МОДАЛЬНО-ФИЗИЧЕСКАЯ МОДЕЛЬ ТРАНСМИССИИ ТВД И ОПРЕДЕЛЕНИЕ ВЕЛИЧИНЫ КРУТЯЩЕГО МОМЕНТА ТУРБИНЫ ПРИ ПЕРЕМЕННОМ КОЭФФИЦИЕНТЕ УПРУГОСТИ ВАЛА¹

В.Ю. Рутковский, д-р техн. наук, профессор, В.М. Суханов, д-р техн. наук, гл.науч. сотр.,

А.Б. Шубин, зав. сект., ст. науч. сотр. Институт проблем управления им. В.А. Трапезникова, РАН, г. Москва, Россия;

С.В. Епифанов, д-р техн. наук, профессор

Национальный аэрокосмический университет им Н.Е. Жуковского, г. Харьков, Украина

1. Введение

Предметом исследования является задача неразрушающего оперативного контроля состояния валопровода трансмиссии турбовинтового авиационного двигателя (ТВД), передающего момент вращения от свободной турбины (СТ) к винтовой группе (рис. 1).

Рис. 1. Расчетная схема упругой трансмиссии ТВД с дифференциальным редуктором и с двумя датчиками частоты вращения вала

Большие моменты турбины, передаваемые трансмиссией ТВД, приводят к упругому скручиванию вала, тем большему, чем больше передаваемый момент. Рассмотренная в [1] возможность определения этого угла в реальном времени, позволяет осуществить идентификацию момента турбины при известном значении крутильной жесткости вала. Однако этот параметр, завися от температуры, является в общем случае нестационарным. Задаче определения данного коэффициента в реальном времени и последующей идентификации момента турбины посвящена предлагаемая работа.

2. Лагранжева модель упругой трансмиссии турбовинтового двигателя

Исследование проблемы осуществляется на примере трансмиссии турбовинтового двигателя с дифференциальным редуктором и двумя соосными винтами (рис.1), уравнение которой как механической системы, состоящей из трех вращающихся масс, имеет известный вид [2]:

$$\begin{split} J_{B1} \dot{\omega}_{B1} &= i_1 (M_T - J_T \dot{\omega}_T) - M_{B1}, \\ J_{B2} \dot{\omega}_{B2} &= i_2 (M_T - J_T \dot{\omega}_T) - M_{B2}, \\ \omega_T &= i_1 \omega_{B1} + i_2 \omega_{B2}, \end{split} \tag{1}$$

где $\omega_T = \overline{\alpha}_T$ - угловая скорость вращения вала турбины:

J_T – момент инерции ротора СТ;

 $\omega_{B\,k} = \dot{\alpha}_{B\,k}$, (k = 1,2) - угловая скорость вращения k-го винта,

 $\alpha_{B\,k}$, α_T – угловые координаты вращения соот-

ветствующих элементов трансмиссии;

 J_{Bk} –моменты инерции переднего (J_{B1}) и заднего (J_{B2}) винтов;

i_k – коэффициенты редукции передачи от вала СТ к
 соответствующим винтам;

М_т – крутящий момент СТ;

M_{Bk} – момент нагрузки, создаваемый k-м винтом.

Зависимость моментов на винтах ТВД от чисел оборотов приближенно может быть представлена в виде квадратичной функции [2].

Учет упругости вала трансмиссии приводит к появлению дополнительной степени свободы и к соответствующему расширению исходной системы (1) до вида, полученного в [1]:

$$\begin{split} J_T \ddot{\alpha}_{T2} + \beta \delta \dot{\alpha}_T + c_\omega \delta \alpha_T &= M_T \,, \\ J_{B1} \ddot{\alpha}_{B1} - i_1 (\beta \delta \dot{\alpha}_T + c_\omega \delta \alpha_T) &= -M_{B1} \end{split}$$

¹ Работа выполнена при поддержке INTAS (Проект № 2000-757) и РФФИ (Проект № 03-01-00062)

$$\begin{split} J_{B2}\alpha_{B2} &- i_2(\beta\delta\alpha_T + c_{\omega}\delta\alpha_T) = -M_{B2}, \\ \ddot{\alpha}_{T1} &= i_1\ddot{\alpha}_{B1} + i_2\ddot{\alpha}_{B2}, \\ \delta\alpha_T &= \alpha_{T2} - \alpha_{T1}, \ \delta\alpha_T = d(\delta\alpha_T)/dt, \end{split}$$

где α_{T1} – угловая координата переднего конца вала (на входе редуктора);

α_{T2} – угловая координата заднего конца вала СТ (на стыке с диском СТ);

 $\delta \alpha_{\rm T} = \alpha_{\rm T2} - \alpha_{\rm T1}$ - угол упругого скручивания вала, возникающий вследствие приложения крутящего (M_T), инерционных и внешних (M_{B1}, M_{B2}) моментов к соответствующим концевым частям вала;

 c_{ω} - коэффициент упругости вала на скручивание, являющийся в общем случае плохо определенной, переменной величиной, зависящей как от температурного режима двигателя, так и от степени старения материала вала;

 β - коэффициент затухания крутильных колебаний.

В приложении к задаче контроля технического состояния вала ротора СТ можно ограничиться двумя вытекающими из (2) уравнениями:

$$\begin{split} J_{T}\ddot{\alpha}_{T2} + \beta(\dot{\alpha}_{T2} - \dot{\alpha}_{T1}) + c_{\omega}(\alpha_{T2} - \alpha_{T1}) = M_{T}, \\ \alpha_{T1} + [\beta(\alpha_{T1} - \alpha_{T2}) + c_{\omega}(\alpha_{T1} - \alpha_{T2})] \sum_{k=l}^{2} i_{k}^{2} J_{Bk}^{-l} = -\sum_{k=l}^{2} i_{k} J_{Bk}^{-l} M_{Bk}. \end{split}$$

$$(3)$$

3. Модально-физическая модель упругой трансмиссии ТВД

Обозначив в (3) p = d/dt и $x_2 = \dot{\alpha}_{T2}$ и $x_1 = \dot{\alpha}_{T1}$, получим уравнения угловых скоростей движения концевых сечений упругого вала:

$$\begin{split} & [J_{T}p^{2} + (\beta p + c_{\omega})(l + J_{T}\sum_{k=l}^{2}i_{k}^{2}J_{Bk}^{-1})]px_{2} = \\ & = [p^{2} + (\beta p + c_{\omega})\sum_{k=l}^{2}i_{k}^{2}J_{Bk}^{-1}]M_{T} - (\beta p + c_{\omega})\sum_{k=l}^{2}i_{k}J_{Bk}^{-1}M_{Bk}, \\ & [J_{T}p^{2} + (\beta p + c_{\omega})(l + J_{T}\sum_{k=l}^{2}i_{k}^{2}J_{Bk}^{-1})]px_{1} = \\ & = [(\beta p + c_{\omega})\sum_{k=l}^{2}i_{k}^{2}J_{Bk}^{-1}]M_{T} - (J_{T}p^{2} + \beta p + c_{\omega})\sum_{k=l}^{2}i_{k}J_{Bk}^{-1}M_{Bk}. \end{split}$$
(4)

Для перехода от уравнений (4) к форме модальнофизического представления динамики упругих систем [3], координаты общего движения (скорости концевых сечений упругого вала) представим в виде:

$$\mathbf{x}_{\mathbf{k}} = \overline{\mathbf{x}} + \widetilde{\mathbf{x}}_{\mathbf{k}}, \quad \mathbf{k} = \mathbf{1}, \mathbf{2} \quad , \tag{5}$$

где $\bar{x} = \bar{\alpha}_T$ - компонента, определяющая угловую скорость вращения вала СТ как жесткого тела;

 $\tilde{x}_k = \tilde{\alpha}_{Tk}$, k=l,2 - дополнительные компоненты угловых скоростей концевых сечений вала, вызванные его крутильными колебаниями.

Уравнение, описывающее динамику компоненты $\bar{x} = \bar{\alpha}_T$, может быть получено из уравнений (1) трансмиссии с жестким валом в следующем виде:

$$(1 + J_T \sum_{k=1}^{2} i_k^2 J_{Bk}^{-1}) p \overline{x} = M_T \sum_{k=1}^{2} i_k^2 J_{Bk}^{-1} - \sum_{k=1}^{2} i_k J_{Bk}^{-1} M_{Bk}.$$
 (6)

Уравнения крутильных колебаний концевых сечений упругого вала, записанные относительно координат $\tilde{x}_k = \tilde{\alpha}_{Tk}$, получаются вычитанием уравнения (6) из соответствующих уравнений (4), в которых предварительно делается подстановка (5):

$$\begin{split} & [p^{2} + (\beta p + c_{\omega})(J_{T}^{-1} + \sum_{k=1}^{2} i_{k}^{2} J_{Bk}^{-1})] \mathfrak{X}_{2} = \\ & = p(1 + J_{T} \sum_{k=1}^{2} i_{k}^{2} J_{Bk}^{-1})^{-1} (J_{T}^{-1} M_{T} + \sum_{k=1}^{2} i_{k} J_{Bk}^{-1} M_{Bk}), \end{split}$$
(7)
$$& [p^{2} + (\beta p + c_{\omega})(J_{T}^{-1} + \sum_{k=1}^{2} i_{k}^{2} J_{Bk}^{-1})] \mathfrak{X}_{1} = \\ & = -p(1 + J_{T} \sum_{k=1}^{2} i_{k}^{2} J_{Bk}^{-1})^{-1} J_{T} \sum_{k=1}^{2} i_{k}^{2} J_{Bk}^{-1} (J_{T}^{-1} M_{T} + \sum_{k=1}^{2} i_{k} J_{Bk}^{-1} M_{Bk}). \end{split}$$
(8)

Из (7) и (8) следует, что между переменными \tilde{x}_1 и \tilde{x}_2 существует связь вида:

$$\tilde{x}_1 = -(J_T \sum_{k=1}^2 i_k^2 J_{Bk}^{-1}) \tilde{x}_2.$$
 (9)

Таким образом, модально-физическая модель нежесткой трансмиссии ТВД (рис.1), отображающая вращение упругого вала как жесткого тела ($\bar{x} = \bar{\alpha}_T$) с наложенными на это движение крутильными колебаниями ($\bar{x}_k = \bar{\alpha}_{Tk}$, k = 1,2), может быть представлена в виде системы двух дифференциальных уравнений, связанных только через их правые части:

$$(1 + J_T \sum_{k=1}^{2} i_k^2 J_{Bk}^{-1}) px = M_T \sum_{k=1}^{2} i_k^2 J_{Bk}^{-1} - \sum_{k=1}^{2} i_k J_{Bk}^{-1} M_{Bk},$$

$$[p^{2} + (\beta p + c_{\omega})(J_{T}^{-1} + \sum_{k=1}^{2} i_{k}^{2} J_{Bk}^{-1})] \mathfrak{X}_{2} =$$

$$= p(1 + J_{T} \sum_{k=1}^{2} i_{k}^{2} J_{Bk}^{-1})^{-1} (J_{T}^{-1} M_{T} + \sum_{k=1}^{2} i_{k} J_{Bk}^{-1} M_{Bk}), \qquad (10)$$

и уравнений связи (5) и (9). При необходимости эти уравнения могут быть дополнены следующим из (2) уравнением, описывающим динамику угла скручивания δα_t:

$$\begin{split} & [p^{2} + (\beta p + c_{\omega})(J_{T}^{-1} + \sum_{k=1}^{2} i_{k}^{2} J_{Bk}^{-1})]\delta\alpha_{t} = \\ & = J_{T}^{-1} M_{T} + \sum_{k=1}^{2} i_{k} J_{Bk}^{-1} M_{Bk} \,. \end{split}$$

Специфика конструктивного исполнения датчика оборотов, индукторная шестерня которого напрессована на вал турбины и, следовательно, является частью трансмиссии ТВД, дает возможность представить объект исследования и измерительную систему как единое целое. Входными воздействиями такого комплексного объекта в общем случае являются моменты турбины и двух соосных винтов, приложенных известным образом (рис. 1) к противоположным концам упругого вала. Выходными координатами являются сигналы двух датчиков оборотов, использующиеся далее для решения задачи наблюдения за техническим состоянием трансмиссии.

Отображаемая уравнениями (10)-(11) динамика трансмиссии ТВД может быть представлена в виде структурной схемы, изображенной на рис. 2. Здесь для краткости введено обозначение $k_J = (J_T^{-1} + \sum_{k=1}^{2} L_k^2 J_{Bk}^{-1}),$

величина, которую можно определить как коэффици-

ент подвижности вращающихся инерционных масс трансмиссии.

3. Модель сигналов индукционного датчика частоты вращения упругого вала

Чувствительным элементом датчика является индуктивная катушка, помещенная в магнитное поле В, создаваемое постоянным магнитом двухполюсного статора. На вал ротора, частоту вращения которого требуется измерять, напрессована индукторная шестерня, зубья (полюса) которой, пробегая мимо полюсов статора, приводит к перераспределению магнитного потока постоянного магнита. Переменная составляющая магнитного потока $\tilde{\Phi} = \tilde{\Phi}(B)$ (В – индукция в зазоре датчика) при этом индуцирует в катушке статора ЭДС $e = -\tilde{\Phi}$. Амплитуда ЭДС определяется известным соотношением [4]:

$$E_{\rm m} = 2\omega w \tilde{\Phi}_{\rm m} \,, \tag{12}$$

где $\omega = n\overline{\omega}_T$ - несущая частота сигнала датчика;

Ф_т - известная амплитуда переменной составляющей потока, зависящая от магнитодвижущей силы и крайних значений сопротивления магнитной цепи преобразователя;

w – число витков катушки.

Таким образом, при вращении жесткого вала напряжение $u_{\overline{\varpi}}(\overline{\varpi}_{T})$, снимаемое с индукционной катушки ДЧВ, при наличии емкостной развязки приближенно может быть описано синусоидальной функцией, амплитуда и частота которой зависят от величины угловой скорости турбины $\overline{\varpi}_{T}$:

$$\mathbf{u}_{\overline{\mathbf{\omega}}}(\overline{\mathbf{\omega}}_{\mathrm{T}}) = \mathrm{U}(\overline{\mathbf{\omega}}_{\mathrm{T}})\sin n\overline{\mathbf{\omega}}_{\mathrm{T}}\mathbf{t}\,,\tag{13}$$

где $U(\overline{\omega}_T) = U_{\overline{\omega}} = k_{\Phi} n \overline{\omega}_T$, $k_{\Phi} = 2w \widetilde{\Phi}_m$.

При ограниченной жесткости на кручение c_{ω} на нестационарных режимах вращения вала ($M_T = M_T(t) \neq const$) возбуждаются крутильные колебания $\alpha_T(t)$, аддитивно

Рис. 2. Структурная схема МФМ упругой трансмиссии ТВД с двумя датчиками оборотов

добавляющиеся к основному движению вала $\overline{\alpha}_{T}(t)$. В силу принципа действия индукционного Nпреобразователя нетрудно понять, что при отсутствии вращательного движения $\overline{\omega}_{T}$ крутильные колебания вала $\dot{\alpha}_{T}(t)$, воспринимаясь как вибрационные колебания индуктора датчика, приведут к появлению переменной составляющей магнитного потока с частотой крутильных колебаний $\overline{\omega}_{T}$, что вызовет наведение ЭДС в катушке статора [4] и соответствующего напряжения:

$$u_{\widetilde{\omega}}(\widetilde{\omega}_{\mathrm{T}}) = \mathrm{U}(\widetilde{\omega}_{\mathrm{T}})\sin\widetilde{\omega}_{\mathrm{T}}t\,,\qquad(14)$$

где $U(\varpi_T) = U_{\widetilde{\omega}} = \varpi_T \alpha_{T_m} Bw$ - амплитуда ЭДС, наводимой вибрационной компонентой $\alpha_T(t)$ с полуразмахом колебаний α_{T_m} .

Результирующее движение вала турбины α_T , состоящее из вращения $\bar{\alpha}_T(t)$ с частотой $\bar{\omega}_T$ и крутильных колебаний $\dot{\alpha}_T(t)$ с частотой вибраций $\bar{\omega}_T$, воспроизводится датчиком в форме непрерывного сигнала (напряжения) следующего вида:

$$\mathbf{u}_{\boldsymbol{\omega}} = \mathbf{u}_{\overline{\boldsymbol{\omega}}} + \mathbf{u}_{\boldsymbol{\overline{\omega}}} = \mathbf{U}_{\overline{\boldsymbol{\omega}}} \sin n \overline{\boldsymbol{\omega}}_{\mathrm{T}} \mathbf{t} + \mathbf{U}_{\boldsymbol{\overline{\omega}}} \sin \tilde{\boldsymbol{\omega}}_{\mathrm{T}} \mathbf{t} \,. \tag{15}$$

Поскольку рассматриваемый датчик является индукционным тахометром. а не специализированным измерителем параметров вибраций, то регистрируемая ИМ (в виде дополнительной ЭДС ё) вибрационная компонента $u_{\widetilde{\omega}} = U(\widetilde{\omega}_T) \sin \widetilde{\omega}_T t$, является по сравнению с $u_{\overline{\omega}}$ относительно слабым сигналом, который обычно рассматривается как помеха ξ_k . При наличии двух датчиков оборотов, установ-

При наличии двух датчиков оборотов, установленных на противоположных концах упругого вала, используя их выходные сигналы

$$u_{\omega 1} = u_{\overline{\omega}1} + u_{\overline{\omega}1} = U_{\overline{\omega}1} \sin n\overline{\omega}_{T1}t + \xi_1,$$

$$u_{\omega 2} = u_{\overline{\omega}2} + u_{\overline{\omega}2} = U_{\overline{\omega}2} \sin(n\overline{\omega}_{T2}t + \psi) + \xi_2,$$
(16)

описанным в [1] способом, можно вычислять оценку фазового сдвига этих сигналов $\hat{\psi}(t)$ и пропорциональный этому сдвигу угол скручивания упругого вала, определяемый его оценкой: $\delta \hat{\alpha}_{\rm T} = n^{-1} \hat{\psi}$.

4. Идентификация момента СТ для случая изменяющегося коэффициента жесткости

В соответствии с (11) величина момента турбины в установившемся режиме ТВД может быть вычислена по формуле [1]:

$$\hat{\mathbf{M}}_{\mathrm{T}} = \mathbf{c}_{\omega}(\mathbf{t})\delta\hat{\boldsymbol{\alpha}}_{\mathrm{T}} \,. \tag{17}$$

Однако окончательному решению задачи мешает проблема плохой определенности и переменности величины $c_{\omega}(t)$. Для ее преодоления воспользуемся дифференциальным методом идентификации [5].

Идентифицируемым параметром является собственная частота $\widetilde{\omega}_{T}$ крутильных колебаний вала $\widetilde{\alpha}_{T}(t)$, отображаемых в выходном сигнале ДЧВ компонентой $u_{\widetilde{\omega}} = U(\widetilde{\omega}_{T})\sin\widetilde{\omega}_{T}t$, определяемой как динамикой, так и текущими значениями параметров (в т.ч. c_{ω}).

Принимая во внимание (15) и считая величину ϖ_{T} неизвестной в некотором заранее заданном диапазоне $\varpi_{T\min} \le \varpi_{T} \le \varpi_{Tma:}$ каждый из выходных сигналов (16) подадим на вход поисково-следящей системы, компьютерная реализация которой приведена на рис. 3.

Рис. 3. Блок-схема системы определения частоты вибраций

Эта система, предназначенная для поиска полезного сигнала $u_{\widetilde{\omega}1}$, соответствующего вибрационной компоненте $\tilde{\alpha}_T$, и слежения за возможными изменениями ее частоты $\tilde{\omega}_T(t)$, состоит из трех управляемых резонансных фильтров Φ_k (k=1÷3) вида:

$$x_k + \Omega_k^2 x_k = (u_{\omega} - x_k)k_{\Phi}, k = 1 \div 3,$$
 (18)
где x_k - выходные координаты фильтров;

 k_{Φ} - коэффициент усиления ($k_{\Phi} \ll 1$);

$$\Omega_1 = v^0 - \Delta, \ \Omega_2 = v^0, \ \Omega_3 = v^0 + \Delta;$$

v⁰ - начальное значение сигнала, управляющего резонансной частотой фильтра; Δ - сдвиг резонансной частоты.

За частоту \mathfrak{W}_{T} полезного сигнала $\mathfrak{u}_{\mathfrak{W}}$ в диапазоне $\mathfrak{W}_{T\min} \leq \mathfrak{W}_{T} \leq \mathfrak{W}_{T\max}$ принимается значение частоты настраиваемого фильтра, при которой величина огибающей выходного сигнала фильтра имеет максимальное значение. Соответствующая вычислительная процедура основывается на анализе разности значений огибающих (\mathbf{x}_{k}) выходных сигналов третьего и первого фильтров:

$$\mathbf{R} = \overline{\mathbf{x}}_3 - \overline{\mathbf{x}}_1 \approx \frac{\partial \mathbf{A}}{\partial \Omega} 2\Delta , \qquad (19)$$

которая при реализации на ЦВМ преобразуется в итеративную процедуру настройки вида:

$$v^{j+1} = v^j + a(\overline{x}_3^j - \overline{x}_1^j),$$
 (20)

где j=1,2,..., n определяет последовательность тактов вычисления;

а – коэффициент, обеспечивающий (при достаточно большом n>N) сходимость процедуры (20) к максимальному значению амплитуды выхода фильтра Φ_2 , при котором $\Omega_2 \approx \widetilde{\omega}_T$. Индикатором завершения процесса настройки может служить момент выполнения условия малости сигнала $|u_{\omega}-x_2| \leq \varepsilon$.

На рис. 4 приведена реализация процесса поиска частоты $\varpi_{\rm T}$ при начальном отклонении около 10% от действительного значения. Видно, что время поиска при таком отклонении составляет примерно 0,5с. При t=1c возникает процесс изменения частоты $\varpi_{\rm T}$, вызванный внешними причинами. Система (рис.3) достаточно точно отслеживает данное изменение, совершая малые колебания относительно истинного значения $\varpi_{\rm T}(t)$, вызванные существенной переменностью амплитуды колебаний (до 90% A_{max}).

Рис. 4. Процесс поиска и слежения за изменяющейся частотой вибраций вала СТ

Таким образом, исходные сигналы ДЧВ (16) могут быть преобразованы к виду:

 $u_{\overline{\omega}1} = U_{\overline{\omega}1} \sin n\overline{\omega}_{T1}t, \quad u_{\overline{\omega}1} = U_{\overline{\omega}1} \sin \widetilde{\omega}_{T1}t;$ (21) $u_{\overline{\omega}2} = U_{\overline{\omega}2} \sin(n\overline{\omega}_{T2}t + \psi), \quad u_{\overline{\omega}2} = U_{\overline{\omega}2} \sin \widetilde{\omega}_{T2}t$ Далее пара сигналов $u_{\overline{\omega}2} = U_{\overline{\omega}2} \sin(n\overline{\omega}_{T2}t + \psi)$ и $u_{\overline{\omega}1} = U_{\overline{\omega}1} \sin n\overline{\omega}_{T1}t$ используется при решении задачи оценивания угла кручения упругого вала по известной методике [1]. Другая пара: $u_{\overline{\omega}1} = U_{\overline{\omega}1} \sin \widetilde{\omega}_{T1}t$, $u_{\overline{\omega}2} = U_{\overline{\omega}2} \sin \widetilde{\omega}_{T2}t$, в которой, как видно из (7) и (8), $\widetilde{\omega}_{T1} = \widetilde{\omega}_{T2} = \widetilde{\omega}_{T}$, в соответствии с описанной выше методикой принимает участие в вычислении плохо определенного (или неизвестного), изменяющегося значения крутильной жесткости вала по формуле:

$$c_{\omega}(t) = \widetilde{\omega}_{T}^{2}(t)(J_{T}^{-1} + \sum_{k=1}^{2} i_{k}^{2} J_{Bk}^{-1})^{-1}.$$
 (22)

Полученная оценка (22) используются далее при вычислении момента СТ по формуле (17).

Литература

1. Алгебраический и адаптивный подходы к задаче идентификации крутящего момента свободной турбины ТВД / В.Ю. Рутковский, С.В. Епифанов, С.Д. Земляков, В.М. Суханов, В.М. Глумов // Авиационно-космическая техника и технология: Сб. науч. тр.- Харьков: ХАИ, 2002.- Вып. 31. Двигатели и энергоустановки.- С. 197-201.

 Теория автоматического управления силовыми установками летательных аппаратов / Под ред.
 А.А. Шевякова.- М.:, "Машиностроение", 1976.-305 с.

3. Модально-физическая модель пространственного углового движения деформируемого космического аппарата и ее свойства / Глумов В.М., Земляков С.Д., Рутковский В.Ю., Суханов В.М. // Из. вузов Авиац. техника.- 1998.- № 12.- С. 38-50.

4. Левшина Е.С., Новицкий П.В. Электрические измерения физических величин.– Л.: Энергоатомиздат, 1983.– 320 с.

5. Растригин Л.А. Системы экстремального управления. – М.: Наука, 1974. – 632 с.

Поступила в редакцию 12 05.03

Рецензент: д-р техн. наук, профессор В.Н. Доценко, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», г. Харьков.