
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 1, No. 2, 2016

PARALLEL ORDERED-ACCESS MACHINE COMPUTATIONAL MODEL
AND ARCHITECTURE

Anatoliy Melnyk

Lviv Polytechnic National University, 12, Bandera str., Lviv, 79013, Ukraine
Authors e-mail: aomelnyk@polynet.lviv.ua

Submitted on 28.12.2016

© Melnyk A., 2016

Abstract: The article presents the new computational
model which we name the parallel ordered-access machine
because of its base – the parallel ordered-access memory. It
also describes the computer architecture which implements
proposed computational model and owing to this does not have
such a limitation as the memory wall and provides parallel
conflict-free memory access. The efficiency of the proposed
ordered-access machine computational model is evaluated and
an example of its implementation is presented.

Index Terms: Computational model, Computer
architecture, Parallel ordered-access memory, Parallel
ordered-access machine.

І. INTRODUCTION
In the process of computer program development,

which is written in the internal computer language to
organize a sequence of computations given by the
algorithm, an identification of the program components
is used. An identification of some type provides finding
the program components in the memory in accordance
with access type. In modern computers the program
components are identified by the addresses of the
memory locations which hold them. In this case under
the program components we mean the instructions, the
data items, and the addresses. Each instruction of the
program specifies the type of the operation to be
executed, the addresses of the initial and intermediate
data items to be processed similar to final data items, and
(or) the address of the next instruction location in the
main memory but only if its address is not calculated by
the program counter incrementing. The appropriate
computational model, which is based on the address
memory access and on the identification of the program
components by the addresses, supposes to execute each
instruction, its loading together with the data items from
the main memory locations pointed by the addresses, to
execute the operations of data processing and to store the
final data items in the main memory locations pointed by
the addresses [1, 2, 3, 4, 5]. That is, the sequence of
calculations, given by the algorithm, is provided in this
computer by loading the program components according
to the addresses of their locations in the main memory.

The interest in creation of a new computational
model is caused by the need for increasing the com-
puter’s performance. The issue is especially important

nowadays when we talk about a decrease in the
computer performance growth by means of improving
the integrated technology.

The main architectural factor that limits the perfor-
mance of the modern computer, whose program com-
ponents are identified by the addresses, is just the
implemented computational model. Usage of this
computational model is caused by the fact that the
random-access memory (RAM), which the computer
main memory is built on, is addressable and provides
random access in each cycle, but only to one location
[1], [4]. Thus, because the same memory unit is used for
both data items and instructions, it allows only the
sequential request by definition; the serial nature of
computations is already laid in the principles of the
modern computer architecture.

The problem of the RAM bottleneck is partly solved
using the memory divided into the multiple memory banks.
This statement is confirmed by the fact that the shared
memory computers belong to the most powerful and fast
ones [6, 7, 8, 9]. Commercial shared memory computers
provide parallel data processing, but their programming
needs more time and it is often quite difficult to provide
high performance [10, 11, 12, 13, 14].

In addition, only one program counter can be used in
the computer that implements this computational model.
That is another bottleneck that constrains the ability to
increase the computer’s performance. Parallel loading of
several instructions from the main memory, as it is in the
superscalar architecture, and packaging of several
consecutive instructions into one long instruction word,
as it is in the VLIW architecture, allows the increasing of
performance, but significantly complicates the computer.

It should be noticed that other developed and tested
computational models that use an identification of the
data items according to their content or to some events
(associative computers, data flow machines, reduction
computer architecture, etc. [15, 16, 17, 18, 19]), have not
become an alternative to the traditional one that uses an
identification of the program components by addresses.

The basic idea of the suggested computational model
is to use the identification of the program components by
their positions in the arrays. This computational model
supposes indexing of each instruction and each initial,

Anatoliy Melnyk

94

intermediate and final data items, holding them in the
parallel conflict-free ordered access memory, ordering
them inside this memory in the arrays according to their
indices and further parallel processing of these arrays
that provides significant decreasing of the data
processing time and, accordingly, leads to the computer
performance increasing.

The paper is organized as follows. Section 2
describes in detail the most used computational models
in modern computers: stack-, content- and random-
access machines. Section 3 outlines the conventional
memory types and challenging problems of their using in
high-performance computers. Section 4 proposes the
method of the program components identification by
their indices in accordance with matrices. Section 5
represents the basics; organization and functioning of the
parallel ordered access memory which provides the
parallel conflict-free memory access and ordering data
according to their indices. Section 6 is dedicated to the
new computational model description and comprises the
problem description model and the execution model.
Section 7 describes the new parallel ordered-access
machine architecture and functioning. Section 8 then
combines the results from the individual stages of the
flow. Finally, Section 9 presents our conclusions.

ІІ. KNOWN COMPUTATIONAL MODELS
Computational model is a foundation of computer

architecture. The concept of computational model
comprises the set of the following three abstractions: the
basic items of computations, the problem description
model, and the execution model [20]. The basic items of
computation are the items the computation refers to and
the kind of computations (operations) that can be
performed on them. To determine the basic items of
computations the method of the program components
identification is used. The problem description model
refers to both the style, which specifies how problems in
a particular computational model are described, and the
method, procedural or declarative, of the problem
description. The execution model interprets how to
perform the computation, the execution semantics and
control of the execution sequence. The computer
architecture may be looked upon as a tool to implement a
computational model.

A few computational models are known for now. The
most used in the modern computers are the following
computational models: stack-, content- and random-
access machines, which are examined below.

A. Stack-access machine computational model
In the stack-access machine computer architecture the

computational model based on the access to the data
items according to the stack pointer value is being used
[5], [21, 22, 23]. In this architecture the final data items
are received by processing of the initial and intermediate
data items according to the algorithm that is described in
the program written in advance. Each instruction of the

program determines the computer work during the time
needed for executing a single operation. According to
this computational model the data items are placed in the
memory locations in such a way that their addresses can
be pointed by the counter. This eliminates the need to
specify the addresses of the data items in the instruction
and reduces the time of its execution.

The disadvantage of this computational model is the
sequential data processing and low performance of the
computer that implements this computational model.

B. Content-access machine computational model
In the content-access machine computational model

every data item that is administered during the algorithm
execution has the key. Data item, its part, or pattern can
be used as the key. Data item is stored in the memory
location together with its key and is submitted to
processing when its key coincides with the given one. It
allows the stored data item to be located and retrieved
though its physical address is unknown, and without
recourse to a sequential search. The values of the keys
are formed on the basis of compliance with the order of
the algorithm operations execution.

This computational model is implemented in the
associate computers [24, 25, 26]. It showed high
efficiency to solve problems of search and sort, but has
not found widespread use.

C. Random-access machine computational model
The random-access machine computational model is
based on the address access to the program components.
It is the basis for the modern computers. This
computational model was first introduced in John von
Neumann papers, and in many subsequent studies of the
computer architecture and programming [27, 28, 29, 30,
31, 32, 33, 34, 35]. According to this computational
model the final data items are received by processing of
the initial and intermediate data items in accordance with
the algorithm that is described in the program written in
advance. Each instruction of the program determines the
computer work during the time of a single operation
execution. The addresses are used to indicate the
instructions and the data items (initial, intermediate and
final, resulting from operations) that are stored in the
main memory. They point the locations allocated to the
instructions and to the data items in the main memory.
The instruction indicates the type of operation being
executed, for which the operation code is used, and the
addresses of the main memory locations that hold the
data items which the operation is to be executed on and
where the final data items will be stored.

Computer that implements this computational model
and has in its memory the program and the initial data
works as follows: start; writing into the program counter
an address of the first instruction of the program and
executing of so-called machine cycles, the number of
which is equal to the number of instructions that will be
executed. A machine cycle includes the following steps:

Parallel Ordered-Access Machine Computational Model and Architecture

95

fetching the instruction from the memory using an
address from the program counter, decoding the
instruction and checking whether this is a “stop”
instruction and stopping or continuing the computation,
executing an instruction, that is fetching the data items
from the memory specified by addresses in the address
field of the instruction, operation execution and writing
the result data items into the memory at the addresses
specified in the instruction, calculating the address of the
next instruction and its entering into the program
counter, returning to the start of the machine cycle [2].

In this way all the instructions of the program are
executed. At the end the final data items will be placed
in the specified memory locations.

The mentioned above computational model is
characterized by wider functionality in comparison with
the stack- and content-access computational models
because of the identification of the program components
by addresses is more flexible, but on the other hand it
requires a large number of steps to implement each
instruction in particular and the program in general to
compute the addresses of the instructions and the data
items and to transfer them between the processor
registers, which results in significant decrease of the
computer performance.

ІІІ. CONVENTIONAL MEMORY TYPES
AND CHALLENGING PROBLEMS OF THEIR

USING IN HIGH-PERFORMANCE COMPUTERS
The access method, implemented in the computer

memory of the above mentioned computer architecture
types, is determined by the method of the program
components identification used in them. Depending on it
the memory can be classified as follows [1, 2, 3, 4]:

• Sequential-Access Memory (SAM), where the
sequential memory access method is implemented. This
memory allows writing in or reading out data items
sequentially in each cycle one after another.

• Content-Access Memory (CAM), where content
memory access method is implemented. In this memory
data item is searched by its key.

• Random-Access Memory (RAM), where address
memory access method is implemented. This memory
allows writing in or reading out the data item in each
cycle by an arbitrary address.

Each memory type brings the problems when it is
considered for using in high-performance computers.

The main disadvantage of the SAM is long time for
the particular data item searching. In the worst case it
may require reading of all previously written data items.
In addition, this memory has low functionality as it does
not provide more than sequential memory access. And
for the last, this method is designed to work with vector
data and does not provide parallel memory access.

The challenging problem of the CAM is the need to
provide access to each location from its ports and the
need to compare simultaneously the keys in all its

locations with the given one that requires a large
equipment volume and slows down the access time. In
addition, this method allows parallel memory access
only to the data items with the same key that limits its
application.

The challenging problem of the RAM is its inability for
parallel access from many ports. The reason lies in a
conflict in the case of addresses convergence on multiple
memory ports in the write mode. This is exactly the reason
of inability to implement the parallel RAM-based
processors. Two other problems: the need to store the
addresses of the memory locations where the data items
were written in so that if necessary they can be found and
read out, and the need to put the addresses at the address
input of the memory in both write and read modes.

IV. METHOD OF THE PROGRAM COMPONENTS
IDENTIFICATION BY INDICES

For known methods of program components
identification the new method is being proposed, where
the program components are identified by their indices in
accordance with matrices. According to this method the
data items are identified by indices during the program
development. An identifying index is assigned to each
data item. These indices coincide with the data items
position in the matrices of the data to be processed.
Herewith the intermediate and final data are indexed in
advance during the program development, namely their
indices are prearranged, because of the fact that these
data items will be obtained during the information
processing. Besides, the indices that are prearranged for
the intermediate and final data items also are identified
during the program development. An identifying index is
assigned to each data item identifier. The index of the
data item identifier coincides with the data item position
in the matrix of the identifiers of the intermediate and
final data.

Like the data items the instructions of the program
are indexed during its development. An identifying index
is assigned to each instruction. These indices coincide
with the instructions position in the matrices of the
instructions to be executed.

Indexing of the data items, instructions and
identifiers is performed by the rule that allows process
them in the sequence given by the algorithm.

It should be noted that the initial, intermediate and
final data items, the instructions, and the identifiers of
the intermediate and final data items and instructions can
be grouped under the same identifiers.

V. PARALLEL ORDERED-ACCESS MEMORY
Using the method of the program components

identification by indices the new memory access method
could be developed. The goal of this method developing
is to expand the functions of the memory by providing
the parallel conflict-free memory access and ordering
data according to their indices during their writing,
storing or (and) reading. The memory that implements

Anatoliy Melnyk

96

this method consists of locations where the data matrix
may be written in, stored, and read out. This method
supposes to implement the following steps:

• an index is assigned to each data item of the input
data matrix whose numerical value determines the
position of this data item in the output data matrix;

• the indices are processed, for example, they are
sorted in the ascending or descending order of their
numerical values;

• the data items of the input data matrix are ordered
according to the numerical values of their indices and the
output data matrix is formed.

As it follows from the above described, the ordered
memory access method, unlike the sequential memory
access method, allows the extending of memory
functionality, as it provides not only the sequential but
also any other ordered access.

Unlike the address memory access method of
implementation of the ordered memory allows not to
bind the data item with the specific memory location and
eliminates the need to use the addresses during data
items writing and reading. Accordingly, firstly, there is
no need to store the addresses of the memory locations
where the data items are placed, and, secondly, there is
no need to submit the addresses on the address inputs of
the memory during both data write and read modes
because, according to the proposed method, there is only
a requirement to enter an index with each data item
during its writing into the memory, which indicates the
position of the data item in the output data matrix, and to
organize the memory in such a way that it will provide
the output data items reading in the order specified by
their indices.

Organization of the memory that implements the
proposed ordered access method and is named the
parallel ordered-access memory (POAM) is shown in
Fig. 1 [36, 37].

Fig. 1. POAM organization

The parallel ordered access memory consists of the
memory array with P locations to store the data items
and their indices, where P=kl, k is the number of the data
items in the column of the input data matrix, l is the

number of the data items in the row of the input data
matrix. It also consists of an entering-fetching device
(EFD) which enters the input data items into the memory
locations, fetch the output data items from the memory
locations, and forms the output data matrix with P data
items, where P=mn, m is the number of the data items in
the column of the output data matrix, n is the number of
the data items in the row of the output data matrix. The
input data items and their indices are written into the
memory array by the rows of the input data matrix and
the output data items are read out from the memory array
by the rows of the output data matrix using R/W signal.

The input data items are written into the POAM from
l ports by the rows of the matrix

,

where IDi,j is the input data item which is placed in the i-
th row (i = 0,1,…k-1) and j-th column (j = 0,1,…l-1) of
the input data matrix.

The output data items are read out from the POAM to
the m ports by the rows of the matrix

OD 0, 0 OD 0 , 1 … OD 0 , n - 1

OD 1, 0 OD 1 , 1 … OD 1 , n - 1
 …
ODm - 1 , 0 ODm - 1, 1 … ODm -1 , n -1

,

where ODs,t is the output data item which is placed in the
s-th row (s = 0,1,…m-1) and t-th column (t = 0,1,…n-1)
of the output data matrix.

The matrix of the indices that are assigned to the
items of the input data matrix appears as follows

SID0 , 0 SID 0 , 1 … SID 0 , l - 1

SID1 , 0 SID 1 , 1 … SID 1 , l - 1
 …
SIDk - 1 , 0 SIDk - 1 , 1 … SIDk - 1 , l- 1

,

where SIDi,j is the index of the input data item IDi,j which
is placed in the i-th row (i = 0,1,…k-1) and j-th column
(j = 0,1,…l-1) of the input data matrix.

The matrix of the indices can come into POAM
together with the input data matrix or serve as the base
for the ordering code calculating that is sent to the
POAM.

VI. PARALLEL ORDERED-ACCESS MACHINE
COMPUTATIONAL MODEL

Basing on the above described new method of the
program components identification and on the new
computer memory type, we propose the new
computational model named the Parallel Ordered-Access
Machine (POAM). As it was already mentioned above
the basic idea of the proposed computational model is
the use of an identification of the program components
by their indices in the corresponding matrices, i.e.
assigning of the indices to each instruction and to each
data item, and processing row-by-row of the matrices.

Parallel Ordered-Access Machine Computational Model and Architecture

97

As it was mentioned above the computational model
comprises the problem description model which
supposes the computer program development and the
execution model which supposes the computer program
execution. So, the POAM computational model can be
implemented using two procedures: computer program
development and computer program executionn.

A. Computer program development
According to the POAM computational model the

following actions have to be executed in the scope of the
computer program development.

Traditionally the first step supposes an algorithm
development for the given problem solving and the initial,
intermediate and final data items parameters definition.

The second step is dedicated to an algorithm
presentation in the stage-by-stage form, when every next
stage consists of the set of operations which depend of
the operations of the previous stages and do not depend
of the operations of the next stages. The algorithm flow
graph (AFG) or its structure matrix [38] particularly can
be used as such a form.

The third step is dedicated to identification of the
data items and the instructions by using, for example, the
AFG labeling.

Next five steps suppose to form the following
matrices for each algorithm stage: the instructions
matrix, the indices matrix for the instructions ordering in
the frame of the computer program execution, the input
variables matrix templates which are used with the aim
of the each stage input data item matrices content
determining that to be received in the frame of the
computer program execution, the indices matrices for the
input data items ordering n the frame of the computer
program execution, the indices matrices for the
instruction and data indices ordering n the frame of the
computer program execution.

Here the index of the instruction denotes the
instruction position in the instruction matrix, the index of
the data item denotes the data item position in the data
matrix and the index of the index denotes the index
position in the index matrix.

B. Computer program execution
The diagram of the computer program execution

according to the parallel ordered-access machine
computational model is shown in Fig. 2.

As it can be seen, within the procedure of the
computer program execution the following steps must be
performed:

1. Setting the number of stages and the number of
steps at each stage needed to be performed.

2. Start of the computer program execution from the
first step of the first stage.

3. Loading row-by-row from the POAM the
instruction, the data and the index matrices.

4. Executing of the specified by the instructions
operations under the data items.

5. Indexing the results and storing them in the POAM.
6. Executing of the next steps of the first stage in the

same way up to the last step. In accordance with the
POAM functions the obtained results will be formed
inside it as the data matrix of the corresponding stage by
ordering them according to their indices.

7. Proceed to the second stage and continuing the
computer program execution in the same way from the
first to the last step of this stage.

8. Executing in the same way of the next stages up to
the last stage. After indexing the results of the last step
of the last stage and storing them in the POAM there will
be formed the final data matrix.

VII. PARALLEL ORDERED-ACCESS MACHINE
ARCHITECTURE AND FUNCTIONING

The structure of the parallel ordered-access machine
data and instruction path is shown in Fig. 3. It consists of
the data POAM, the instruction POAM, n buffers (B)
and n arithmetic-logic units (ALU).

To explain in more detail the actions that have to be
executed in the scope the computer program development
and execution let consider the parallel ordered-access
machine computational model application to the
RGB2YUV algorithm implementation which is described
by the following expression [39]:

Fig. 2. The diagram of the computer program execution according
to the parallel ordered-access machine computational model

Anatoliy Melnyk

98

Fig. 3. The structure of the parallel ordered-access machine data and instruction path

,
;

;

1

1

CBKGKRKV
CBKGKRKU

BKGKRKY

VBVGVR

UBUGUR

YBYGYR

+×+×+×+=

+×+×+×−=
×+×+×+=

where R, G, B – the components of RGB, K –
coefficients; Y, U, V – the components of YUV; C1 –
the constant.

Let there are three ALUs (n=3) at the parallel ordered-
access machine data and instruction path (Fig. 3) each of
which has an input for the instructions entering, two inputs
for the input data items entering and one output for the
output data items issuing, which are the binary digits.

For an algorithm presentation in the stage-by-stage form
let use its flow graph which is presented in the form that
every next stage of which consists of the set of the operations
which depend of the operations of the previous stages and do
not depend of the operations of the next stages (Fig. 4). There
are four such independent stages in this RGB2YUV
algorithm flow graph. An algorithm includes 9 instructions of
multiplication (mul), 7 instructions of addition (add), and 1
instruction of subtraction (sub). To this list also the
instructions of transition (tr) and no-operation (nop) are
added. The common quantity of the initial data items is equal
to 20 (each of the values R, G, B is used 3 times, and the
value C1 is used 2 times), the quantity of the intermediate
data items is equal to 24, and the quantity of the final data
items is equal to 3.

For the instructions and the data items identification
the AFG labeling can be used. The instructions are tied
to the vertices and the ALU inputs that are connected
with the instruction POAM outputs, the data items are
tied to the arcs and the ALU input ports that are
connected with the data POAM outputs, and the indices
are tied to the ALU output ports that are connected with
the data POAM inputs. The main condition of the correct
labeling of the AFG vertices and arcs are an
unambiguous their binding to the respective inputs and
outputs ports of the particular ALU.

Basing on this labelled AFG the matrices of the
instructions for each of four stages can be formed.

One possible version of the instruction matrix for the
first stage is presented in Fig. 5.

Fig. 4. The instructions matrix for the AFG first stage

Similarly the instruction matrices for each of the next
three stages can be presented as it is shown in Fig. 6.

Fig. 5. The instruction matrices
for the AFG 2th, 3th, and 4th stages

After indexing of the instructions the matrix of their

ordering indices for the first stage will have a view as it
is shown in Fig. 7.

Fig. 6. The matrix of the instruction ordering indices

Here an index points the instruction position in the
executable instruction matrix. As it can be seen from the
Fig. 5 and 7, three first rows of the instruction matrix
consist of only the same instruction MUL, and the 4th
row consists of two instructions TR and one instruction
NOP. Label ni means “no instruction”.

Similarly the matrices of the instruction ordering
indices for each of the next three stages can be presented
as it is shown in Fig. 8.

Parallel Ordered-Access Machine Computational Model and Architecture

99

Fig. 7. Labeled RGB2YUV algorithm flow graph

Fig. 8. The matrices of the instruction ordering indices
for the AFG 2th, 3th, and 4th stages

The matrix of the input data items for the first AFG

stage and the matrix of their ordering indices are shown
in Fig. 9. Label nd means “no data item”.

Fig. 9. The matrix of the data items for the AFG first stage
and their indices

Similarly the matrices of the data ordering indices for

each of the next three stages can be presented as it is
shown in Fig. 10.

Fig. 10. The matrices of the input data ordering indices

for the 2th, 3th, and 4th stages

Here an index points the data item position in the
matrix of the processable data. First digit of the indices
points the number of the row of the data or instruction
matrix, and second digit of the indices points the number
of the column of the data or instruction matrix.
Particularly, the indices of the data item R are 12; 16; 34,
and the first from the left side instruction of the stage 4 is
indexed by 13.

After the program components will be stored in the
data POAM and the instruction POAM they will be
processed in the scope of the computer program
execution according to the diagram from Fig. 2. If one
instruction is implemented for one step then 10 steps will
be needed to perform the RGB2YUV algorithm.

VIII. NEW COMPUTER ARCHITECTURE
EFFICIENCY ESTIMATION

As it can be seen from Fig. 3, where the structure of
the parallel ordered-access machine data and instruction
path is presented, the main component which defines its
throughput is the POAM. We have shown above, that the
main advantages of the POAM compared to the RAM,
the most used conventional memory type, are the
following:

• The POAM is a multiport conflict-free access
memory whereas the RAM is single-port.

• The POAM provides the data items ordering in
the matrixes simultaneously with their storing. This
operation is frequently used and is usually time-
consuming.

• There is no need to save the data items locations
addresses in the POAM. It is enough here to point out
the index of the data item in the write mode. And
opposite, the RAM usage requires the data item address
to be stored which complicates the computer
organization and increases the hardware volume.

• As the data items are not tailed to the memory
locations the POAM does not have complex and slow
address decoders as the RAM has. The functions of the
data items ordering can be disintegrated, which makes it
possible to decrease the time delays and to increase the
memory clock frequency. So, the POAM bandwidth
does not depend on the capacity.

We have designed and implemented in the FPGA
some POAM IP cores [39] and some application-specific

Anatoliy Melnyk

100

processors based on the POAM. For example, the
bandwidth of the 8-port 32-bit POAM is approximately
200 Gb/sec. This opens up the opportunities to achieve
significantly higher productivity in the single-processor
computer architecture.

ІХ. CONCLUSIONS
The main direction of the computer systems

performance increasing is their parallelization.
Therefore, the parallel multiprocessor systems on a chip
became the mainstream products of the microprocessor
industry, the parallel ultrascale computer systems were
created for complex computing problems solving, and
the parallel software is being developed for their
effective use. On the other hand, more software is being
developed for the single-processor execution. To find the
way for increasing the performance of these single
processors, which will be the base for the future
multiprocessor systems, is a big challenge. To address
this challenge the following improvements have to be
done: reduced memory wall and provided parallel
conflict-free memory access. But this is not compatible
with John von Neumann’s computational model which
serves as the base of today’s computer systems.

We see the way to realize it in creation of the new
computational model and computer architecture on its base
which does not have limitations of the conventional
computational models, including John von Neumann one.

Having analyzed the known stack-access machine,
content-access machine and random-access machine
computational models based respectively on a belt,
content and address memory access, we propose the
method of the program components identification
according to their positions in the matrices and relevant
computational model, based on the ordered memory
access. We have named this computational model the
parallel ordered-access machine because of its base – the
parallel ordered-access memory. It is shown, that the
POAM computational model can be implemented using
two procedures: computer program development and
computer program execution, which are described in the
paper in detailr.

The article describes the computer architecture, which
implements proposed computation model and owing to this
does not have such a limitation as the memory wall and
provides parallel conflict-free memory access. An example
of the parallel ordered-access machine computational model
implementation and the computer architecture is presented
at the end of the paper.

REFERENCES
[1] Hennessy J. L., and Patterson D. A., Computer Architecture: A

Quantitative Approach, 5th ed., Boston, MA: Morgan Kaufmann
Publishers, 2011.

[2] Stallings, W., Computer Organization and Architecture, 5th ed.,
NY: Macmillan Publishing Company, New York, 2000.

[3] Tanenbaum, A., Structured Computer Organization, 6th ed., Todd
Austin. Year: 2012. Pages: 801. Publisher: Pearson.

[4] Melnyk A. O. Computer architecture. Lutsk regional printing.
Lutsk. 2008.

[5] Hamacher, V. C., Vranesic, Z. G., and Zaky, S. G., Computer
organization, McGraw-Hill Higher Education, 1995.

[6] Goyal, A. and Agerwala, T., Performance analysis of future
shared storage systems, IBM Journal of Research and
Development, Vol. 28, No. 1, 1984, pp. 95–107.

[7] El-Rewini, H. and Abd-El-Barr, M., Advanced computer
architecture and parallel processing, John Wiley, 2005.

[8] Hwang, K. and Briggs, F. A., Computer Architecture and Parallel
Processing, McGraw-Hill, 1984.

[9] Ibbett, R. N. and Topham, N. P., Architecture of High
Performance Computers II, Springer-Verlag, 1989.

[10] Lewis, T. G. and El-Rewini, H., Introduction to Parallel
Computing, Prentice-Hall, 1992.

[11] Moldovan, D., Parallel Processing, from Applications to Systems,
Morgan Kaufmann Publishers, 1993.

[12] Patterson, D.A., and Hennessy, J.L. Computer Organization and
Design: The Hardware/Software Interface, Morgan Kaufmann
Publishers, 4th Edition, Inc.2005.

[13] Georg Hager, Gerhard Wellein. Introduction to High Performance
Computing for Scientists and Engineers. CRC Pres, 2011.

[14] Wilkinson, B., Computer Architecture: Design and Performance,
2nd ed., Prentice-Hall, 1996.

[15] Agervala, T. and Arvind, Data Flow Systems, Computer, Vol. 15,
No. 2, Feb, 1982, pp. 10–13.

[16] Gajski, D. D., Padua, D. A., Kuck, D. J., and Kuhn, R., A Second
Opinion on Data Flow Machines and Languages, Computer,
Vol. 15, No. 2, Feb, 1982, pp. 58–69.

[17] Gurd, J. andWatson, I., A Practical Data Flow Computer,
Computer, Vol. 15, No. 2, Feb, 1982, pp. 51–57.

[18] Le Guernic, P., Benveniste, A., Bournai, P., and Gautier, T.,
SIGNAL – A Data Flow-Oriented Language for Signal
Processing, IEEE Trans. on Acoustics, Speech, and Signal
Processing, Vol. ASSP-34, No. 2, April, 1986, pp. 362–374.

[19] Hartimo, I., Kronlof, K., Simula, O., and Skytta, J., DFSP: A
Data Flow Signal Processor, IEEE Trans. on Computer,
Vol. C-35, No. 1, Jan, 1986, pp. 23–33.

[20] O. Flygt. Computer Architecture. Computational Models.
http://homepage.lnu.se/staff/oflmsi/DA2022/Material/CH01.pdf

[21] Schoeberl, M., Design and Implementation of an Efficient Stack
Machine. In Proceedings of the 12th IEEE Reconfigurable
Architecture Workshop, RAW 2005, Denver, Colorado, USA,
April, 2005.

[22] Koopman, P. J., Stack computers: the new wave, Halsted Press,
1989.

[23] Bulman, D. M., Stack computers: an introduction, Computer,
Vol. 10, No. 5, 1977, pp. 14–16.

[24] Batcher, K., Staran Parallel Processor System Hardware, Proc.
National Computer Cont. AFIPS., 1974, pp. 405–410.

[25] Stormon, C. e. a., A General-purpose CMOS Associative
Processor IC and System. IEEE Micro, Vol. 12, No. 6, Dec, 1992,
pp. 68–78.

[26] Potter, J., Associative Computing – A Programming Paradigm for
Massively Parallel Computers, N.Y.: Plenum Publishing, 1992.

[27] Burks, A. W., Goldstine, H. H., and von Neumann, J.,
Preliminary discussion of the logical design of an electronic
computing instrument, Tech. Rep. Report Prepared for U. S.
Army Ord. Dept. under Contract W-36-034-ORD-7481, 1946.

[28] McCartney, S., ENIAC: The Triumphs and Tragedies of the
World’s First Computer, New York: Walker and Company, 1999.

[29] Blaauw, G. and Brooks, F., Computer Architecture: Concepts and
Evolution. Reading, MA: Addison-Wesley, 1997.

[30] Ceruzzi, P. E., A History of Modern Computing, MA: MIT Press,
Cambridge, 1998.

[31] Cortada, J. W., Historical Dictionary of Data Processing, Volume
1: Biographies; Volume 2: Organization, Volume 3: Technology.,
CT: Greenwood Press, Westport, 1987.

[32] Augarten, S., Bit by Bit: An Illustrated History of Computers,
London: Unwin Paperbacks, 1985.

[33] Mollenho, C. R., Atanasoff: The Forgotten Father of the
Computer, IA: Iowa State University Press, Ames, 1988.

[34] Polachek, H., Before the ENIAC. IEEE Annals of the History of
Computing, Vol. 19, No. 2, June, 1997, pp. 25–30.

Parallel Ordered-Access Machine Computational Model and Architecture

101

[35] Wilkes, M. V., Wheeler, D. J., and Gill, S. The Preparation of
Programs for an Electronic Digital Computer, Addison-Wesley,
Cambridge, 1951.

[36] Melnyk A. O. Computer Memory with Parallel Conflict-Free
Sorting Network-Based Ordered Data Access. Recent Patents on
Computer Science, 2015, Vol. 8(1), pp. 67–77.

[37] Melnyk A. O. Ordered-Access Memory. Lviv Polytechnic
National University Publishing. 2014.

[38] Melnyk А. O., Іаkоvlіeva I. D. OCA – Graphical System for
Algorithm Structure Analysis and Processing. Korea Academia-
Industrial Cooperation Society (KAIS): Smart Computing
Review, Vol. 2. – No. 2. April-2012. – Р. 171–184.

[39] Szeliski R. Computer Vision: Algorithms and Applications.
Springer, 2011

Anatoliy O. Melnyk is a Head of

Computer Engineering Department at
Lviv Polytechnic National University
since 1994. He graduated from Lviv
Polytechnic Institute with the Engineer
Degree in Computer Engineering in
1978. In 1985 he obtained his Ph.D. in
Computer Systems from Moscow
Power Engineering Institute. In 1992
he received his D.Sc. degree from the

Institute of Modeling Problems in Power Engineering of the
National Academy of Science of Ukraine. He was recognized
for his outstanding contributions to high-performance computer

systems design as a Fellow Scientific Researcher in 1988. He
became a Professor of Computer Engineering in 1996. Since
1982 to 1994 he has been a Head of Department of Signal
Processing Systems at Lviv Radio Engineering Research
Institute. Since 1994 to 2008 he has been Scientific Director of
the Institute of Measurement and Computer Technique at Lviv
Polytechnic National University. Since 1999 to 2009 he has
been Dean of the Department of Computer and Information
Technologies at the Institute of Business and Perspective
Technologies, Lviv, Ukraine. He has served since 2000 as
President and CEO of Intron ltd. He has also been a visiting
professor at Kielce University of Technology, University of
Information Technology and Management, Rzeszow,
University of Bielsko-Biala. Currently he is a visiting professor
at the Department of Numerical Analysis and Programming of
John Paul II Catholic University of Lublin..

He is an editor in chief of the proceedings “Computer
Systems and Networks” and of the journal “Advances in
Cyber-Physical Systems”. He is a head of the international
conference “Advanced Computer Systems and Networks:
Design and Application” and of the scientific workshop
“Cyber-Physical Systems: Achievements and Challenges”. He
has taken part in a large number of research projects in the field
of computer systems as a project leader. He has published 9
monographs, 1 handbook and over 400 scientific papers and
patents. He is a member of IEEE, ACM, IEE, IACSS, AESU.

Anatoliy Melnyk

102

