ПРОГНОЗИРОВАНИЕ УСЛОВИЙ СНИЖЕНИЯ ТЕПЛОВОЙ ЭФФЕКТИВНОСТИ ИСПАРИТЕЛЕЙ С ВНУТРИТРУБНЫМ КИПЕНИЕМ ХОЛОДИЛЬНОГО АГЕНТА

А.Н. Радченко, аспирант, А.А. Сирота, канд. техн. наук,

Николаевский государственный гуманитарный университет им. Петра Могилы, г. Николаев, Украина

1. Анализ проблемы и постановка задачи исследования

Особенностью процесса внутритрубного кипения является наличие двух зон с резко отличающейся интенсивностью теплоотдачи: зоны интенсивной теплоотдачи от стенки к омывающей ее жидкости и зоны с крайне низкой интенсивностью теплоотдачи от сухой стенки к пару, содержащему капли жидкости, унесенные из пристенного слоя в первой зоне. Во второй зоне интенсивность теплоотдачи равна таковой к чистому пару. Ее расчет производится по уравнению для теплоотдачи к чистому пару. Паросодержание *x*_{гр}, соответствующее границе двух зон, принято называть граничным. Таким образом, прогнозирование условий снижения тепловой эффективности испарителей напрямую зависит от достоверности нахождения х_{гр}.

Существующие методики теплового расчета испарителей, и прежде всего охладителей газа, не учитывают ухудшение теплопередачи, обусловленное так называемым кризисом теплообмена второго рода, связанным с переходом от дисперсно-кольцевого к дисперсному течению и имеющим место при *x*_{гр}.

Целью настоящей работы является уточнение методики теплового расчета испарителей путем включения в нее этапа определения паросодержания $x_{\rm rp}$, соответствующего переходу от дисперсно-кольцевого к дисперсному течению, и прогнозирование на основе этой методики условий снижения тепловой эффективности испарителей с внутритрубным кипением холодильного агента.

2. Методика прогнозирования условий снижения тепловой эффективности испарителей и анализ результатов

Механизм кризиса теплообмена второго рода наиболее полно отражен в методе расчета *x*_{гр}, разработанном в атомном центре в Харуэлле (Великобритания) и предполагающем раздельный учет влияния уноса и осаждения капель на толщину пристенной пленки жидкости [1].

Согласно этому методу градиенты массовой скорости жидкости в пленке и дисперсном ядре определяются соответствующими выражениями:

в пленке

$$\frac{\mathrm{d}(\rho w)_{\Pi\Pi}}{\mathrm{d}z} = -\frac{4}{\mathrm{d}_0} \left(\mathrm{E} - \mathrm{D} + \frac{\mathrm{q}}{\mathrm{r}} \right);$$

в дисперсном ядре потока

$$\frac{\mathrm{d}(\rho w)_{\mathrm{W},\mathrm{H}}}{\mathrm{d}z} = \frac{4}{\mathrm{d}_0} (\mathrm{E} - \mathrm{D}),$$

где d₀ – внутренний диаметр трубки;

r – удельная теплота фазового перехода;

Z – длина;

Е – массовая скорость уноса капель с пристеннойпленки жидкости в паровое (дисперсное) ядро потока:

E=5,75.10⁻⁵
$$\left\{ \left[(\rho w)_{\Pi \Pi} - (\rho w)_{\Pi \Pi, \kappa p} \right]^2 \frac{d_0 \rho_{\pi}}{\sigma \rho_{\Pi}^2} \right\}^{0.316} (\rho w) x;$$

где $\rho_{\rm ж}$ и $\rho_{\rm n}$ – плотности жидкости и пара;

σ – коэффициент поверхностного натяжения;

 $(\rho w)_{nn.kp}$ – критическая массовая скорость жидкости в пленке, ниже которой унос прекращается, вычисляется из соотношения

$$\frac{(\rho w)_{\pi\pi.\kappa p} d_0}{\mu_{\mathfrak{K}}} = \exp \left[5,8504 + 0,4249 \frac{\mu_{\pi}}{\mu_{\mathfrak{K}}} \left(\frac{\rho_{\mathfrak{K}}}{\rho_{\pi}} \right)^{0,5} \right],$$

в котором μ_п и μ_ж – коэффициенты динамической вязкости пара и жидкости;

D – массовая скорость осаждения капель из

дисперсного ядра на пристенной пленке жидкости:

$$D = kc$$
,

где с – концентрация капель жидкости в паровом потоке; k – скорость осаждения капель, вычисляется из соотношений

при с/
$$\rho_{\pi} < 0,3$$

$$k = 0,18 \! \left(\frac{\rho_{\pi} d_0}{\sigma} \right)^{\!\!-0,5}; \label{eq:k}$$

при c/p_п > 0,3

$$k = 0.083(c/\rho_{\pi})^{-0.65}(\rho_{\pi}d_0/\sigma)^{-0.5}$$

Падение давления на трение в гомогенном дисперсном ядре dP/dz рассчитывают по коэффициенту трения fi на волновой поверхности раздела фаз, скорректированного введением (по аналогии с шероховатостью) относительной толщины пленки δ/d₀ [2]:

$$f_i = f_{\pi}(1 + 360\delta/d_0),$$

где f_{π} – коэффициент трения однофазного парового потока в соответствии с законом Блазиуса

$$f_{\rm m} = 0,079 {\rm Re_m}^{-0,25}$$

Толщину пленки δ вычисляют по известным профилю осевой скорости и в сечении пленки и массовой скорости жидкости в пленке

$$\left(\rho w\right)_{\Pi\Pi} = \frac{4\mu_{\mathcal{K}}}{d_0} \int_0^{\delta_*} \upsilon_* dy_* ,$$

где относительные толщина пленки $\delta_* = \delta u_{\tau} / v_{\pi}$, расстояние от стенки $y_* = y u_{\tau} / v_{\pi}$ и скорость $\upsilon_* = u / u_{\tau}$; $u_{\tau} = \sqrt{\tau_i / \rho_{\pi}}$ – динамическая скорость; τ_i – касательное напряжение на границе раздела фаз, рассчитывается по формуле

 $\tau_i = f_i \, \frac{(\rho w)_{\mathfrak{A}}^2}{2\rho_{\mathfrak{A}}} \, , \label{eq:tau_static}$

 $(\rho w)_{\pi} = (\rho w)_{\pi\pi} + (\rho w)x;$

где

$$\rho_{\mathfrak{H}} = \frac{\left(\rho w\right)_{\mathfrak{H}}}{\frac{\left(\rho w\right)_{\mathfrak{K},\mathfrak{H}}}{\rho_{\mathfrak{K}}} + \frac{\left(\rho w\right)_{\mathfrak{K}}}{\rho_{\Pi}}} \, .$$

Массовые скорости жидкости в пленке (ρ w)_{пл} и дисперсном ядре (ρ w)_{ж,я} отнесены ко всему сечению канала ($\pi d_0^2/4$), а уноса Е и осаждения D капель – к внутренней поверхности канала ($\pi d_0 Z$).

Расчет ведут до достижения массовой скоростью жидкости в пленке (рw)пл критического значения (рw)_{пл кр}, соответствующего прекращению уноса капель с поверхности гладкой микропленки [1]. Унос капель прекращается при достижении пленкой некоторой критической толщины – толщины гладкой соответствующей толщине микропленки $\delta_{\text{пл.гл}}$, ламинарного подслоя с массовой скоростью (рw)_{пл кр}. Это так называемый кризис гидравлического сопротивления [3], при котором значение последнего падает до минимальной величины, соответствующей однофазным потокам. Величину паросодержания принято обозначать х_{ДР} (соответственно длину трубки $Z_{\Delta P}$).

Протяженность испаряющейся гладкой микропленки по паросодержанию $\Delta x_{rл.пл}$ определялась соотношением $\Delta x_{rл.пл} = (\rho w)_{пл.кр}/(\rho w)$, т.е. предполагалось, что капли жидкости в паровом потоке испаряются только после полного испарения пристенной пленки. Соответствующая протяженность гладкой микропленки по длине трубки испарителя $Z_{rл.пл}$ вычисляется из теплового баланса

$$0,25\pi d_0^2(\rho w)r\Delta x_{r.n.n.n.} = \pi d_0 q Z_{r.n.n.n.}$$

Расчет производился по двум моделям капельного обмена. Первая модель учитывала унос капель и их осаждение. Однако, согласно базовой модели [1] осаждение продолжалось и при гладкой микропленке. При этом после прекращения уноса по достижении пленкой критической толщины при (рw)_{пл.кр} (толщины гладкой микропленки $\delta_{nл.гл}$) происходило его возобновление, поскольку в результате осаждения капель массовый расход жидкости в пленке снова возрастал и становился больше (рw)_{пл.кр}. В этом случае значение х, при котором имело место повторное прекращение уноса, для холодильного агента R-22, наиболее распространенного в технике кондиционирования воздуха, оказывалось значительно больше $x_{\Delta P}$. Поэтому исходная модель [1] была скорректирована таким образом, чтобы при достижении в пленке критической массовой скорости $(\rho w)_{пл.кp}$ вместе с уносом капель прекращалось и их осаждение на гладкой микропленке. Расчет капельного обмена ведут до достижения массовой скоростью жидкости в пленке $(\rho w)_{пл}$ критического значения $(\rho w)_{пл.кp}$, соответствующего прекращению уноса капель с поверхности гладкой микропленки. Тогда значение граничного паросодержания находят как

$$\mathbf{x}_{\mathrm{rp}} = \mathbf{x}_{\Delta \mathrm{P}} + \Delta \mathbf{x}_{\mathrm{rn.nn}}$$

Согласно второй модели - модели уноса осаждение капель не учитывалось. Однако полученные величины х_{гр} для параметров работы систем кондиционирования воздуха имели довольно низкие значения: 0,65 при t₀ = 10 °C и 0,70 при t₀ = -10 °C. Если же принять их за начало зоны перехода от дисперсно-кольцевого к дисперсному течению, т.е. за х₀, а протяженность зоны перехода $\Delta x = x_{rp} - x_0$ равной 0,2 (согласно зависимостям [4]), значения X_{гр}, определяющие завершение то образования дисперсного режима течения, окажутся близкими 0,85 при $t_0 = 10$ °C ($\rho w = 200 \text{ кг/(}\text{m}^2 \cdot \text{c}\text{)}$) и 1,0 при $t_0 = -10^{\circ}C$ (рw = 75 кг/(м²·c)), те соответствующими опытным данным [5].

В соответствии со второй моделью значения паросодержания начала x_0 и завершения x_{rp} перехода от дисперсно-кольцевого к дисперсному течению рассчитывали как $x_0 = x_{\Delta P} + \Delta x_{rл.пл}$ и $x_{rp} = x_0 + 0,2$, Очевидно, что введение поправки $\Delta x = 0,2$ при расчете x_{rp} , а с нею и некоторой переходной области между началом, x_0 , и завершением, x_{rp} , осушения стенки в модель уноса можно рассматривать как ее корректировку для учета влияния осаждения капель на пристенной пленке.

Анализ результатов расчета по обеим моделям показал, что значение x_{гр}, полученное без учета осаждения, меньше чем с его учетом примерно на 0,1. В первом случае с увеличением рw величина x_{гр} уменьшалась также более высокими темпами, чем во втором. Очевидно, что действительная величина *x*_{гр} находится между ее значениями, рассчитанными по двум методикам.

На рис. 1 приведены зависимости массовой скорости жидкости в пристенной пленке $(\rho w)_{n\pi}$ от текущего паросодержания х для R-22 при $t_0 = 0^{\circ}$ С и разных значениях массовой скорости двухфазной смеси ρw в трубке с $d_{BH} = 0,08$ м. Значениям x_{rp0} соответствуют точки пересечения кривых с осью х, т.е. условие $(\rho w)_{n\pi} = 0$.

При увеличении ρ w на каждые 50 кг/(м²·c) происходит снижение x_{rp} примерно на 0,05.

Рис. 1. Зависимость массовой скорости жидкости в пленке $(\rho w)_{nn}$ от паросодержания *x*

Рис. 2. Зависимость массовой скорости жидкости в пленке $(\rho w)_{nn}$ от длины трубки Z

Зависимости массовой скорости жидкости в пристенной пленке (*рw*)_{пл} от длины трубки *Z* для указанных выше условий представлены на рис. 2.

Как видно, с повышением рw (производительности компрессора G₀ с ростом t₀)

происходит увеличение длины трубки Z_x = 1, необходимой для полного испарения капель в потоке перегретого пара, и, следовательно, повышается опасность влажного хода поршневого герметичного При применении компрессора. в качестве дроссельного органа капиллярной трубки последняя становится вполне реальной. Для ее исключения необходима установка после воздухоохладителя защитного ресивера (отделителя жидкости). В случае же дросселирования с помощью ТРВ он уменьшает подачу холодильного агента G₀ на воздухоохладитель, повышение тепловой нагрузки (с тогда как увеличением t₀), требует, наоборот, увеличения G₀. В возрастает доля поверхности результате воздухоохладителя, приходящейся на испарение капельной влаги и работающей крайне неэффективно - с низкой интенсивностью теплопередачи.

Аналогичный характер имеет зависимость $(\rho w)_{nn} = f(x)$ для R-142B. При этом кривые располагаются несколько круче, что свидетельствует о более интенсивном уносе капель с пристенной пленки паровым ядром потока и соответственно более раннем осушении стенки трубки.

3. Выводы и перспектива дальнейшего использования результатов

Проанализированы две модели определения граничного паросодержания х_{гр}, соответствующего ухудшению тепловой эффективности охладителей газа (воздуха) с переходом от дисперсно-кольцевого к дисперсному режиму течения кипящих потоков холодильного агента в трубках: с учетом уноса капель с пристенной пленки жидкости и их осаждения на ней и без учета осаждения капель на пристенной пленке. Результаты расчета для R-22 согласно первой модели дают завышенные значения х_{гр}, тогда как по второй заниженные. Во втором случае (модель уноса) с увеличением рw величина x_{гр} уменьшалась более высокими темпами, чем в первом. Действительная величина х_{гр} находится между ее значениями, рассчитанными по двум моделям.

Предложенная методика позволяет определить протяженность зон интенсивного кипения (при смоченной стенке змеевиков испарителя – $x < x_{rp}$) и испарения капельной влаги с крайне низкой интенсивностью при осушенной стенке ($x_{rp} < x < 1$), длину змеевика, необходимую для полного испарения капель, а также влагосодержание потока на выходе из змеевиков испарителя. На основе этих данных становится возможным прогнозирование условий ухудшения теплопередачи в испарителях систем кондиционирования и возникновения опасности гидравлических ударов из-за попадания в цилиндры поршневых герметичных компрессоров влажного пара.

Литература

 Hewitt G.F., Govan A.H. Phenomenological modelling of non-equilibrium blows with phase change // Int. J. Heat Mass Transfer.– 1990.– Vol. 33, № 5.– P. 243–252.

 Уоллис Г. Одномерные двухфазные течения.– М.: Мир, 1972.– 440 с.

3. Левитан Л.Л. Кризис высыхания в дисперснокольцевом режиме течения // Двухфазные потоки. Теплообмен и гидродинамика: Сб. науч. тр.– Л.: Наука, 1987.– С. 169–186.

 Смирнов Г.Ф. Теплофизические проблемы охлаждения электронного оборудования // Холодильная техника и технология.– 1999.– Вып. 62.– С. 102–107.

5. Chaddock J.B., Varma H.K. An experimental investigation on dry-out with R22 evaporating in a horizontal tube // ASHRAE Transactions.– 1979.– Vol. 85, № 3.– P. 105–121.

Поступила в редакцию 08.07.03

Рецензенты: канд. техн. наук, доц. В.В. Епифанов, Национальный технический университет «ХПИ», г. Харьков; канд. техн. наук, доц. В.С. Чигрин, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», г. Харьков.