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Abstrac. The use of extended finite fieds for
cryptographic information protection is focused on. In
particular, explicit construction in finite fields elements of
high multiplicative order is described. The obtained
correspondent lower bounds on the order are provided.
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I. INTRODUCTION

Ensuring the confidentiality, integrity and authen-
ticity of information, cryptographic protection of
information links between components of cyber-physical
systemsis an urgent problem.

In this paper we consider one aspect of information
protection related to the use of certain algebraic
structures called finite fields or Galoisfields[5, 7].

F, isthefinitefield [5, 7] with g elements where g

isthe power of prime number p. Fqn is the degree n
extension of F,. Generators of the multiplicative group
Fc:n are caled primitive e ements.

The following question still remains open: to find an
efficient algorithm for constructing primitive eementsin
finite fidlds. An agorithm is efficient if it is polynomial,

that is. its running time is log(q")°® arithmetic
operations in Fqn . At present the problem of effective

construction of a primitive element for a given finite
field is computationaly difficult.

The relaxation to the primitive element problem is as
follows. Elements with high multiplicative order are
often needed in several applicationsusing finite fields [6,
7]. ldedly we want to have a possibility to obtain a
primitive element for any finite field. However, if we
have no factorization of the order of finite field
multiplicative group, it is not known how to reach the
goal. Therefore, a less ambitious question is being
considered: to construct an eement with the provably
high order. Definition of Gao [4]: by “high orders’ of
elements in Fqn , we mean that the orders of elements

must be larger than every polynomial in log(q") when
q

n

tends to infinity. We do not need to compute the

exact order of the element. It is sufficient in this case to
obtain alower bound of the order.

You can draw a paralle between classification of
algorithms related to their computational complexity and
division of finite element field into elements of the high
order and elements of the order which isnot high. In the
case of algorithms, we have exponential and polynomial
algorithms, The estimate of the computationa
complexity for the former ones is larger than any
polynomial of input data volume (i.e. logarithm of the
input data). The estimate for the latter is restricted by
some polynomial. The concept of a high order lement is
similar to the concept of exponential algorithm. It is
possible to compare an element which is not of high
order with polynomial agorithm.

II. POSSIBLE FINITE CYCLIC GROUPS
The multiplicative order ordb of element b1 F, is

the smallest positive integer u such that b" =1.

Typical possible applications of high order elements
in finite fields are as follows:

— cryptography (DiffieHellman key exchange
protocol, public key EIGamal cryptosystem);

— coding theory (in particular, for definition of error-
correcting BCH-codes);

— pseudo-random numbers generators (different
powers of high order element can be considered as a
sequence of pseudo-random numbers);

— primality proving (elements of high order are used
in the AKS algorithm of primality proving suggested by
Agrawal, Kayal and Saxena[1]).

The use of high multiplicative order elements in
cryptography is based on the so called discrete logarithm
problem in afinite cyclic group [6].

Let G be afinite cyclic group that has q elements,
with a generator g (which is aso often called a primi-
tive element). By using sequential squaring, one can
quickly (in polynomial time) calculate Y =g* for any
integer 1£ X £q- 1. It isconsidered that, possessing Y
it is computationally difficult (impossible for modern
supercomputers to do in a reasonable amount of time) to
find discrete logarithm of it in the base g, that is the
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number X . In other words, the function f(X)=g* isa

one way function. However, a proof of thisis not known
at present.

Bearing in mind the discrete logarithm problem, the
following two cryptographic schemes are mostly
considered.

A. Diffie-Hellman Key Exchange

How can two users agree on a secret key (used
perhaps for a private key cryptosystem) over a public
channel?

User A and user B agree on some finitecyclic
group G with g elementsand a generating element g o
f thisgroup G . (Thisisusually done long before the rest
of the protocol; g is assumed to be known by all
attackers) We will write the group G multiplicatively.
Both G, and g, are public.

User A: chooses a secret number 1£ a£ g- 1, counts

g® and sends g® to user B.
User B: chooses a secret number 1Eb £ q- 1, counts

g” and sends g° to user A.

Both user A and user B are now in possession of the
group dement (g*)° =(g°)® = g®, which can serve as
the shared secret key.

B. The EIGamal cryptosystem
(public key cryptosystem)

Let G is a finite cyclic group that has q elements
with agenerator g . Both G, and g, are public.
Every user U: choosesarandom number 1£a£q- 1 —

the secret key for encryption. Then counts g® and
publishesit. Thisis the public key of the user. To send a
private message P one chooses a random number k,
then computes and sendsthe pair b, =g, b, = P(g%)*.
The user U performs the decryption according to the
expresson P =b,(b,)?.
Note, that g isnot necessarily a generator of the group

G. The first and second described cryptographic schemes
work for any random dement g. At the same time their

resistance to cracking depends on the multiplicative order of
the dement g . The order of this ement in chosen finite

cydic group must be big enough.
It is possible to use the following finite cyclic groups

as Gin cryptography:
1) Multiplicative group of a prime fied

F, ={L...p- &, that is the multiplicative group of
integers  modulo p, where p isprime,
aprimitive root modulo p.

2) Elliptic curve E(F,) over afinite field F,. It is
usually written not in the multiplicative form, but in the

and g is
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additive form. Such curve is a set of pairs (x,y) of

elements of the chosen fied, which satisfies the affine
equation of eliptic curvein, say, Weierstrass form

y2 - X3 + AX2 + B ,
where A BT F,, B! 0, aong with a distinguished
point at infinity denoted O. The pair (x,y) of elements

of the base field is called affine coordinates of liptic
curve point. The diginguished point O has no affine
coordinates. Elements A,B of the base field are called
coefficients of dliptic curve equation. This set together
with the group operation of dliptic curvesis an Abelian
group, with the point at infinity as an identity element.

While an éliptic curve is not necessarily cyclic, it can
always be generated by two elements. Thus, an dliptic
curve does not necessarily possess a primitive el ement.
But if such an element exists the results about its
explicit construction are unknown at present.

3) Multiplicative group of the extended finite field
Fo= F X/ f(X), where f(x) is irreducible over F,

polynomial of degree n.

All known dtrategies of primitive element search [3]
consist of two stages:

1. Find a ‘small’ st Al F, guaranteed to contain a

primitive root of F,.

2. Test al dementsof theset A for primitivity.

In many cases, we have polynomial algorithms for the
first stage, especidly if one assumes the Extended
Riemann Hypothesis (ERH) [3].

One should divide the problem of finding a smdl st
containing a primitive eement: separately for prime fidds
and separady for extended fidds. Usudly we gart the
condderation from prime fidds with a smal number of
dements Deemining the upper bound of the smalest
primitive d ement is dways an important problem in dgebra
and number theory. Wang showed in his classicd paper [3]
that the least primitive dement for prime finite field F, is

bounded by pY**® . Assuming ERH, Wang showed tht the
smallest primitiveroot in primefinitefield F, isbounded by

thevalue O(W°(p- 1)log® p), where w isthemap sending
a pogtive integer to the number of its digind prime divisors.
It is proved that w(n) =0O(logn/loglogn) . Shoup impro-
ved the bound to OW*(p- log? p). Here O(f(n))
means O( f (n)log® f (n)) for acatan congant c.

Hence if ERH is true, one can generate a set
containing a primitive element by enumerating all the

numbers less than Shoup’s bound, which is polynomial
on the size of the input. Bach showed how to construct a

set of cardinality O(log* p) which contains at least one

primitive element assuming ERH. Instead of using only
small numbers, his set is composed of larger elements,
which are a product of small primes.
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The case of small characteristic extended fields seems
easier. Shoup, and independently Shparlinski shows
unconditionally that one can deterministically construct a
set of size (Np)°® , which contains at |east one primitive
element in thefield Fpn .

Unfortunately, at the current state of the art, the
second stage requires the integer factorization of q- 1

(a isprimitiveif and only if, then a /¢ 1 1 for every
prime number d|qg- 1), which is not known to be
obtainable in polynomial time. The difficulty does not lie
in the scarcity of primitive elements.

This implies that if we sdect arandom dement, we are
highly likely to get a primitive dement. Equally, if we se
lect alist of (loglogg)™® many random elements with pro-
bahility 1+ o(2) , thereisa primitive dement in thelist. Ho-
wever, it isvery hard to decide which eement is primitive.

There should be also mentioned results about existen-
ce of primitive elements of some (quite simple) form.

The problem of high multiplicative order elements
congtruction is considered both for general and for
special finite fields. For special finite fields, it is possible
to construct e ements which can be proved to have much
higher orders. A review of the obtained in this area
results is provided in [7, section 4.4] (the section is
written by Vol och).

III. LOWER BOUNDS ON MULTIPLICATIVE
ORDER
OF ELEMENTSIN EXTENDED FINITE FIELDS

We are considering below the obtained lower bounds
on multiplicative order of elements for different classes
of extended finite fields.

From the computational point of view, a finite field
extension is nothing but a polynomial ring over a prime
finite field modulo an irreducible polynomial. Let us
assume that the field is given as F[X]/ f(x), where

f(x) isanirreducible polynomial over F,.

All the constructions follow a similar scheme. The
target element b is so designed that we can find a set
U of large cardinality consisting of integers between 1
and g" - 1, which satisfies:

1. For any il U, b' has a smple representation of
degree less than n, y F,[a] (usualy we get the
representation using linearity of the p-th power);

2. Foranyi,jlU,ifit j,then b't b'. Sincethe
power of b has small degree representation, we can lift
the element to the polynomia ring F.[x], where it is

easier to prove the distinctness of two e ements.

If we can prove these two statements, we have shown
that the cardinality of U isthe lower bound of the order
of theelement b .
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Thus, the combinatorial approach dominates in the
congtruction of elements of large order. As ement b

some binomial of the variable x is usually taken (as a
rule, linear, that is a binomial of degree one) and
congtructs products of elements conjugated with the
element b . One uses both linear and non-linear co-

njugates. It is possible to involve both postive and
negative powers of these conjugates.

A. Elementsof high order in finite fields based
on cyclotomic polynomials

We consider finite fields of the form
F@=F .= FIX/(X T+ 4 x+1)

Let g beapower of aprimenumber p, r bean odd
prime number coprime with g. Condition under which
the given factor-ring is a field is as follows. g is a
primitive root modulo r, a be any non-zero eement in
thefinitefield F,. We obtain an estimation for the order

of dements of the form b =q+q*=g'(@@*+1) in

cyclotomic extensions of finite fields. Such elements are
called gauss periods analogoudly to extensions of the
field of rationa numbers,

We improve and generalize the result from the paper
[2] for elements of the form more general than gauss
period. The method, which is used in obtaining results, is
to replace an eement with its automorphic image. This
gave an answer to the open question posed by these
authors.

As an additional bonus in many cases the correspon-
ding large order elements are generators of normal bases
aswdl.

Such extensions are considered in our papers [8, 10].
Lower bound on the order of eements equals to

5V0"2/2°2 it thefidd characteristic p3 5.

B. Elementsof high order in finite fields
based on Kummer polynomials
Extenson based on the Kummer polynomial is par-
ticularly used in pairing based cryptography. We consider
further finite fields of theform F,(q) =, [X]/(x" - &) . The
numbers g, m and the ement a from the initial field

F, ae supposed to be such ones that the extension
F[X]/(x" - a) exists.

Modern technique in the famous primality proving
AKS agorithm and its further improvements|[1] isto use
polynomials of degree one to generate a large
multiplicative subgroup of a finite fiedd multiplicative
group. Cheng [3] discovered a connection to the specia
finite field high order element problem and applied this
idea to obtain anew solution of this problem. It is shown
in [3] how to construct high order element in such
extensions with the condition q° (modm) . The lower

bound 5.8 is obtained in this case. High order dements
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are congtructed for extensions of the form F[X] /(xz' - a)

and Fq[x]/(x3’ - a) without the divighility condition.
Lower bounds on multiplicative orders are equa to
exp((logm)?), where m=2' and m=3" correspon-
dingly. We improve and generdize this result in [9]. For
any degree m of an extenson, we drop the condition of
divighility of the number g- 1 by m. We showed in the

key lemmathat the number m isa product of two numbers
m, and m,, where m,_isadivisor of q-1,a m, isthe
order of thedement g modulo m.

We consider an arbitrary extension of the form
F,[X]/(x™ - &) and congruct explicitly in it dements of
multiplicative order at least 282", Theideais as follows
If the number g- 1 has big divisor m, then we use for

congruction the method, andogous to the method for
Kummer extensions. If thenumber g- 1 hasno big divisor

m, then the number m, is large, and we use for

congruction the method, andogous to the method for
extensions on a base of cyclotomic polynomials.

The algorithm of high order element construction is as
follows. Let us find, using direct computations,

m, =ord_q and ml:ﬂ. Then compare m  and
m

'E',/2mzf. If ml£'E;/2mzf, then the target dement is
equal to q+b for any eement b from F, . If

ml>'€/2mzf, then the desired edement is equal to
g™ +b. The lower bound on the order of considered

above elements equals to ofzml.

C. Elementsof high order in finite fields based
on Artin-Schreier polynomials

We consider finite fiddds of
Fo@) =F, =F[X/(x"- x- a).

For any prime number p, Artin-Shreier extension of
the finite field F, isthefield Fpp . It is known that the

the form

polynomial x”- x- a is irreducible over F, for any
non-zero element a
Foe = F[X/(x" - x- a).
Lower bound on the order of q +b for any element b
from F, is obtained in [12] and equals to 4°. For this

in F,, and we may take

class of fields is known, but not proven, the conjecture
about the explicit form of primitive e ements (Wagstaff's
conjecture).

We obtained using computer calculations an explicit
construction of some primitive elements [12]. Namely: if
a is primitve in F;, then the dement a(q +i)
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(i=0,.,p-1) is primitive for p<126 and
p=137,163167173. Note that a can be find by direct
computations.

D. Elements of high order in recursive finite fields

It is of special interest to construct elements of high
order in recursive extensions of finite fields. From the
point of view of applications such a construction is very
attractive, since we can perform operations with finite
field eementsrecursively, and therefore effectively.

We obtained alower bound on the multiplicative order
of some eements in towers of finite fieds of
characteristic two defined by Wiedemann. Our bound
does not depend on any unknown constant unlike the
previous result due to Voloch. For this class of fieldsis
posed, but not proven, the conjecture about the explicit
form of some primitive eements (Wiedemann's
conjecture).

We also get the bound on the order of elements in
towers of finite fields of characteristic two defined by
Conway. Previously any nontrivial lower bounds were
not known on the order of elements in these towers. We
described as well some primitive elements for the first
twelve fields in the tower. More over, a condition is
obtained, under which eements of this form are
primitive for al fields in the tower.

We obtained alower bound on the multiplicative order
of some eements in towers of finite fields of cha-
racteristic larger than two. Previously any nontrivial
lower bounds were not known on the order of e ements
in this case.

E. Elements of high order in general finite fields

Gao [4] gave an algorithm constructing high order
elements for many (conjecturaly all) general extensions
F, of finite fied F, with lower bound on the order

n

exp((logm)?/loglogm) . The Gao's approach is based
on the proposed by him, but not yet proved, conjecture.
We improved [11] Gao method and its modification by
Conflitti due to a successful definition of the set that
allows to congtruct pair-wise different powers of the
element q , which setsthe extension of theinitial field.

We also get some bounds that do not rely on any
unproved assumptions.

IV. CONCLUSIONS

In the paper the use of three different finite cyclic
groups for cryptographic information protection has been
considered. The implementation of cryptographic
primitives in multiplicative group of extended finite
fields has been proposed. Explicit construction of high
multiplicative order elements is described both for
special classes of finite fields (extensions based on
cyclotomic polynomials, extensons based on Kummer
polynomials, extensions based on Artin-Schreier polyno-
mials, recursive extensons (binary by Wiedemann or
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Conway; non-binary), and for general finite fields. The
obtained correspondent lower bounds on the order have
been provided.
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