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We study solutions of the Friedmann equations in case of the homogeneous isotropic Universe filled with a per-
fect fluid. The main points concern the monotony properties of the solutions, the possibility to extend the solutions
on all times and occurrence of singularities. We present a qualitative classification of all possible solutions in case
of the general smooth barotropic equation of state of the fluid, provided the speed of sound is finite. The list of
possible scenarios includes analogues of the “Big Rip” in the future and/or in the past as well as singularity free
solutions and oscillating Universes. Extensions of the results to the multicomponent fluids are discussed.
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introduction
Modern ΛCDM cosmological model successfully

describes most of the observational data of extra-
galactic astronomy. Nevertheless, due to the well-
known horizon and flatness problems, modifications
of the standard cosmological model are widely dis-
cussed to ensure the existence of the inflationary
stage of the cosmological evolution. In this view a
dynamical models of the dark energy (DE) have been
introduced, which are different from the unchanging
cosmological constant. Various DE models involve
cosmological fields, extra dimensions, modified grav-
ity etc. (see [1, 9, 11] for a review). Hydrodynamic
approach is often sufficient to analyse these issues; in
this approach either all the matter in the Universe
or the dynamic DE is modelled by means of a rela-
tivistic fluid with some equation of state (EoS). On
this way a number of analytical solutions have been
found (e. g. [2, 8, 10] and references therein).

In these studies, a considerable attention is paid
to the qualitative properties of solutions, such as
monotonicity, intervals of existence and limiting
properties of the solutions. Recently, interest in the
solutions like “Big Rip” [5] and in some other types
of singular behaviour [3, 5, 8, 10] has grown. Typi-
cal questions are as follows. Does a solution of the
Friedmann equations exist for all t → ∞? Other-
wise, does the cosmological scale factor and/or e(t)
blow up at some singularity point? Is the energy
density e(t) bounded?

In paper [6], such a qualitative behaviour of so-
lutions has been studied for a special form of EoS

subjected to some restrictions. In the present paper
we relax these restrictions. We consider the homoge-
neous isotropic Universe with a general barotropic
EoS p = p(e), that relates the pressure p to the
invariant energy density e > 0. The only condi-
tions imposed are the smoothness of the function
p(e) and the existence of an upper bound for dp/de,
i. e. the speed of sound is supposed to be bounded.
We describe possible scenarios of the cosmological
evolution with a focus on roots of specific enthalpy
h(e) = e + p(e). The smoothness of p(e) and h(e)
is rather a strict condition; for example, it prohibits
crossings of the “phantom line” (e + p = 0). We
present below a complete list of all possible scenar-
ios with various qualitative behaviours.

basic equations
The homogeneous isotropic cosmology is de-

scribed by the Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric:

ds2 = dt2 − a2(t)
[
dχ2 + F 2(χ)dO2

]
,

where F (x) = sin (x), sinh (x) or x respectively, for
the closed, open and spatially-flat Universe. This
corresponds to the following values of the parameter
k = 1,−1, 0 in the Friedmann equations:

d2a

dt2
= −4π

3
a(e+ 3p), (1)(

1

a

da

dt

)2

=
8π

3
e− k

a2
, (2)

∗tunerzinc@gmail.com
†valeryzhdanov@gmail.com

17



Advances in Astronomy and Space Physics S. S.Dylda, V. I. Zhdanov

here G = c = 1. The only non-trivial hydrodynamics
equation is

de

dt
+

3h

a

da

dt
= 0 (3)

Eq. 1-3 are not independent, so we use further
Eq. 2, 3. Eq. 3 can be rewritten as a first-order au-
tonomous equation

de

dX
= −3h, X = ln a. (4)

Next we introduce notations as follows:
f : a1 ↑ a2 means that function f(x) is monoton-

ically increasing from a1 to a2 > a1 when x belongs
to the function domain. Analogously a1 ↓ a2 in case
of the decreasing function.

f : a1 ↑ a2 ↓ a1 means that the function f is
monotonically increasing from a1 to a2 > a1 and
then, after reaching the turning point a2, it is mono-
tonically decreasing to a1.

We denote decreasing unbounded solutions of
Eq. 4 by the symbol U ↓, and increasing unbounded
solutions by U ↑. Analogously, for increasing
bounded solutions and decreasing bounded ones we
write correspondingly B ↑ and B ↓.

solutions of the eq. 4
We supposed that h is a smooth function. The

condition that dp/de is bounded means that ∃C0 :
0 < C2

0 < ∞ such that:

|dp/de| ≤ C2
0 , (5)

and we have |dh/de| ≤ 1 + C2
0 . The right-hand side

of Eq. 4 is Lipschitz continuous and ∀e ∈ (−∞,∞)
there exists the finite Lipschitz constant 3(1 + C2

0 ).
Then in virtue of the Cauchy-Lipschitz theorem,
the Eq. 4 with initial data e(t0) = e0 has a unique
smooth solution e(X) for all X ∈ (−∞,∞).

Suppose we have e1: h(e1) = 0, then e(X) ≡ e1 is
a solution of Eq. 4. In virtue of the uniqueness, any
other solution e(X) of this equation cannot intersect
the line e = e1. This enables a simple classification of
the qualitative behaviour of cosmological scenarios.

Further we impose condition h(0) = 0 so as to
avoid situations when solutions can be extended to
negative values of e in the solutions of Eq. 4. As we
pointed out above, the regular solution of Eq. 4 exists
∀X ∈ (−∞,∞).

Let em ≥ 0 be a maximal of all roots of h(e),
h(em) = 0. If, e. g., h(e) > 0 for ∀e > em, then
any solution e(X) passing through the point X0,
e > em can be extended to all X-axis, it is mono-
tonically decreasing, unbounded and it has the range
(em,∞). The bounded solutions in this case are im-
possible. Indeed, if we suppose that e(X) is bounded
then, according to Weierstrass theorem, there exists

some finite value e∗, such that e(X) → e∗ > em for
X → −∞, whence de/dX → 0 and h(e∗) = 0 con-
tradicting to the condition that h(e) > 0 for e > em.

The most simple example of this case: p = we,
w > −1.

Analogously, if h(e) < 0 for e > em ≥ 0, then any
solution e(X) passing through the point X0, e > em
can be extended to all X-axis, it is monotonically
decreasing, unbounded (for large negative X) and it
has the range (em,∞).

Thus U ↓ and U ↑ are the only possible types of
solutions in the domain e > em.

Let h(e1) = 0, h(e2) = 0, e1 < e2. Then in the
domain e ∈ (e1, e2) we have either B ↑ or B ↓ type
depending on the sign of h(e).

cosmological scenarios
for k = 0,−1

We are interested in the domain, range and mono-
tonicity of the functions a(t), e(t) > 0 satisfying
Eq. 2, 3. From Eq. 2 we have:

dX

dt
= s

√
8π

3
e− k exp(−2X), (6)

where s = 1 for the cosmological expansion (ȧ > 0)
and s = −1 for the contraction (ȧ < 0). For
k = 0,−1 (open or spatially-flat Universe), the right-
hand side of Eq. 2 is always non-vanishing, and the
sign s does not change.

The condition, which allows us to extend solution
a(t), e(t) on all values of |t|, is the divergence of the
integral:

I(X1, X2) =

=

X2∫
X1

dX

[
8π

3
e(X)− k exp(−2X)

]−1/2

, (7)

both for X2 → ∞ and for X1 → −∞, as e(X) is
extended to corresponding values of the argument.
If one of the conditions is not satisfied, the solution
meets a singularity and exists respectively only for
t < t∗ < ∞ or for t > t0 > −∞.

For k = −1, s = 1 all possible types of solutions
in regions with a different signs of h(e) are described
in Table 1 (see Fig. 1). For k = −1 the evolution
always starts from finite time t = t0 > −∞, since

I(X1, X2) ≤
X2∫

X1

dX exp (X) =

= exp (X2)− exp (X1), (8)
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Fig. 1: Examples of the qualitative behaviour of solutions of Eq. 4 for k = 0 and k = −1. The arrows show the
direction of the evolution for s = +1. Solutions for monotonic decreasing (left) and increasing(right) functions.

Table 1: Types of qualitative behaviour of solutions for k = −1 (s = 1) in regions with different signs h(e), t∗ < ∞,
0 ≤ e0 < e1 < ∞.

Type e(X) Domain (t) a(t) e(t)

Region e > e0: h(e) > 0; h(e0) = 0

1.1 U ↓ (0,∞) 0 ↑ ∞ ∞ ↓ e0

Region e > e0 ≥ 0: h(e) < 0; h(e0) = 0

1.2 U ↑ (0, infty) 0 ↑ ∞ e0 ↑ ∞
1.3 U ↑ (0, t∗) 0 ↑ ∞ e0 ↑ ∞

Region e ∈ (e0, e1): h(e) > 0; h(e0) = h(e1) = 0

1.4 B ↑ (0,∞) 0 ↑ ∞ e0 ↑ e1

Region e ∈ (e0, e1): h(e) < 0; h(e0) = h(e1) = 0

1.5 B ↓ (0,∞) 0 ↑ ∞ e1 ↓ e0

for all of the cases of behaviour of e(X) > 0, i. e. the
integral Eq. 7 is convergent on the lower boundary.
Because the system involved is autonomous, we put
in this case t0 = 0.

In case of U ↓ we get an infinite (monotonic)
increasing of the scale factor from zero to infin-
ity and monotonic decreasing of the energy density
e(t) → e0 ≥ 0 for t → ∞ (type 1.1 of Table 1).

If h(e) < 0, then we have increasing e(t) and the
solution either can be or cannot be extended to all
times in future; in the latter case there must be a
singularity of energy density at some finite value a0
of the scale factor (cf. “Big Rip” [4]). Then for U ↑
we have two types: 1.2 – when Eq. 7 is divergent on
upper boundary, a(t) → ∞, e(t) → ∞ as t → ∞ and
1.3 – when X(e): −∞ ↑ ∞ and Eq. 7 is convergent
on upper limit.

For cases B ↓, B ↑ cosmological evolution contin-
ues from t = 0 to infinite times, and energy density is
always finite. Note that if e(t) tends to a finite value,
then it can be identified with the current value of the
dark energy density.

In case of spatially-flat Universe (k = 0) we do
not have an estimate like Eq. 8; then for certain
equations of state there are solutions that can be
extended to t → −∞, since there are cases when
I(X1, X2) is divergent on the lower limit. All pos-
sible cases for k = 0 are presented in Table 2. The
example of the case 2.1 (Table 2) is given by p(e) =

−e + (e − e0)
√

e1/(e+ e1), e0 ≥ 0, e1 > 0, and the
example of the case 2.2: p = we, w > −1.

The solutions corresponding to contracting Uni-
verse (s = −1) for k = 0,−1 are obtained from the
previous considerations by the change t → −t.
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Table 2: Types of qualitative behaviour for k = 0 (s = 1) in regions with different signs h(e), t∗ < ∞, 0 ≤ e0 < e1 < ∞.

Type e(X) Domain (t) a(t) e(t)

e > e0: h(e) > 0; h(e0) = 0

2.1 U ↓ (−∞,∞) 0 ↑ ∞ ∞ ↓ e0

2.2 U ↓ (0,∞) 0 ↑ ∞ ∞ ↓ e0

e > e0 ≥ 0: h(e) < 0; h(e0) = 0

2.3 U ↑ (−∞,∞) 0 ↑ ∞ e0 ↑ ∞
2.4 U ↑ (−∞, t∗) 0 ↑ ∞ e0 ↑ ∞

e ∈ (e0, e1): h(e) > 0; h(e0) = h(e1) = 0

2.5 B ↑ (−∞,∞) 0 ↑ ∞ e0 ↑ e1

e ∈ (e0, e1): h(e) < 0; h(e0) = h(e1) = 0

2.6 B ↓ (−∞,∞) 0 ↑ ∞ e1 ↓ e0

cosmological scenarios for k = 1

For k = 1 the Universe is closed and its evo-
lution depends on zeros of the function F (X) =
(8π/3)e(X) − exp(−2X). First we must separate
degenerate cases when F (X0) = 0, F ′(X0) = 0.
In these cases we have F ′(X) = (8π/3)e′(X) +
2 exp(−2X) = −(8π/3)(e+3p) = 0 at X = X0. It is
easy to see that there is the solution a(t) ≡ exp(X0)
of the Friedmann equations (1,2); also, there are so-
lutions such that the point X0 is an attractor or re-
peller: X(t) → X0 for t → ∞ or/and t → −∞.

Further we confine ourselves to the case when ze-
ros of F (X) either do not exist or they are simple:
F (X0) = 0, F ′(X0) ̸= 0; in the latter case these zeros
are the turning points for X(t) where change between
expansion and contraction occurs (the change of sign
of s).

Consider first the case U ↓ of the unbounded
e(X). Let h(e) > 0 for e > e0, h(e0) = 0.

In the region e > e0, if ∀X : F (X) > 0, then
only the types analogous to 2.1, 2.2 of k = 0 (see
3.1, 3.2 of Table 3) are possible. The cases of expan-
sion (s = 1) and contraction (s = −1) are related by
means of the change t → −t. The cases analogous
to 2.3, 2.4 are impossible here, because in the region
e > e0, h(e0) = 0, in case of U ↑ there must be a
root of F (X).

Let there is a root Xr: F (Xr) = 0 and F (X) >
0, X < Xr < ∞. Then the expansion is followed by
contraction (s = 1 → s = −1) at the turning point
ar = expXr. The evolution starts with an infinite
density and ends similarly. However, the behaviour

for X → −∞ is similar to previous cases 3.1, 3.2:
there can be either a solution that is extended for
infinite times t → ±∞ (type 3.3 of Table 3) or a so-
lution with singularities at t = ±t∗, |t∗| < ∞ (type
3.4).

If F (X) > 0, X > Xr > −∞ then we have an
evolution from t = −∞ to t = ∞ with a bounce at
X = Xr; here we have a change from contraction to
expansion and the energy density is always bounded
(type 3.5 of Table 3).

For U ↑ type, it is easy to see that necessarily
there is a root Xr: F (Xr) = 0 and F (X) > 0, X >
Xr > −∞. We have an evolution with the bounce
with a different types of behaviour from contraction
to infinite expansion depending on the rate of in-
crease of e(X): a type when solutions are defined for
all t and a type with the “Big Rip” in the future and
in the past (see types 3.6, 3.7).

In case of B ↓ there is always at least one root
Xr: F (Xr) = 0. Consider the domain e ∈ (e1, e2),
h(e1) = h(e2) = 0, e1 < e(Xr) < e2. Then we have
the same qualitative behaviour as in the case U ↓
(see type 3.5).

In case of B ↑ there can be only one root
Xr: F (Xr) = 0. We have an evolution ∀t with the
bounce from contraction to infinite expansion; the
energy density is always finite.

At last, let X0 < X1 be finite roots of the function
F (X): F (Xi) = 0, F ′(Xi) ̸= 0, i = 0, 1, such that
F (X) > 0 for X0 < X < X1. This can be only either
in case of U ↓ or B ↓. Here we have an oscillating
solution a(t), e(t) of the Friedmann equations.

Possible types of qualitative behaviour are sum-
marised in Table 3 (see Fig. 2).
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Fig. 2: Examples of the qualitative behaviour of solutions of Eq. 4 for k = 1; the arrows show the possible directions
of evolution. The small rings indicate the turning points; the occurrence of two such points corresponds to periodic
solutions. Left: (a): types 3.1-3.2, (b): types 3.3-3.4; center: (a): type 3.5, (b): type 3.9, (c): type 3.8; right: (a):
types 3.6-3.7, (b): type 3.5, (c): type 3.9.

some generalisations
The consideration of previous sections can be eas-

ily generalised to the case of a multi-component fluid
under assumption that different DE components do
not interact with each other. In this case we have
the Eq. 4 for each component en, n = 1, . . . , N sepa-
rately and the reasoning given in the corresponding
section are valid for these components. Instead of
Eq. 6 we have

dX

dt
= s

√
8π

3
etot − k exp(−2X), etot =

N∑
n=1

en.

The main difference from the above discussion is
that etot(X) can be a non-monotonous function and
it is possible that etot(X) → ∞ both for X → ∞
and X → −∞. For example, this can be the case
of e1(X) → ∞ for X → ∞ and e2(X) → ∞ for
X → −∞. In this case for k = 0 and k = 1
it is allowed that a(t): 0 ↑ ∞ on a finite interval
(0, t∗), t∗ < ∞. This behaviour has been prohibited
in case of one component. Note that here a(t) is a
monotonous function, in contrast to type 3.4 or 3.7
of Table 3. For the one-component case with k = −1
such domain and range of a(t) is also possible (cf.
type 1.3 of Table 1), but here the energy density is
a monotonous function. For k = 1, the multicom-
ponent case yields one more possible scenario with
a(t): 0 ↑ ∞ on (−∞, t∗), t∗ < ∞ in addition to the
types of Table 3.

The other generalisation concerns the smoothness
of EoS and h(e). Evidently, this requirement and
the inequality of Eq. 5 can be replaced by a single
requirement of Lipschitz continuity |p(e1)− p(e2)| <
K|e1 − e2| for all e ∈ (∞,∞), where 0 < K < ∞.

If this condition is violated then solutions of
Eq. 4 can appear with either crossing of the phan-
tom line e ≡ e0 with h(e0) = 0 or, e. g., with

e(X) < e0 for X < X0 and e(X) ≡ e0 for
X ≥ X0. The simple example of the latter EoS is
p(e) = −e+C1

√
|e− e0|, C1 > 0, with the solutions

e = e0 + (3C1/2)
2(X −X0)|X −X0| and e ≡ e0. In

case of singularities of p(e) even more complicated
situations are possible, e. g., when the solution e(X)
cannot be extended for all X.

discussion
Thus, in the framework of the hydrodynamic

model of homogeneous isotropic universe with a gen-
eral smooth barotropic equation of state, we pre-
sented a classification of qualitative scenarios of cos-
mological evolution. We listed all possible types of
the solutions depending on whether their domains
and ranges can be finite or infinite. The classifica-
tion includes the “traditional” scenario, which starts
from t = 0 and continues for infinite times. Also,
there is a situation when the time, where a solution
exists, could be limited. However, there are equa-
tions of state that generate scenarios of the eternal
Universe, which exists from the infinite times in the
past, as well as scenarios for which the energy den-
sity e(t) is always finite. This class includes scenarios
for a closed universe with a bounce and oscillating
solutions. Note that most of the examples discussed
above can be found in the other works in the context
of specific problems, in particular possible types of
singular behaviour have been analysed in [3, 5, 8, 10].
However, our classification covers all possible quali-
tative types of cosmological evolution from a unified
viewpoint.

It is essential that, within our discussion, it is
impossible to pass through any zero point of the en-
thalpy, e. g., from the region of a regular behaviour
with h(e) > 0, to the region with h(e) < 0, where it is
possible for singularities of the scale factor to occur in
the future. This is due to the uniqueness of the solu-
tion of Eq. 4 in case of smoothness of the equation of
state (and specific enthalpy respectively). Our clas-
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Table 3: Types of qualitative behaviour for k = 1, F (X) > 0. Here Xr – finite roots of F (X), ar = expXr.

Type e(X) Domain (t) a(t) e(t)

e(X) > e0: h(e(X)) > 0, h(e0) = 0; no zeros of F (X) > 0

3.1 U ↓ (−∞,∞) 0 ↑ ∞ ∞ ↓ e0

3.2 U ↓ (0,∞) 0 ↑ ∞ ∞ ↓ e0

e(X) > e(Xr) > e0: h(e(X)) > 0, h(e0) = 0; X < Xr, F (Xr) = 0

3.3 U ↓ (−∞,∞) 0 ↑ ar ↓ 0 ∞ ↓ e(Xr) ↑ ∞
3.4 U ↓ (−t∗, t∗) , t∗ < ∞ 0 ↑ ar ↓ 0 ∞ ↓ e(Xr) ↑ ∞

e0 < e(X) < e(Xr), h(e(X)) > 0, h(e0) = 0; X > Xr, F (Xr) = 0

3.5
U ↓ (−∞,∞) ∞ ↓ ar ↑ ∞ e0 ↑ e(Xr) ↓ e0

B ↓ (−∞,∞) ∞ ↓ ar ↑ ∞ e1 ↑ e(Xr) ↓ e1

e0 < e(X) < e(Xr), h(e) < 0, h(e0) = 0; X > Xr, F (Xr) = 0

3.6 U ↑ (−∞,∞) ∞ ↓ ar ↑ ∞ ∞ ↓ e(Xr) ↑ ∞
3.7 U ↑ (−t∗, t∗), 0 < t∗ < ∞ ∞ ↓ ar ↑ ∞ ∞ ↓ e(Xr) ↑ ∞

e(Xr) < e < e0, h(e) < 0, X > Xr; F (Xr) = 0, h(e0) = 0

3.8 B ↑ (−∞,∞) ∞ ↓ ar ↑ ∞ e0 ↓ er ↑ e0

Region X ∈ (Xr1 , Xr2), F (Xr1) = F (Xr2) = 0, h(e(X)) > 0

3.9 U ↓,B ↓ (−∞,∞) Oscillating Oscillating

sification does not include non-smooth equations of
state, which can lead to solutions intersecting points
of zero enthalpy (e. g. [10]). Consideration of such
EoS may be of interest because the smoothness con-
dition can be violated in phase transitions. Our qual-
itative analysis can be generalised to include such
options, though when considering the global cosmo-
logical behaviour, it would generate too large number
of additional types. In the case of smooth equations
of state our classification is complete.
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