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Introduction. We will consider complex technical
systems which can be represented as an aggregate of
interconnected modules capable of testing each other.
It is well known that self-diagnosis of such systems
based on information on mutual tests of their modules
has been given the name self-diagnosis by the
principle of distributed core [1]. Self-diagnosis of this
kind has been investigated in sufficient detail for the
case when modules test each other’s technical
condition according to a preset algorithm. However,
organization of tests of modules according to such
algorithm is a complex problem in actual practice
when the system executes its jobs [2, 3]. The situation
appears to be more realistic when elementary tests are
performed in a random way at arbitrary instants of
time, when pairs of testing and tested modules are
being formed. By an elementary test (ET) is meant a
test of the technical condition of an individual module
of the system. In this case the structure of testing links
(STL) will also be random. This means that it is
impossible to determine in advance which will be the
STL after the lapse of a preset diagnosis time. In this
connection the problem arises of determining the time
after which execution of the ET should be stopped and
an analysis of the totality of results of the ET should
be carried out [4]. If this time is too short, then STL of
the system may prove such that it will not allow us to
determine technical condition of the modules with the
preset reliability, and if the time is too long, then it
will result in inefficient use of modules of the system.

It can be shown that self-diagnosis with a preset
reliability can be provided by the availability in testing
links graph (TLG) of a system of maximum-length
loops (MLL) [4]. If we take into consideration the fact
that the number of performed ET is proportional to
diagnosis time, then we can find a relation between
the probability of formation of a MLL system in a
TLG and the number of performed ETs.

Since an analysis of the totality of results of an ET
will be performed by one of modules of the system,
which cannot be determined in advance, it is necessary
also that each module has information about MLL in
the system TLG.

Hence the problem arises of relating the
probability of a situation when a preset number of
MLL will be formed in TLG of the system with
information about it provided to each module, and the

number of performed ETs.

Estimation of Information about Maximum-Length
Loops Contained in Modules of the System. After
execution of an ET, the testing and the tested modules
exchange information necessary to provide self-
diagnosis of the system. In this case information being
transmitted is subdivided into information containing
results of an ET and information containing data on
the STL of the system.

Only information related to STL of the system is
considered in the present paper. From the point of
view of practical realization of intermodular exchange,
it is desirable that this information be as simple as
possible, i.e. that it be restricted to the values of local
degrees of nodes of TLG.

For example, let the i-th module transmit to the y-
th module the value of the local degree of the i-th node
of TLG «; and the values of local degrees of all nodes
linked in TLG with the j-th node by a simple
oriented path (provided thatthey  were earlier
transmitted to the i-th module).

Such information allows us to single out in TLG
of the system the availability of structure elements
playing an important role in diagnosis of system
modules. A maximum-length loop is taken as such a
basic element.

Let us assume that as a result of fulfillment of the
totality of an ET, a MLL is formed in TLG of the
system, and let us investigate which information about
it is available for the modules of the system. The MLL
can be formed by several methods depending on the
succession of fulfillment of an ET corresponding to
edges which form this MLL. In this case information
about MLL in each module also depends essentially
on the order of priority in fulfillment of the ET.

Since each node in a MLL is connected by edges
only with two adjacent nodes, the succession in which
the following four ET are fulfilled:

tiiv1 (M, Misg) tiagia (Mg, M)
i (Misg, M) tizis (MiZa, M)

plays an important role for the module of the system
which corresponds to this node. The ET correspond to
edges of the graph presented in Fig. 1.

If elementary test T2, -1 IS carried out prior to test
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Ti.1, i, then the i-th module will receive information not
only on the local degree of the node vi.1 corresponding
to module Mi.1, but also on local degrees of the node
vi2 corresponding to module M.z, and on all nodes
whose information was sent to module M., earlier.

(-2 vg’oz

Figure 1 - Graph of testing links

Let us denote information on local degrees of nodes
contained in the i-th module after fulfillment of the
first ET by yi. Then we can write

1_ 1 1 1

Y1 =110 171 0000+ T oy,
1_ 1 1 1

Y2 = 12100 13 200 F... ¥ 1o hap,
1_1 1 1

Yn = that T o0 ...+ Thpoy,

or in matrix form Y = TIL, where

We will select and consider only ET { tj} to which
edges of TLG forming MLL correspond. Matrix T* for
these ETSs takes the form:

1_r 1 7
=1 7,2 0 1 n
1
2.1 1 2,3 0
0 4, 1 0
1
Tha 0 0 1 |

It can be seen that matrix T* is symmetrical and
only two of its elements other than elements of the
main diagonal are equal to 1, while the rest are
equaled to 0.

After fulfillment of the second ET, modules of the
system will contain information Y2, where Y?=T2Y?,
T?=[% j]. Then after fulfillment of n elementary tests
the modules will contain the following information:

YN =71 Tlor Y"=T,L, where
To=T7""1. 7L

Matrix Ty is of the form

Ty =|1g e f13(Tij) re
I fq e f2n<7ij)
f31(fij) re Iy f3n(Tij)
T fnz(fij) fn13(fij) CE

where fmn(zij) is a function consisting of sums and
products of elements of matrices T', T2, ..., T": r¢ and
rq are elements differing from zero.

It can be shown that the following propositions are
true for matrix Tx [4]:

1. A row will be found without fail in matrix Tx,
which has no less than five elements differing from
zero.

2. A row will be found without fail in matrix Ts,
which has precisely n - 3 zero elements (with the odd
number of modules in the system).

3. Total number of zero elements ko in matrix Ts
satisfies relations

(ko)ax =N% —4natevennand n <5,
(Ko)yax = N2 = 4n—1atodd n,
(ko)ax = N° ~5n+3atn<s5,
(ko)yax =N —6N+8atn>5.

Sequence of fulfillment of the ET affects the
values fmn(ij) which can take values 0, 1 or 2.

Thus, depending on the succession of formation of
MLL edges, formation of n! matrices Ts is possible,
which are characterized by a definite number of zero
elements.

Since formation of matrices Ts is of a random
nature, we will consider the probability of formation
of definite groups of matrices. To do this, we break
down the totality of all possible matrices Tz into
groups Bio=i (Tx) with the number of zero elements ko
in each being equal to i, where (Ko)min < < (Ko)max.

Therefore the probability of formation of each
group of matrices Bi(Ts) can be considered as the
probability of the presence in matrix Ty of precisely i
zero elements, i.e. P{ko = 1}.

The method of determining probability P{ko = I} is as
follows. Intermodular information exchange is presented
as a graph (Fig. 2) with nodes corresponding to modules
of the system, and edges to elementary tests and to
information exchange between modules of the system.
The edges are numbered depending on the order of their
formation. Arrows in Fig. 2 show direction of the
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increase of numbers of two adjacent edges.

Information transmitted from one module of the
system to another is represented on the TLG as an
arrow directed from the edge having smaller number
to the edge having greater number. Since information
is transmitted in the direction of increasing number of
edges, the number of arrows directed one after the
other in the same direction is representative of the
distance of information transmission and of the
number of modules which receive this information.

(+1 (+0-3

Figure 2. Graph of intermodular exchange of
information.

The cases are considered successively when takes
a concrete value i from ko=(Ko)min t0 ko=(Ko)max.
Arrangement of arrows in Fig. 2 is determined for
each ko=I, at which the number of information
exchanges between modules of the system is equal to
(Ko)max - 1. 1t should be noted that only information
exchanges between modules corresponding to
nonadjacent nodes of MLL are taken into account in
this case. Then the number of indexings of edges
corresponding to each arrangement of arrows in Fig. 2
is determined. The obtained number of indexings of
edges is equal to the total number of different matrices
Ts having ko=l.

We determine probability P{ko = I} as the ratio
between the number of matrices Tz having ko=l and
the total number of all possible matrices T, i.e. n!.

Thus the estimation of information on maximum-
length loops contained in modules of the system can
be performed with the aid of proposed matrix Ts. For
example, in the case under consideration when one
MLL is formed in a TLG of the system, zero elements
will be found without fail in matrix Ty, and this means
that modules of the system will not have full
information about this MLL.

In order for modules of the system to possess such
information, it is necessary that additional (with
respect to MLL) edges are present in the TLG of the
system. This represents the situation when information
exchange takes place between modules of the system,
corresponding to nodes connected by additional edges.
Such information exchange can result in a situation
when all modules of the system receive full
information about MLL and about local degrees of
nodes of TLG.

We will investigate the possibility of such
situation.

Estimation of Completeness of Information about
Maximum-Length Loops. The problem can be

subdivided into two parts:

1. The set of all possible matrices T is divided
into groups each being characterized by its value of ko.
All probabilities P;; of a situation are determined for
each group of matrices Bi (Tx) when after exchange of
information between the i-th and the j-th module, the
i-th and the j-th row in matrix Ts of the system will
have no zero elements. In this case only such i and j
are considered when edge (i, j) does not belong to
MLL

2. Based on probabilities P;j, probabilities P8y
are determined of the situation when all rows of

matrix Ts, Tx € Bi (Tx) will have no zero elements.

Probabilities of formation of each group of
matrices P (Bi) are determined earlier as the
probabilities of availability in matrix Ts of exactly f
zero elements. In this case probability Py can be
determined with regard to the fact that after formation
of MLL, arbitrary matrix T will take place and

R = PB)RE,

i=1

where s is the number of groups of matrices Ts.

Determining Probability Pj. It should be pointed
out that formation of additional (with respect to MLL)
edges is represented in matrix Tx in elements other
than r¢ and rq. If an additional edge (i, j) has appeared
after formation of MLL, then the i-th and the j-th rows
of matrix Tx are added element-wise. If edge (i, j)
appeared before formation of MLL, then elements z;;
and i in the i-th and j-th rows of matrix Tx will differ
from zero. If additional edge (i, j) was formed after
some edges of MLL already existed, and a part of
them did not, then random variable w is introduced to
take this fact into account, which takes "0" or "1"
values with equal probability. Elements of the i-th and
j-th rows which are marked as r, are multiplied by w,
whereupon the i-th and the j-th rows are added
element-wise.

Probalilities P;; are determined for each of groups
Bi (Tx). To do this, one of matrices Tz is selected

where Tx' € Bi (Tx). Then the number of zero
elements is determined in each row of matrix Ts: S,
By ..., P

Since the other matrices Tx, Tx &€ Bi (Tx) can be
formed from matrix Ts by means of a cyclic
substitution of rows, the i-th row of matrix Ts can
have the following number of zero elements,
respectively: B, B2, ..., Bn. This is also true for the j-th
row. There is a strict correspondence between the
number of zero elements in the i-th and the j-th rows,
which can be determined from the initial distribution
of the number of zero elements over rows of matrix
T To do this, we will consider cyclic substitution

B B2, i Pn
1, 2 .., h
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where 1, f2, ..., B are the numbers of zero elements
in rows of matrix T/, 2, ..., n are numbers of rows
of matrix Tx belonging to group B; (Tx). Thus, at each
shift of the lower row of substitution (2), there is a
strict correspondence between the i-th and the j-th
row, which is defined by the upper row of substitution
(2). At each shift of the lower row of substitution (2)
we determine the existence of the fact of joint
covering of the i-th and the j-th row of matrix Ts by
nonzero elements of all columns. We sum up all cases
of complete covering of columns.

The value of the ratio of the number of cases of
complete covering m;; to the number of all cases being
considered Mj;; represents probability P;j.

This probability differs from probability P;; in that
the order of priority of formation of edges of MLL and
of edges corresponding to additional tests is not taken
into account. To take into account the order of priority
of formation of graph edges, we will consider
separately the i-th and the j-th rows of matrix Ts:

_ ‘L'ill,l'iyz,...rca), Iq,lew,... 1 Ti, 11 Ti o
Tsi= :

Ti,j+11"'7rn

Ty =

_ ‘L'j’]_,‘L'jyz,...‘L'jyi_l,‘L'jyi,‘L'j,i+l,...,rca), Iy
rca),...,rj'n

We will introduce into consideration random
events by, by, bz and ba, where by = {71 #0}, by =
{Tiiv1 70}, b3 = {1jj-17#0}, ba = {7j+17#0}.

Probabilities of these events are equal to 0.5 since
by definition random quantity o takes with equal
probability the values 0 or 1. Since in element-wise
summation of the i-th and the j-th rows, summation of
elements zi+1 and tjj+1 is possible, we introduce into
consideration complex events A;, where A; ={bu@®
bw}, t1, t2 €[1, 4]. Then probability of event A; will be
equal to P(Ai)=P(bu)+ P(bw)- P(bu)- P(b2)=0.75. We
will define event B,
k =10,07/4/7 as Bx ={bu @ by}, where t1e[1, 4]
bw={t#0}, q€l[(j, i+1); (i, j+1)]. Then probabilities
of the events will be equal to

P(B]_): {05 if Tj,i—l =0.

1.if Tj,i—l =1
P(By)= (05.if zj; 1 =0.
1. if Tj,ifl:]"
P(B3): 05. if Ti,j—].: 0.
1. If Ti,j—].:l'
P(B4)= [05.if 7 j_1=0.
1.if Ti,j—lzl'

Thus, consideration of the order of priority in
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formation of edges of the graph is reduced to
determination of the following probability:

4

Ps = P(A)[TP(Bx )

k=1

Therefore, the i-th and the j-th rows of matrix To at
each cyclic shift of the lower row of substitution (2)
overlap jointly all its columns with probability Ps. It
should be noted that probability Ps is determined for
the i-th and the j-th rows separately for each new
matrix Tx formed from the initial matrix Ts through a
cyclic substitution of rows.

With regard to probabilities P*s, y =7, n, where y
is the number of the cyclic shift of the lower row of
substitution (2), we can define more exactly the value
of m; decreasing to m®;;. To determine m®;, we find
first probabilities Pmij (k) of situations when among m;;
substitutions for which the i-th and the j-th rows of
matrix T> overlap jointly all its columns (without
regard for w), k such substitutions will be found for
which the i-th and the j-th rows of matrix Ts overlap
jointly all its columns (with regard for w). These
probabilities can be found from an expression
corresponding to the Bernoulli formula for unequal
probabilities in each outcome

Pmij(k):_ _ Z R, R, R, Pig . Pip,
,ip,...1p=1n

h#ip#...=ip

—_pl —p2 —
R,=Ps,R, =P.,....R =P

n

In this case quantity m; is determined as the most
probable number of substitutions for which the i-th
and the j-th rows of matrix Ts overlap jointly all its
columns with regard for w. Then we find m®;; from the
system of two inequalities

Pmij (m,j“ )2 Pmij (m,‘f +1),
Pmij (micju)2 Pmij (mICJU _1)

Probability P; ; sought can be found with regard to
m<®j; as

_my
Ri=o
1 Mij

After exchange of information between the i-th
and the j-th modules, a situation is possible when
these modules will not possess complete information
about MLL. Now let us assume that the i-th module
will then exchange information with the j-th module.
It is evident that in this case there exists a difference
as to whether ET (i, j) was performed or not. An ET
performed earlier can be taken into account by means
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of respective conditional probabilities.

Probability P (i, jo/ i, j1) is the probability of the
situation when after exchange of information between
the i-th and the j-th modules, the i-th and the j-th rows
in corresponding matrix Ty of the system will be free
from zero elements provided that exchange of
information between the i-th and the j-th modules was
carried out earlier. This probability is determined from
consideration of three rows of matrix Ts. As in
consideration of only two rows, probabilities Ps are
determined. But in this case as distinct from
expression (3), events A; and Az are possible. Then
based on probabilites P’ 5, y =7,n we find
successively Pnij, j2 (K), m®ij, 2 and P (i, jo/ i, ju). All

other conditional probabilities P (i, ju/ 1, j1, ... ; i, jn1)
can be found in a similar manner.
Determination of Probability Py. Based on

probabilities P;; and conditional probabilities P (i, ju/ i,
ji .. ;i jna), complete information about MLL in
each module of the system can be formed as the
Markovian chain with irreversible states and one
absorbing state. The states in this case are the states of
the system with concrete additional tests. After
completion of the next additional test, the system
changes to the state when corresponding matrix of the
system Tx has no rows with zero elements or changes
to the state in which there are rows with zero elements
in matrix Tx. This state is marked by additional tests.
It is assumed that a restriction is imposed on the
multiplicity of performance of elementary tests.

Transitions of the system from one state to another
actually take place at random instants of time.
However we can assume that these transitions occur at
strictly fixed instants since in this model we are not
interested in time characteristics of the process.

Then Markovian chain with discrete states and
discrete time for our case can be illustrated in Fig.3.
It is apparent that So stands for the state of the system
without additional tests, and Sy for the state when
rows with at least one zero element are absent in
matrix corresponding to the system. We can assume in
the simplest case that all probabilities of transition
from state S; to state S; (except for state Sx) are equal,
i.e. if transitions from state Sm1+2 to r other states from
the group of states with three additional tests are

State without
additional
1ests

| additional test

| State with one | State with two |
additional tests

possible, then all probabilities of transitions from state
Smi+2 are equal to 1/r.

The following quantity is determined for each state
of the system:

Qsml— e mk_l — | =
I:’(5m1+ LA +i) P(Sm1+...+ My_q +is 52),
i= 1, My ,

where P (Sus+.. +mi1 + i) is probability of the fact that
after performance of k additional tests the system will
prove to be in state Sy« «mi-1+i; P (Smi+_+mi1+i; Sx)
is probability of transition of the system from state
(Sm]#“erk-l +i to state SZ-

This probability is equal to conditional probability
P (i, jo/ 1, ji, ... ; i, jn-1), Where tests (i, j1), (i, j2), ...,
(i, jn-1) determine state Smi-...-mk-1-i.

To obtain probability P (Smi-...-mk-1 - i), we will take
advantage of correspondence between the number of
additional tests in the system and index of step in the
discrete Markovian chain.

This correspondence implies that the index of step
is equal to the number of additional tests and,
correspondingly, to the number of the group of states
with the fixed number of additional tests. In this case
probability P (Smi-.-mk1 - i) iS determined by the
formula of total probability

. L . .
= R0 A =L
i=1

where L is the number of possible states of the system
at the k-th step; M is the number of possible states at
the (k+1)-th step; PUy., is probability of the situation
that at the (k+1)-th step (with k+1 additional tests) the
system will prove to be in state Sj; POy is probability
of the fact that at the k-th step the system will be in the
state Si; PO 1 is probability of the situation that the
system at the (k+I)-th step will prove to be in state S;
if it was at the k-th step in the state S;.

States with &
additional 1ests

|
I
I
|
I
|

Fig. 3. System state and Transition graph
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Expression (4) allows us to determine step-by-step,
one after the other, probabilities P(S;), P (Smi-1), ...,
P (Smi-...-mk-1-i) with regard to the fact that at
the initial instant of time the system was in the state
So. Then quantity M Ik, Sx), where
M(y,Ss)= 2. Qs should be determined for
SieFk

each group of states (i.e. states with a definite number
of additional tests).

This quantity is in essence the average value of
probability of the event that after performance of k
additional tests, rows with at least one zero element
will be absent in the matrix of the system Ty, i.e.

We will also determine probability of the event
that after performance of w ET, MLL will be formed
in TLG of the system and each module will have
information about this MLL and about local degrees
of all nodes of TLG.

Po=PwL Ry orwith regardto(1)

S - S
Po=PwLL Y P(B) PUBI =PuL Y. P(B)M (7, S5),
=1 i=1
where kK =w —n.

It should be mentioned here that determination of
probability of formation of the maximum-length loop
Pwe is an independent problem which is not
considered in the present paper.

Furthermore, we will take into consideration the
fact that several MLL can be formed in a TLG of the
system after fulfillment of w ET. Because of this,
probability Po is considered with respect to a
particular MLL. In this connection, notation P“-Hi
(where i =7, m , m is the maximum number of MLL
for the system of N modules) is introduced for this
probability. Based on this, probability Px of situation
that after fulfillment of @ ET m MLL will be formed
in TLG of the system and each module will have
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OPIAHU3ALIUA TPOUEAYPBI CAMOKOHTPOJIS B ®YHKIIMOHAJIBHO
YCTOMYUBBIX KOMILJIEKCAX

MamikoB O.A., Mamkos B.A.

PaccMoTpeH MeXMOIYIApHBI OOMEH NHAarHOCTHYECKOW HWH(pOpMaleld MpU CaMOIHWArHOCTHKE CIIOKHBIX TEXHHUYECKHX
CHCTEM CO CIIy4aifHOW CTPYKTYpOil TECTOBBIX 3JeMeHTOB. OueHHBaeTcs WH(POPMAIHS O CTPYKTYpe TECTOBHIX 3JIEMEHTOB
CHCTEMBI, COOpaHHBIX B €€ MOAYJSAX B pE3yIbTaTe MEKXMOAYJIFHOTO OOMEHa.

Knrwuesvie cnosa: CcaMOKOHTPONb, CaMOIHMATHOCTHKA, MEXMOIYIBHBIH 0OMeH, uWHpopManus, (QyHKIHOHATBHAS
YCTOHYHMBOCTbD.

OPTAHIBALIA ITPOLOEAYPU CAMOKOHTPOJIIO Y ®YHKINIOHAJIBHO
CTIMKNX KOMILTEKCAX.

MamkoB O.A., Mamkos B.A.
Posrnsmaerbess MiKMOAYIBHAN OOMIH JiarHOCTUYHOI iH(GOPMAII] IIPH caMOAiarHOCTyBaHHI CKIIATHUX TEXHIYHHX CHCTEM 3
BHUIAIKOBOIO CTPYKTYPOIO TECTOBHX EJIEMEHTIB. 3MilICHIOEThCS OILiHKa iH(pOpMamii Mpo CTPYKTYPY TECTOBHX €JIEMEHTIB, SKi
3i0paHi y ii MOIyIAX 3a pe3ylbTaTaMH MIXKMOYIBHOTO OOMIHY.

Knruoei cnosa: caMOKOHTPOITb, CAMO/IIalrHOCTHKA, MIXKMOIYJIbHUI 00MiH, iHpOpMais, GyHKIIOHAbHA CTIHKICTD.
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