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Abstrac. The use of extended finite fields for 
cryptographic information protection is focused on. In 
particular, explicit construction in finite fields elements of 
high multiplicative order is described. The obtained 
correspondent lower bounds on the order are provided. 

 

Index Terms – information protection, algebraic 
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І. INTRODUCTION 

Ensuring the confidentiality, integrity and authen-
ticity of information, cryptographic protection of 
information links between components of cyber-physical 
systems is an urgent problem. 

In this paper we consider one aspect of information 
protection related to the use of certain algebraic 
structures called finite fields or Galois fields [5, 7]. 

qF  is the finite field [5, 7] with q  elements, where q  
is the  power of prime number p . nq

F  is the degree n  

extension of qF . Generators of the multiplicative group 
*

nqF  are called primitive elements. 

The following question still remains open: to find an 
efficient algorithm for constructing primitive elements in 
finite fields. An algorithm is efficient if it is polynomial, 
that is: its running time is )1()log( Onq  arithmetic 
operations in nq

F . At present the problem of effective 

construction of a primitive element for a given finite 
field is computationally difficult. 

The relaxation to the primitive element problem is as 
follows. Elements with high multiplicative order are 
often needed in several applications using finite fields [6, 
7]. Ideally we want to have a possibility to obtain a 
primitive element for any finite field. However, if we 
have no factorization of the order of finite field 
multiplicative group, it is not known how to reach the 
goal. Therefore, a less ambitious question is being 
considered: to construct an element with the provably 
high order. Definition of Gao [4]: by “high orders” of 
elements in nq

F , we mean that the orders of elements 

must be larger than every polynomial in )log( nq  when 
nq  tends to infinity. We do not need to compute the 

exact order of the element. It is sufficient in this case to 
obtain a lower bound of the order. 

You can draw a parallel between classification of 
algorithms related to their computational complexity and 
division of finite element field into elements of the high 
order and elements of the order which is not high. In the 
case of algorithms, we have exponential and polynomial 
algorithms. The estimate of the computational 
complexity for the former ones is larger than any 
polynomial of input data volume (i.e. logarithm of the 
input data). The estimate for the latter is restricted by 
some polynomial. The concept of a high order element is 
similar to the concept of exponential algorithm.  It is 
possible to compare an element which is not of high 
order with polynomial algorithm. 

ІІ. POSSIBLE FINITE CYCLIC GROUPS 

The multiplicative order βord  of element *
qF∈β  is 

the smallest positive integer u  such that 1=uβ . 
Typical possible applications of high order elements 

in finite fields are as follows: 
– cryptography (Diffie-Hellman key exchange 

protocol, public key ElGamal cryptosystem); 
– coding theory (in particular, for definition of error-

correcting BCH-codes); 
– pseudo-random numbers generators (different 

powers of high order element can be considered as a 
sequence of pseudo-random numbers); 

– primality proving (elements of high order are used 
in the AKS algorithm of primality proving suggested by 
Agrawal, Kayal and Saxena [1]). 
The use of high multiplicative order elements in 
cryptography is based on the so called discrete logarithm 
problem in a finite cyclic group [6]. 

Let G  be a finite cyclic group that has q  elements, 
with a generator g  (which is also often called a primi-
tive element). By using sequential squaring, one can 
quickly (in polynomial time) calculate XgY =  for any 
integer 11 −≤≤ qX . It is considered that, possessing Y  
it is computationally difficult (impossible for modern 
supercomputers to do in a reasonable amount of time) to 
find discrete logarithm of it in the base g , that is the 
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number X . In other words, the function XgXf =)(  is a 
one way function. However, a proof of this is not known 
at present. 

Bearing in mind the discrete logarithm problem, the 
following two cryptographic schemes are mostly 
considered. 

A. Diffie-Hellman Key Exchange 
How can two users agree on a secret key (used 

perhaps for a private key cryptosystem) over a public 
channel? 

User A and user B agree on some finite cyclic 
group G  with q  elements and a generating element g  o
f this group G . (This is usually done long before the rest 
of the protocol; g  is assumed to be known by all 
attackers.) We will write the group G  multiplicatively. 
Both G , and g , are public. 

User A: chooses a secret number 11 −≤≤ qa , counts 
ag  and sends ag  to user B. 
User B: chooses a secret number 11 −≤≤ qb , counts 

bg  and sends bg  to user A. 
Both user A and user B are now in possession of the 

group element ababba ggg == )()( , which can serve as 
the shared secret key. 

B. The ElGamal cryptosystem  
(public key cryptosystem) 

Let G  is a finite cyclic group that has q  elements 
with a generator g . Both G , and g , are public. 

Every user U: chooses a random number 11 −≤≤ qa  – 

the secret key for encryption. Then counts ag  and 
publishes it. This is the public key of the user. To send a 
private message P  one chooses a random number k , 
then computes and sends the pair kg=1β , kagP )(2 =β . 

The user U performs the decryption according to the 
expression aP −= )( 12 ββ . 

Note, that g  is not necessarily a generator of the group 
G . The first and second described cryptographic schemes 
work for any random element g . At the same time their 
resistance to cracking depends on the multiplicative order of 
the element g . The order of this element in chosen finite 
cyclic group must be big enough. 

It is possible to use the following finite cyclic groups 
as G in cryptography: 

1) Multiplicative group of a prime field 
}1,...,1{* −= pFp , that is the multiplicative group of 

integers modulo p , where p  is prime, and g  is 
a primitive root modulo p . 

2) Elliptic curve )( qFE  over a finite field qF . It is 
usually written not in the multiplicative form, but in the 

additive form. Such curve is a set of pairs ),( yx  of 
elements of the chosen field, which satisfies the affine 
equation of elliptic curve in, say, Weierstrass form  

BAxxy ++= 232 , 
where qFBA ∈, , 0≠B , along with a distinguished  
point at infinity denoted О. The pair ),( yx  of elements 
of the base field is called affine coordinates of elliptic 
curve point. The distinguished point О has no affine 
coordinates. Elements BA,  of the base field are called 
coefficients of elliptic curve equation. This set together 
with the group operation of elliptic curves is an Abelian 
group, with the point at infinity as an identity element. 

While an elliptic curve is not necessarily cyclic, it can 
always be generated by two elements. Thus, an elliptic 
curve does not necessarily possess a primitive element. 
But if such an element exists, the results about its 
explicit construction are unknown at present. 

3) Multiplicative group of the extended finite field 
)(/][ xfxFF qqn = , where )(xf  is irreducible over qF  

polynomial of degree n . 
All known strategies of primitive element search [3] 

consist of two stages: 
1. Find a ‘small’ set qFA ⊆  guaranteed to contain a 

primitive root of qF . 
2. Test all elements of the set A  for primitivity. 
In many cases, we have polynomial algorithms for the 

first stage, especially if one assumes the Extended 
Riemann Hypothesis (ERH) [3]. 

One should divide the problem of finding a small set 
containing a primitive element: separately for prime fields 
and separately for extended fields. Usually we start the 
consideration from prime fields with a small number of 
elements. Determining the upper bound of the smallest 
primitive element is always an important problem in algebra 
and number theory. Wang showed in his classical paper [3] 
that the least primitive element for prime finite field pF  is 

bounded by ε+4/1p . Assuming ERH, Wang showed that the 
smallest primitive root in prime finite field pF  is bounded by 

the value )log)1(( 26 ppO −ω , where ω  is the map sending 
a positive integer to the number of its distinct prime divisors. 
It is proved that )loglog/(log)( nnOn =ω . Shoup impro-

ved the bound to )log)1((~ 24 ppO −ω . Here ))((~ nfO  

means ))(log)(( nfnfO c  for a certain constant c . 
Hence if ERH is true, one can generate a set 

containing a primitive element by enumerating all the 
numbers less than Shoup’s bound, which is polynomial 
on the size of the input. Bach showed how to construct a 
set of cardinality )(log4 pO  which contains at least one 
primitive element assuming ERH. Instead of using only 
small numbers, his set is composed of larger elements, 
which are a product of small primes. 
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The case of small characteristic extended fields seems 
easier. Shoup, and independently Shparlinski shows 
unconditionally that one can deterministically construct a 
set of size )1()( Onp , which contains at least one primitive 
element in the field npF  . 

Unfortunately, at the current state of the art, the 
second stage requires the integer factorization of 1−q  

(α  is primitive if and only if, then 1/)1( ≠− dqα  for every 
prime number 1| −qd ), which is not known to be 
obtainable in polynomial time. The difficulty does not lie 
in the scarcity of primitive elements. 

This implies that if we select a random element, we are 
highly likely to get a primitive element. Equally, if we se-
lect a list of ε+1)log(log q  many random elements with pro-
bability )1(1 o+ , there is a primitive element in the list. Ho-
wever, it is very hard to decide which element is primitive. 

There should be also mentioned results about existen-
ce of primitive elements of some (quite simple) form. 

The problem of high multiplicative order elements 
construction is considered both for general and for 
special finite fields. For special finite fields, it is possible 
to construct elements which can be proved to have much 
higher orders. A review of the obtained in this area 
results is provided in [7, section 4.4] (the section is 
written by Voloch). 

ІІІ. LOWER BOUNDS ON MULTIPLICATIVE 
ORDER  

OF ELEMENTS IN EXTENDED FINITE FIELDS 
We are considering below the obtained lower bounds 

on multiplicative order of elements for different classes 
of extended finite fields. 

From the computational point of view, a finite field 
extension is nothing but a polynomial ring over a prime 
finite field modulo an irreducible polynomial. Let us 
assume that the field is given as )(/][ xfxFq , where 

)(xf  is an irreducible polynomial over qF . 
All the constructions follow a similar scheme. The 

target element β  is so designed that we can find a set 
U  of large cardinality consisting of integers between 1 
and 1−nq , which satisfies: 

1. For any Ui ∈ , iβ  has a simple representation of 
degree less than n , у ][αpF  (usually we get the 
representation using linearity of the p -th power); 

2. For any Uji ∈, , if ji ≠ , then ji ββ ≠ . Since the 
power of β  has small degree representation, we can lift 
the element to the polynomial ring ][xFq , where it is 
easier to prove the distinctness of two elements. 

If we can prove these two statements, we have shown 
that the cardinality of U  is the lower bound of the order 
of the element β . 

Thus, the combinatorial approach dominates in the 
construction of elements of large order. As element β  
some binomial of the variable x  is usually taken (as a 
rule, linear, that is a binomial of degree one) and 
constructs products of elements conjugated with the 
element β . One uses both linear and non-linear co-
njugates. It is possible to involve both positive and 
negative powers of these conjugates. 

A.  Elements of high order in finite fields based  
on cyclotomic polynomials 

We consider finite fields of the form  
)1.../(][)( 1

1 +++== −
− xxxFFF r

qrqq θ . 

Let q  be a power of a prime number p , r  be an odd 
prime number coprime with q . Condition under which 
the given factor-ring is a field is as follows: q  is a 
primitive root modulo r , a  be any non-zero element in 
the finite field qF . We obtain an estimation for the order 

of elements of the form )1( 211 +=+= −− θθθθβ  in 
cyclotomic extensions of finite fields. Such elements are 
called gauss periods analogously to extensions of the 
field of rational numbers. 

We improve and generalize the result from the paper 
[2] for elements of the form more general than gauss 
period. The method, which is used in obtaining results, is 
to replace an element with its automorphic image. This 
gave an answer to the open question posed by these 
authors. 

As an additional bonus in many cases the correspon-
ding large order elements are generators of normal bases 
as well. 

Such extensions are considered in our papers [8, 10]. 
Lower bound on the order of elements equals to 

22/)2(5 −−r  if the field characteristic 5≥p . 

B.  Elements of high order in finite fields  
based on Kummer polynomials 

Extension based on the Kummer polynomial is par-
ticularly used in pairing based cryptography. We consider 
further finite fields of the form )/(][)( axxF m

qq −=θ . The 
numbers q , m  and the element a  from the initial field 

qF  are supposed to be such ones that the extension 

)/(][ axxF m
q −  exists. 
Modern technique in the famous primality proving 

AKS algorithm and its further improvements [1] is to use 
polynomials of degree one to generate a large 
multiplicative subgroup of a finite field multiplicative 
group. Cheng [3] discovered a connection to the special 
finite field high order element problem and applied this 
idea to obtain a new solution of this problem. It is shown 
in [3] how to construct high order element in such 
extensions with the condition )(mod1 mq ≡ . The lower 

bound m8.5  is obtained in this case. High order elements 
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are constructed for extensions of the form )/(][ 2 axxF
t

q −  

and )/(][ 3 axxF
t

q −  without the divisibility condition. 
Lower bounds on multiplicative orders are equal to 

))exp((log 2m , where tm 2=  and tm 3=  correspon-
dingly. We improve and generalize this result in [9]. For 
any degree m  of an extension, we drop the condition of 
divisibility of the number 1−q  by m . We showed in the 
key lemma that the number m  is a product of two numbers 

1m  and 2m , where 1m  is a divisor of 1−q , а 2m  is the 
order of the element q  modulo m . 

We consider an arbitrary extension of the form 
)/(][ axxF m

q −  and construct explicitly in it elements of 

multiplicative order at least  3 22 m . The idea is as follows. 
If the number 1−q  has big divisor 1m , then we use for 
construction the method, analogous to the method for 
Kummer extensions. If the number 1−q  has no big divisor 

1m , then the number 2m  is large, and we use for 
construction the method, analogous to the method for 
extensions on a base of cyclotomic polynomials. 

The algorithm of high order element construction is as 
follows. Let us find, using direct computations, 

qm mord2 =  and 
2

1 m
mm = . Then compare 1m  and 

 22m . If  21 2mm ≤ , then the target element is 

equal to b+θ  for any element b  from qF . If 

 21 2mm > , then the desired element is equal to 

bm +2θ . The lower bound on the order of considered 

above elements equals to  3 22 m . 
C.  Elements of high order in finite fields based  

on Artin-Schreier polynomials 
We consider finite fields of the form 

)/(][)( axxxFFF p
ppp p −−==θ . 

For any prime number p , Artin-Shreier extension of 
the finite field pF  is the field ppF . It is known that the 

polynomial axx p −−  is irreducible over pF  for any 

non-zero element a  in pF , and we may take 

)/(][ axxxFF p
pp p −−= . 

Lower bound on the order of b+θ  for any element b  
from pF  is obtained in [12] and equals to p4 . For this 
class of fields is known, but not proven, the conjecture 
about the explicit form of primitive elements (Wagstaff’s 
conjecture). 

We obtained using computer calculations an explicit 
construction of some primitive elements [12]. Namely: if 
α  is primitive in pF , then the element )( i+θα  

( 1,...,0 −= pi ) is primitive for 126<p  and 
173,167,163,137=p . Note that α  can be find by direct 

computations. 
D. Elements of high order in recursive finite fields 

It is of special interest to construct elements of high 
order in recursive extensions of finite fields. From the 
point of view of applications such a construction is very 
attractive, since we can perform operations with finite 
field elements recursively, and therefore effectively. 

We obtained a lower bound on the multiplicative order 
of some elements in towers of finite fields of 
characteristic two defined by Wiedemann. Our bound 
does not depend on any unknown constant unlike the 
previous result due to Voloch. For this class of fields is 
posed, but not proven, the conjecture about the explicit 
form of some primitive elements (Wiedemann’s 
conjecture). 

We also get the bound on the order of elements in 
towers of finite fields of characteristic two defined by 
Conway. Previously any nontrivial lower bounds were 
not known on the order of elements in these towers. We 
described as well some primitive elements for the first 
twelve fields in the tower. More over, a condition is 
obtained, under which elements of this form are 
primitive for all fields in the tower. 

We obtained a lower bound on the multiplicative order 
of some elements in towers of finite fields of cha-
racteristic larger than two. Previously any nontrivial 
lower bounds were not known on the order of elements 
in this case. 

E. Elements of high order in general finite fields 
Gao [4] gave an algorithm constructing high order 

elements for many (conjecturally all) general extensions 
nq

F  of finite field qF  with lower bound on the order 

)loglog/)exp((log 2 mm . The Gao’s approach is based 
on the proposed by him, but not yet proved, conjecture. 
We improved [11] Gao method and its modification by 
Conflitti due to a successful definition of the set that 
allows to construct pair-wise different powers of the 
element θ , which sets the extension of the initial field. 

We also get some bounds that do not rely on any 
unproved assumptions. 

ІV. CONCLUSIONS 
In the paper the use of three different finite cyclic 

groups for cryptographic information protection has been 
considered. The implementation of cryptographic 
primitives in multiplicative group of extended finite 
fields has been proposed. Explicit construction of high 
multiplicative order elements is described both for 
special classes of finite fields (extensions based on 
cyclotomic polynomials, extensions based on Kummer 
polynomials, extensions based on Artin-Schreier polyno-
mials, recursive extensions (binary by Wiedemann or 
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Conway; non-binary), and for general finite fields. The 
obtained correspondent lower bounds on the order have 
been provided. 
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