd RNN Ha 6a3ze monyneid LSTM u cBeprounsie Heiiponnsie cetn CNN. Ananu3
BO3MOXHOCTeH cereil mokazanm, uyro RNN Ha ©0ase wmomyneit LSTM o¢dexrtuBHBl, npexae Bcero, Ipu aHAIN3E
CTPYKTYPHUPOBAHHOT'O TEKCTa, B KAaueCTBE KOTOPOrO PaccMaTPUBAIOTCS OTYETBHI O PE3y/IbTaTaX PaccllellOBAHHS aBHAIIMOHHBIX
npoucmectsuil. B cBoro ouepens CNN 3¢ dexruBHbI Ipy aHAIN3e HECTPYKTYPUPOBAHHOIO TEKCTa, B KayeCTBE KOTOPOro B
paboTe paccMaTpPUBAIOTCS TEKCTOBBIC COOOLICHHS O CKIIIbIBAOIICHCS CUTYAIMH B TIOJIETE 110 JAHHBIM OT BHELIHUX HCTOYHUKOB.
Pa3paGoran MeToj HPOrHO3MPOBaHUS HEONArONPUSATHBIX ABHUALMOHHBIX COOBITHII B IOJIETE HAa OCHOBE CBEPTOYHBIX U
PEeKyppeHTHbIX HeHpoHHBIX ceTell. RNN B KOHTEKCTE pelIeHMs 3a/audl HPOrHO3MPOBAHUs HEOJIaronpHATHBIX ABUALMOHHBIX
COOBITHII B MOJETE HCHOIB3YIOTCSA IS IE€PBOHAYAIBHOM HACTPOMKM CKPBITOrO CJIOS HAa CTPYKTYPHPOBaHHBIX OOYdYaroIIUX
JIAHHBIX B TIpouecce oOyueHus rubpuaHoil HelpocereBoil Moxenu, CNN HCHONB3YIOTCS B IpoLEcCe HENOCPEICTBEHHOIO
(byHKIMOHNPOBaHUs THOPUIHON HEHPOCETEBOI MOJIEIH IPOrHO3UPOBAHUS HEOIAr ONIPUATHBIX aBUALMOHHBIX COOBITHH B IOJIETE.

KnroueBbie ciioBa: riyOokas HEHpOHHas CeTh; CBEpPTOYHAs HEHPOHHAs CeTh; PEKYPPEHTHAas HEHPOHHAs CeTb;
[IPOrHO3UPOBAHUE; HEONArONPHUATHOE aBUALIMOHHOE COOBITHE; THIIEpIIapaMeTp; 10Ka3aTeb TOYHOCTH.
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