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Abstract: The article presents the new computational 
model which we name the parallel ordered-access machine 
because of its base – the parallel ordered-access memory. It 
also describes the computer architecture which implements 
proposed computational model and owing to this does not have 
such a limitation as the memory wall and provides parallel 
conflict-free memory access. The efficiency of the proposed 
ordered-access machine computational model is evaluated and 
an example of its implementation is presented. 

 

Index Terms: Computational model, Computer 
architecture, Parallel ordered-access memory, Parallel 
ordered-access machine. 

І. INTRODUCTION 
In the process of computer program development, 

which is written in the internal computer language to 
organize a sequence of computations given by the 
algorithm, an identification of the program components 
is used. An identification of some type provides finding 
the program components in the memory in accordance 
with access type. In modern computers the program 
components are identified by the addresses of the 
memory locations which hold them. In this case under 
the program components we mean the instructions, the 
data items, and the addresses. Each instruction of the 
program specifies the type of the operation to be 
executed, the addresses of the initial and intermediate 
data items to be processed similar to final data items, and 
(or) the address of the next instruction location in the 
main memory but only if its address is not calculated by 
the program counter incrementing. The appropriate 
computational model, which is based on the address 
memory access and on the identification of the program 
components by the addresses, supposes to execute each 
instruction, its loading together with the data items from 
the main memory locations pointed by the addresses, to 
execute the operations of data processing and to store the 
final data items in the main memory locations pointed by 
the addresses [1, 2, 3, 4, 5]. That is, the sequence of 
calculations, given by the algorithm, is provided in this 
computer by loading the program components according 
to the addresses of their locations in the main memory. 

The interest in creation of a new computational 
model is caused by the need for increasing the com-
puter’s performance. The issue is especially important 

nowadays when we talk about a decrease in the 
computer performance growth by means of improving 
the integrated technology. 

The main architectural factor that limits the perfor-
mance of the modern computer, whose program com-
ponents are identified by the addresses, is just the 
implemented computational model. Usage of this 
computational model is caused by the fact that the 
random-access memory (RAM), which the computer 
main memory is built on, is addressable and provides 
random access in each cycle, but only to one location 
[1], [4]. Thus, because the same memory unit is used for 
both data items and instructions, it allows only the 
sequential request by definition; the serial nature of 
computations is already laid in the principles of the 
modern computer architecture. 

The problem of the RAM bottleneck is partly solved 
using the memory divided into the multiple memory banks. 
This statement is confirmed by the fact that the shared 
memory computers belong to the most powerful and fast 
ones [6, 7, 8, 9]. Commercial shared memory computers 
provide parallel data processing, but their programming 
needs more time and it is often quite difficult to provide 
high performance [10, 11, 12, 13, 14]. 

In addition, only one program counter can be used in 
the computer that implements this computational model. 
That is another bottleneck that constrains the ability to 
increase the computer’s performance. Parallel loading of 
several instructions from the main memory, as it is in the 
superscalar architecture, and packaging of several 
consecutive instructions into one long instruction word, 
as it is in the VLIW architecture, allows the increasing of 
performance, but significantly complicates the computer. 

It should be noticed that other developed and tested 
computational models that use an identification of the 
data items according to their content or to some events 
(associative computers, data flow machines, reduction 
computer architecture, etc. [15, 16, 17, 18, 19]), have not 
become an alternative to the traditional one that uses an 
identification of the program components by addresses. 

The basic idea of the suggested computational model 
is to use the identification of the program components by 
their positions in the arrays. This computational model 
supposes indexing of each instruction and each initial, 



Anatoliy Melnyk 

 

94 

intermediate and final data items, holding them in the 
parallel conflict-free ordered access memory, ordering 
them inside this memory in the arrays according to their 
indices and further parallel processing of these arrays 
that provides significant decreasing of the data 
processing time and, accordingly, leads to the computer 
performance increasing. 

The paper is organized as follows. Section 2 
describes in detail the most used computational models 
in modern computers: stack-, content- and random-
access machines. Section 3 outlines the conventional 
memory types and challenging problems of their using in 
high-performance computers. Section 4 proposes the 
method of the program components identification by 
their indices in accordance with matrices. Section 5 
represents the basics; organization and functioning of the 
parallel ordered access memory which provides the 
parallel conflict-free memory access and ordering data 
according to their indices. Section 6 is dedicated to the 
new computational model description and comprises the 
problem description model and the execution model. 
Section 7 describes the new parallel ordered-access 
machine architecture and functioning. Section 8 then 
combines the results from the individual stages of the 
flow. Finally, Section 9 presents our conclusions. 

ІІ. KNOWN COMPUTATIONAL MODELS 
Computational model is a foundation of computer 

architecture. The concept of computational model 
comprises the set of the following three abstractions: the 
basic items of computations, the problem description 
model, and the execution model [20]. The basic items of 
computation are the items the computation refers to and 
the kind of computations (operations) that can be 
performed on them. To determine the basic items of 
computations the method of the program components 
identification is used. The problem description model 
refers to both the style, which specifies how problems in 
a particular computational model are described, and the 
method, procedural or declarative, of the problem 
description. The execution model interprets how to 
perform the computation, the execution semantics and 
control of the execution sequence. The computer 
architecture may be looked upon as a tool to implement a 
computational model. 

A few computational models are known for now. The 
most used in the modern computers are the following 
computational models: stack-, content- and random-
access machines, which are examined below. 

A. Stack-access machine computational model 
In the stack-access machine computer architecture the 

computational model based on the access to the data 
items according to the stack pointer value is being used 
[5], [21, 22, 23]. In this architecture the final data items 
are received by processing of the initial and intermediate 
data items according to the algorithm that is described in 
the program written in advance. Each instruction of the 

program determines the computer work during the time 
needed for executing a single operation. According to 
this computational model the data items are placed in the 
memory locations in such a way that their addresses can 
be pointed by the counter. This eliminates the need to 
specify the addresses of the data items in the instruction 
and reduces the time of its execution. 

The disadvantage of this computational model is the 
sequential data processing and low performance of the 
computer that implements this computational model. 

B. Content-access machine computational model 
In the content-access machine computational model 

every data item that is administered during the algorithm 
execution has the key. Data item, its part, or pattern can 
be used as the key. Data item is stored in the memory 
location together with its key and is submitted to 
processing when its key coincides with the given one. It 
allows the stored data item to be located and retrieved 
though its physical address is unknown, and without 
recourse to a sequential search. The values of the keys 
are formed on the basis of compliance with the order of 
the algorithm operations execution. 

This computational model is implemented in the 
associate computers [24, 25, 26]. It showed high 
efficiency to solve problems of search and sort, but has 
not found widespread use. 

C. Random-access machine computational model 
The random-access machine computational model is 
based on the address access to the program components. 
It is the basis for the modern computers. This 
computational model was first introduced in John von 
Neumann papers, and in many subsequent studies of the 
computer architecture and programming [27, 28, 29, 30, 
31, 32, 33, 34, 35]. According to this computational 
model the final data items are received by processing of 
the initial and intermediate data items in accordance with 
the algorithm that is described in the program written in 
advance. Each instruction of the program determines the 
computer work during the time of a single operation 
execution. The addresses are used to indicate the 
instructions and the data items (initial, intermediate and 
final, resulting from operations) that are stored in the 
main memory. They point the locations allocated to the 
instructions and to the data items in the main memory. 
The instruction indicates the type of operation being 
executed, for which the operation code is used, and the 
addresses of the main memory locations that hold the 
data items which the operation is to be executed on and 
where the final data items will be stored. 

Computer that implements this computational model 
and has in its memory the program and the initial data 
works as follows: start; writing into the program counter 
an address of the first instruction of the program and 
executing of so-called machine cycles, the number of 
which is equal to the number of instructions that will be 
executed. A machine cycle includes the following steps: 
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fetching the instruction from the memory using an 
address from the program counter, decoding the 
instruction and checking whether this is a “stop” 
instruction and stopping or continuing the computation, 
executing an instruction, that is fetching the data items 
from the memory specified by addresses in the address 
field of the instruction, operation execution and writing 
the result data items into the memory at the addresses 
specified in the instruction, calculating the address of the 
next instruction and its entering into the program 
counter, returning to the start of the machine cycle [2]. 

In this way all the instructions of the program are 
executed. At the end the final data items will be placed 
in the specified memory locations. 

The mentioned above computational model is 
characterized by wider functionality in comparison with 
the stack- and content-access computational models 
because of the identification of the program components 
by addresses is more flexible, but on the other hand it 
requires a large number of steps to implement each 
instruction in particular and the program in general to 
compute the addresses of the instructions and the data 
items and to transfer them between the processor 
registers, which results in significant decrease of the 
computer performance. 

ІІІ. CONVENTIONAL MEMORY TYPES  
AND CHALLENGING PROBLEMS OF THEIR 

USING IN HIGH-PERFORMANCE COMPUTERS 
The access method, implemented in the computer 

memory of the above mentioned computer architecture 
types, is determined by the method of the program 
components identification used in them. Depending on it 
the memory can be classified as follows [1, 2, 3, 4]: 

• Sequential-Access Memory (SAM), where the 
sequential memory access method is implemented. This 
memory allows writing in or reading out data items 
sequentially in each cycle one after another. 

• Content-Access Memory (CAM), where content 
memory access method is implemented. In this memory 
data item is searched by its key. 

• Random-Access Memory (RAM), where address 
memory access method is implemented. This memory 
allows writing in or reading out the data item in each 
cycle by an arbitrary address. 

Each memory type brings the problems when it is 
considered for using in high-performance computers. 

The main disadvantage of the SAM is long time for 
the particular data item searching. In the worst case it 
may require reading of all previously written data items. 
In addition, this memory has low functionality as it does 
not provide more than sequential memory access. And 
for the last, this method is designed to work with vector 
data and does not provide parallel memory access. 

The challenging problem of the CAM is the need to 
provide access to each location from its ports and the 
need to compare simultaneously the keys in all its 

locations with the given one that requires a large 
equipment volume and slows down the access time. In 
addition, this method allows parallel memory access 
only to the data items with the same key that limits its 
application. 

The challenging problem of the RAM is its inability for 
parallel access from many ports. The reason lies in a 
conflict in the case of addresses convergence on multiple 
memory ports in the write mode. This is exactly the reason 
of inability to implement the parallel RAM-based 
processors. Two other problems: the need to store the 
addresses of the memory locations where the data items 
were written in so that if necessary they can be found and 
read out, and the need to put the addresses at the address 
input of the memory in both write and read modes. 

IV. METHOD OF THE PROGRAM COMPONENTS 
IDENTIFICATION BY INDICES 

For known methods of program components 
identification the new method is being proposed, where 
the program components are identified by their indices in 
accordance with matrices. According to this method the 
data items are identified by indices during the program 
development. An identifying index is assigned to each 
data item. These indices coincide with the data items 
position in the matrices of the data to be processed. 
Herewith the intermediate and final data are indexed in 
advance during the program development, namely their 
indices are prearranged, because of the fact that these 
data items will be obtained during the information 
processing. Besides, the indices that are prearranged for 
the intermediate and final data items also are identified 
during the program development. An identifying index is 
assigned to each data item identifier. The index of the 
data item identifier coincides with the data item position 
in the matrix of the identifiers of the intermediate and 
final data. 

Like the data items the instructions of the program 
are indexed during its development. An identifying index 
is assigned to each instruction. These indices coincide 
with the instructions position in the matrices of the 
instructions to be executed. 

Indexing of the data items, instructions and 
identifiers is performed by the rule that allows process 
them in the sequence given by the algorithm. 

It should be noted that the initial, intermediate and 
final data items, the instructions, and the identifiers of 
the intermediate and final data items and instructions can 
be grouped under the same identifiers. 

V. PARALLEL ORDERED-ACCESS MEMORY 
Using the method of the program components 

identification by indices the new memory access method 
could be developed. The goal of this method developing 
is to expand the functions of the memory by providing 
the parallel conflict-free memory access and ordering 
data according to their indices during their writing, 
storing or (and) reading. The memory that implements 
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this method consists of locations where the data matrix 
may be written in, stored, and read out. This method 
supposes to implement the following steps: 

• an index is assigned to each data item of the input 
data matrix whose numerical value determines the 
position of this data item in the output data matrix; 

• the indices are processed, for example, they are 
sorted in the ascending or descending order of their 
numerical values; 

• the data items of the input data matrix are ordered 
according to the numerical values of their indices and the 
output data matrix is formed. 

As it follows from the above described, the ordered 
memory access method, unlike the sequential memory 
access method, allows the extending of memory 
functionality, as it provides not only the sequential but 
also any other ordered access. 

Unlike the address memory access method of 
implementation of the ordered memory allows not to 
bind the data item with the specific memory location and 
eliminates the need to use the addresses during data 
items writing and reading. Accordingly, firstly, there is 
no need to store the addresses of the memory locations 
where the data items are placed, and, secondly, there is 
no need to submit the addresses on the address inputs of 
the memory during both data write and read modes 
because, according to the proposed method, there is only 
a requirement to enter an index with each data item 
during its writing into the memory, which indicates the 
position of the data item in the output data matrix, and to 
organize the memory in such a way that it will provide 
the output data items reading in the order specified by 
their indices. 

Organization of the memory that implements the 
proposed ordered access method and is named the 
parallel ordered-access memory (POAM) is shown in 
Fig. 1 [36, 37]. 

 

 
 

Fig. 1. POAM organization 
 

The parallel ordered access memory consists of the 
memory array with P locations to store the data items 
and their indices, where P=kl, k is the number of the data 
items in the column of the input data matrix, l is the 

number of the data items in the row of the input data 
matrix. It also consists of an entering-fetching device 
(EFD) which enters the input data items into the memory 
locations, fetch the output data items from the memory 
locations, and forms the output data matrix with P data 
items, where P=mn, m is the number of the data items in 
the column of the output data matrix, n is the number of 
the data items in the row of the output data matrix. The 
input data items and their indices are written into the 
memory array by the rows of the input data matrix and 
the output data items are read out from the memory array 
by the rows of the output data matrix using R/W signal. 

The input data items are written into the POAM from 
l ports by the rows of the matrix 

, 

where IDi,j is the input data item which is placed in the i-
th row (i = 0,1,…k-1) and j-th column (j = 0,1,…l-1) of 
the input data matrix. 

The output data items are read out from the POAM to 
the m ports by the rows of the matrix 

OD 0, 0 OD 0 , 1 …       OD 0 , n - 1

OD 1, 0 OD 1 , 1 …       OD 1 , n - 1
            …
ODm - 1 , 0 ODm - 1, 1 …    ODm -1 , n -1

, 

where ODs,t is the output data item which is placed in the 
s-th row (s = 0,1,…m-1) and t-th column (t = 0,1,…n-1) 
of the output data matrix. 

The matrix of the indices that are assigned to the 
items of the input data matrix appears as follows 

SID0 , 0 SID 0 , 1 …       SID 0 , l - 1

SID1 , 0 SID 1 , 1 …       SID 1 , l - 1
            …
SIDk - 1 , 0 SIDk - 1 , 1 …  SIDk - 1 , l- 1

, 

where SIDi,j is the index of the input data item IDi,j which 
is placed in the i-th row (i = 0,1,…k-1) and j-th column 
(j = 0,1,…l-1) of the input data matrix. 

The matrix of the indices can come into POAM 
together with the input data matrix or serve as the base 
for the ordering code calculating that is sent to the 
POAM. 

VI. PARALLEL ORDERED-ACCESS MACHINE 
COMPUTATIONAL MODEL 

Basing on the above described new method of the 
program components identification and on the new 
computer memory type, we propose the new 
computational model named the Parallel Ordered-Access 
Machine (POAM). As it was already mentioned above 
the basic idea of the proposed computational model is 
the use of an identification of the program components 
by their indices in the corresponding matrices, i.e. 
assigning of the indices to each instruction and to each 
data item, and processing row-by-row of the matrices. 



Parallel Ordered-Access Machine Computational Model and Architecture 

 

97 

As it was mentioned above the computational model 
comprises the problem description model which 
supposes the computer program development and the 
execution model which supposes the computer program 
execution. So, the POAM computational model can be 
implemented using two procedures: computer program 
development and computer program executionn. 

A. Computer program development 
According to the POAM computational model the 

following actions have to be executed in the scope of the 
computer program development. 

Traditionally the first step supposes an algorithm 
development for the given problem solving and the initial, 
intermediate and final data items parameters definition. 

The second step is dedicated to an algorithm 
presentation in the stage-by-stage form, when every next 
stage consists of the set of operations which depend of 
the operations of the previous stages and do not depend 
of the operations of the next stages. The algorithm flow 
graph (AFG) or its structure matrix [38] particularly can 
be used as such a form. 

The third step is dedicated to identification of the 
data items and the instructions by using, for example, the 
AFG labeling. 

Next five steps suppose to form the following 
matrices for each algorithm stage: the instructions 
matrix, the indices matrix for the instructions ordering in 
the frame of the computer program execution, the input 
variables matrix templates which are used with the aim 
of the each stage input data item matrices content 
determining that to be received in the frame of the 
computer program execution, the indices matrices for the 
input data items ordering n the frame of the computer 
program execution, the indices matrices for the 
instruction and data indices ordering n the frame of the 
computer program execution. 

Here the index of the instruction denotes the 
instruction position in the instruction matrix, the index of 
the data item denotes the data item position in the data 
matrix and the index of the index denotes the index 
position in the index matrix. 

B. Computer program execution 
The diagram of the computer program execution 

according to the parallel ordered-access machine 
computational model is shown in Fig. 2. 

As it can be seen, within the procedure of the 
computer program execution the following steps must be 
performed: 

1. Setting the number of stages and the number of 
steps at each stage needed to be performed. 

2. Start of the computer program execution from the 
first step of the first stage. 

3. Loading row-by-row from the POAM the 
instruction, the data and the index matrices. 

4. Executing of the specified by the instructions 
operations under the data items. 

5. Indexing the results and storing them in the POAM.  
6. Executing of the next steps of the first stage in the 

same way up to the last step. In accordance with the 
POAM functions the obtained results will be formed 
inside it as the data matrix of the corresponding stage by 
ordering them according to their indices. 

7. Proceed to the second stage and continuing the 
computer program execution in the same way from the 
first to the last step of this stage. 

8. Executing in the same way of the next stages up to 
the last stage. After indexing the results of the last step 
of the last stage and storing them in the POAM there will 
be formed the final data matrix. 

VII. PARALLEL ORDERED-ACCESS MACHINE 
ARCHITECTURE AND FUNCTIONING 

The structure of the parallel ordered-access machine 
data and instruction path is shown in Fig. 3. It consists of 
the data POAM, the instruction POAM, n buffers (B) 
and n arithmetic-logic units (ALU). 

To explain in more detail the actions that have to be 
executed in the scope the computer program development 
and execution let consider the parallel ordered-access 
machine computational model application to the 
RGB2YUV algorithm implementation which is described 
by the following expression [39]: 

 

 
 

Fig. 2. The diagram of the computer program execution according  
to the parallel ordered-access machine computational model 
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Fig. 3. The structure of the parallel ordered-access machine data and instruction path 
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where R, G, B – the components of RGB, K – 
coefficients; Y, U, V – the components of YUV; C1 – 
the constant. 

Let there are three ALUs (n=3) at the parallel ordered-
access machine data and instruction path (Fig. 3) each of 
which has an input for the instructions entering, two inputs 
for the input data items entering and one output for the 
output data items issuing, which are the binary digits. 

For an algorithm presentation in the stage-by-stage form 
let use its flow graph which is presented in the form that 
every next stage of which consists of the set of the operations 
which depend of the operations of the previous stages and do 
not depend of the operations of the next stages (Fig. 4). There 
are four such independent stages in this RGB2YUV 
algorithm flow graph. An algorithm includes 9 instructions of 
multiplication (mul), 7 instructions of addition (add), and 1 
instruction of subtraction (sub). To this list also the 
instructions of transition (tr) and no-operation (nop) are 
added. The common quantity of the initial data items is equal 
to 20 (each of the values R, G, B is used 3 times, and the 
value C1 is used 2 times), the quantity of the intermediate 
data items is equal to 24, and the quantity of the final data 
items is equal to 3. 

For the instructions and the data items identification 
the AFG labeling can be used. The instructions are tied 
to the vertices and the ALU inputs that are connected 
with the instruction POAM outputs, the data items are 
tied to the arcs and the ALU input ports that are 
connected with the data POAM outputs, and the indices 
are tied to the ALU output ports that are connected with 
the data POAM inputs. The main condition of the correct 
labeling of the AFG vertices and arcs are an 
unambiguous their binding to the respective inputs and 
outputs ports of the particular ALU. 

Basing on this labelled AFG the matrices of the 
instructions for each of four stages can be formed. 

One possible version of the instruction matrix for the 
first stage is presented in Fig. 5. 

 

 
 

Fig. 4. The instructions matrix for the AFG first stage 
 

Similarly the instruction matrices for each of the next 
three stages can be presented as it is shown in Fig. 6. 

 

 
 

Fig. 5. The instruction matrices  
for the AFG 2th, 3th, and 4th stages 

 
After indexing of the instructions the matrix of their 

ordering indices for the first stage will have a view as it 
is shown in Fig. 7. 

 
 

Fig. 6. The matrix of the instruction ordering indices 
 

Here an index points the instruction position in the 
executable instruction matrix. As it can be seen from the 
Fig. 5 and 7, three first rows of the instruction matrix 
consist of only the same instruction MUL, and the 4th 
row consists of two instructions TR and one instruction 
NOP. Label ni means “no instruction”. 

Similarly the matrices of the instruction ordering 
indices for each of the next three stages can be presented 
as it is shown in Fig. 8. 
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Fig. 7. Labeled RGB2YUV algorithm flow graph 

 

  
 

Fig. 8. The matrices of the instruction ordering indices  
for the AFG 2th, 3th, and 4th stages 

 
The matrix of the input data items for the first AFG 

stage and the matrix of their ordering indices are shown 
in Fig. 9. Label nd means “no data item”. 

 

 
 

Fig. 9. The matrix of the data items for the AFG first stage  
and their indices 

 
Similarly the matrices of the data ordering indices for 

each of the next three stages can be presented as it is 
shown in Fig. 10. 

 

 
Fig. 10. The matrices of the input data ordering indices  

for the 2th, 3th, and 4th stages 
 

Here an index points the data item position in the 
matrix of the processable data. First digit of the indices 
points the number of the row of the data or instruction 
matrix, and second digit of the indices points the number 
of the column of the data or instruction matrix. 
Particularly, the indices of the data item R are 12; 16; 34, 
and the first from the left side instruction of the stage 4 is 
indexed by 13. 

After the program components will be stored in the 
data POAM and the instruction POAM they will be 
processed in the scope of the computer program 
execution according to the diagram from Fig. 2. If one 
instruction is implemented for one step then 10 steps will 
be needed to perform the RGB2YUV algorithm. 

VIII. NEW COMPUTER ARCHITECTURE 
EFFICIENCY ESTIMATION 

As it can be seen from Fig. 3, where the structure of 
the parallel ordered-access machine data and instruction 
path is presented, the main component which defines its 
throughput is the POAM. We have shown above, that the 
main advantages of the POAM compared to the RAM, 
the most used conventional memory type, are the 
following:  

• The POAM is a multiport conflict-free access 
memory whereas the RAM is single-port. 

• The POAM provides the data items ordering in 
the matrixes simultaneously with their storing. This 
operation is frequently used and is usually time-
consuming. 

• There is no need to save the data items locations 
addresses in the POAM. It is enough here to point out 
the index of the data item in the write mode. And 
opposite, the RAM usage requires the data item address 
to be stored which complicates the computer 
organization and increases the hardware volume. 

• As the data items are not tailed to the memory 
locations the POAM does not have complex and slow 
address decoders as the RAM has. The functions of the 
data items ordering can be disintegrated, which makes it 
possible to decrease the time delays and to increase the 
memory clock frequency. So, the POAM bandwidth 
does not depend on the capacity. 

We have designed and implemented in the FPGA 
some POAM IP cores [39] and some application-specific 
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processors based on the POAM. For example, the 
bandwidth of the 8-port 32-bit POAM is approximately 
200 Gb/sec. This opens up the opportunities to achieve 
significantly higher productivity in the single-processor 
computer architecture. 

ІХ. CONCLUSIONS 
The main direction of the computer systems 

performance increasing is their parallelization. 
Therefore, the parallel multiprocessor systems on a chip 
became the mainstream products of the microprocessor 
industry, the parallel ultrascale computer systems were 
created for complex computing problems solving, and 
the parallel software is being developed for their 
effective use. On the other hand, more software is being 
developed for the single-processor execution. To find the 
way for increasing the performance of these single 
processors, which will be the base for the future 
multiprocessor systems, is a big challenge. To address 
this challenge the following improvements have to be 
done: reduced memory wall and provided parallel 
conflict-free memory access. But this is not compatible 
with John von Neumann’s computational model which 
serves as the base of today’s computer systems. 

We see the way to realize it in creation of the new 
computational model and computer architecture on its base 
which does not have limitations of the conventional 
computational models, including John von Neumann one. 

Having analyzed the known stack-access machine, 
content-access machine and random-access machine 
computational models based respectively on a belt, 
content and address memory access, we propose the 
method of the program components identification 
according to their positions in the matrices and relevant 
computational model, based on the ordered memory 
access. We have named this computational model the 
parallel ordered-access machine because of its base – the 
parallel ordered-access memory. It is shown, that the 
POAM computational model can be implemented using 
two procedures: computer program development and 
computer program execution, which are described in the 
paper in detailr. 

The article describes the computer architecture, which 
implements proposed computation model and owing to this 
does not have such a limitation as the memory wall and 
provides parallel conflict-free memory access. An example 
of the parallel ordered-access machine computational model 
implementation and the computer architecture is presented 
at the end of the paper. 
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