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1. Introduction 

 
For a gas turbine that is considered as a complex and 

expensive system, condition monitoring technologies 

have the potential to save millions of dollars per year [1], 

through lowering fuel consumption, reducing catastrophic 

failures, decreasing mean time to repair, and optimizing 

maintenance planning. This will significantly reduce life 

cycle cost and improve competitive position of companies 

that maintain engines equipped with condition (health) 

monitoring systems. 

Aircraft engine monitoring systems have become 

increasingly standard in the last two decades [2]. Above 

traditional aircraft application and usage in power plants 

of natural gas pumping and electrical power production, 

condition monitoring is used, for example, in shipboard 

[1] and battle tank [3] propulsion systems.   

The thermodynamic (temperature, pressure, RPM, 

etc.) sensors are located at strategic points along the gas 

flow in the engine to provide more detailed 

thermodynamic picture of the engine’s state. The 

algorithms of failure detection that analyze registered 

thermodynamic parameters and use gas turbine models 

for diagnostic aims can be considered as principal 

algorithms of monitoring systems [2]. Gaspath failures 

can be detected by these algorithms, for example, 

compressor blade contamination, aerodynamic surfaces 

distortion, and seal wear as well as measurement system 

malfunctions.  

Wide usage of mathematical models in diagnosing 

process is explained by high cost of physical failure 

modelling, an infrequent display of gas turbine failures, 

and other causes. Steady state regimes and corresponding 

static models are traditionally chosen for diagnostic 

needs; however transient regime analysis [4] is also 

involved in the diagnosis now.  

Primarily, static thermodynamic models of different 

engines types and techniques of model identification were 

elaborated and applied in diagnostic aims [5]. A double 

effect was reached from this application: at first, higher 

model accuracy; at second, a diagnosing process 

simplification. 

For feather diagnosing enhancement, a dynamic model 

and its identification procedure had been developed later 

and adapted to a stationary gas turbine power plant [6]. 

As every new tool perspective for practical 

implementation in active monitoring system, this 

procedure must be carefully verified. Therefore, a 

statistical testing of the dynamic model identification 

(DMI) procedure was carried out. The testing is described 

and the results are discussed in this paper as well as 

perspectives of DMI-procedure incorporating into the 

monitoring system.  

 
2. Dynamic model identification 

 
Dynamic nonlinear gaspath model describes behavior 

of thermodynamic parameters on transient regimes and 

can be presented by the common expression  

]t,Θ),t(U[F)t(Y
→→→

= ,                    (1) 

where the vector of regime and atmospheric conditions 

)t(U
→

 is given as a function of time, and a separate 

influence of the time variable t is explained by an inertia 
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nature of gas turbine dynamic processes. Every engine 

component (compressor, turbine, combustion chamber 

etc.) in this model is presented by its performance. The 

vector of state parameters 
→
Θ  is used for describing and 

simulating the engine failures. These parameters are able 

to displace component performances in arbitrary 

directions and simulate different failures by this mode. 

The state parameters have a relative form; and the normal 

value is zero. 

The thermodynamic parameters of the model (1) are 

computed numerically as a solution of the system of 

differential equations in which the right parts are 

calculated from a system of algebraic equations reflecting 

the conditions of the components combined work on 

transient regimes. The measured values *Y
→

 differ from 

the model generated ones due to the model errors Ymε
→

 

and the measurement errors Yε
→

, therefore 

YYm εεY*Y
→→→→

++= .                   (2) 

Similarly, the expression for regime and atmospheric 

conditions 

UεU*U
→→→

+=                        (3) 

is formed. 

It is suggested to divide the total measurement error 

level into three components influencing on identification 

process in different ways: ε0Y, ε0U - levels of systematic 

errors; ε1Y, ε1U - levels of long-term random fluctuations 

that are changed from one transient regime to another; 

ε2Y, ε2U - levels of short-term random fluctuations that are 

changed during a transient regime. 

The objective of model identification consists in 

finding such values of model internal parameters which 

minimize a discrepancy between model external 

parameters and measured ones. The state parameters 
→
Θ  

are chosen as such internal parameters that must be 

estimated. This is explained by the known fact that engine 

components theoretical performances used into the model 

are not sufficiently certain and may be specified on real 

data *Y
→

. So, the state parameter estimations Θ̂
r

 may be 

expressed as follows 

]t,Θ),t(*U[Y)t(*YminargΘ̂
→→→→

−=
r

.        (4) 

Besides the better model accuracy resulting from such an 

adjustment, the simplification of the diagnosing process is 

reached because the found state parameters contain 

information of current technical condition of each 

component.  

 
3. Identification procedure 

 
Due to numeric nature of the dynamic model itself, 

any exact analytic solution (4) does no exist, and a 

numeric iteration procedure is applied. For any iteration 

of number n+1 the current estimation may be written as 

follows  

nn1n
Θ∆ΘΘ
→→+→

+= ,                       (5) 

in which the current correction 
n

Θ∆
→

 presents a 

regularized solution of the linear system  

)Θ(ZΘ∆)Θ(C
nnn →→→→

= ,                   (6) 

where C - matrix of influence coefficients of state 

parameters on thermodynamic parameters calculated in 

registration points 1, 2,…, NT of the transient regime 

chosen for the identification; 
→
Z  - vector of discrepancies 

between the model values 
→
Y  and measured ones *Y

→
 

formed in NT corresponding time-points. 

To solve the linear system (6), a standard technique is 

used that selects an optimal value of the regularization 

coefficient α. The variation boundary αmax may be 

changed. The iterations are repeated until a moment when 

current increments of state parameters and 

thermodynamic parameters will be sufficiently low or on 

reaching the established cycle number NI.  

The software of the developed DMI-procedure 

includes about 70 program modules; around 90 percents 

of modules were imported from static model 

identification procedure and are time-proved. The 

software was tested on simulated data and real 
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information and had demonstrated a correct functioning 

and quick convergence [6].  

Although the DMI-procedure is critical to computer 

operating speed, a stochastic measurement simulation and 

numerous repetitions of the identification in the course of 

procedure statistical testing are still possible. In this 

paper, an influence of various factors on identification 

accuracy is investigated by such a testing. 

 
4. Statistical testing description 

 
The statistical testing was carried out in the following 

sequence:  

1) the failures are simulated by state parameters 

modΘ
→

 that displace component performances;  

2) corresponding thermodynamic parameters are 

generated by the model with changed component 

performances;  

3) a random measurement noise is added to these 

thermodynamic parameters and the inlet and control 

parameters;  

4) the DMI-procedure is executed on the simulated 

data *U
→

 and *Y
→

;  

5) error of the estimations Θ̂
r

 is determined.  

In an external testing cycle this simulation and 

identification sequence is repeated NS times for reliable 

determination of obtained average accuracy. Behavior and 

accuracy of tested procedure are checked with the 

following cycle- averaged values (criteria): 

dYi, dΘi - relative mean increments of 

thermodynamic and state parameters for every iteration i; 

δY*i – mean discrepancies between model 

thermodynamic parameters and measured ones; 

δΘi – mean discrepancies between simulated and 

estimated values of state parameters; 

δΘj, Θδ
__

 - discrepancies between simulated and 

estimated values of every state parameter ΘJ and on 

average. 

The state parameters present a primary interest for 

detection algorithms therefore the criteria δΘj and Θδ
__

 

are chosen to define final identification accuracy. Other 

criteria are intended for the identification flow checking.  

The factors affecting the behavior and accuracy and 

analyzed in the paper may be classified in the following 

way. 

A. Internal parameters cyclic testing:  

- cycle number NS. 

B. DMI-procedure internal parameters: 

- regularization coefficient boundary αmax; 

- iteration number NI. 

C. Identification conditions: 

- measured thermodynamic parameters structure and 

number m; 

- state parameters structure and number r; 

- measurement error levels ε0Y, ε1Y, ε2Y, ε0U, ε1U, ε2U; 

- dynamic process profile )t(U
→

 given in NT points; 

- simulated state parameters modΘ
→

. 

The number NS had been established first of all 

because it determines a total testing precision. Then with 

the known number NS, the proper values αmax and NI were 

estimated. After fixing the factors of the groups “A” and 

“B”, main part of the investigations was conducted: 

analyzing the group “C” factor, choosing optimal values, 

and forming the recommendations for diagnosis 

application.  

Generally, there is not any information to consider 

above factors as independent and an idea to apply the 

complete factorial experiment to investigate the influence 

of the factors on the accuracy criteria looks as attractive. 

However, a great number of the factors, a sufficiently 

large required computer time (about 4 hours for a 

standard testing calculation on 1.7GHz Pentium IV 

computer), and impossibility to execute the DMI-

procedure of the real engine at all theoretical points of 

such an experiment do not permit to realize this idea. 

For this reason, other strategy had been chosen. A 

base calculation was established; factors were varied 

relatively the base calculation conditions and analyzed 

independently; most interesting and important results 

were verified by additional calculations in different 

conditions.  
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5. Testing results 
 

5.1 Base calculation 
 

The base calculation of identification procedure 

testing was executed in the following conditions:  

1. NS = 1000 

2. αmax = 5600, NI = 3 

3. m = 8 (all parameters of the power plant regular 

measurement system); 

4. r = 6 (a flow consumption parameter and an 

efficiency parameter for three components: compressor, 

high pressure turbine, free turbine); 

5. ε1Y = ε1U = 0.008 (this noise level ±0.8% 

corresponds to the regular measurement system; for the 

parameters of rotation speed the level is established 5 

times lower), other noise components are equal to zero; 

6. vector )t(U
→

 given in 5 time-points includes a 

linear change of high pressure rotor speed from 9450 rpm 

to 10850 rpm during 2 seconds into the total interval of 4 

seconds; 

7. Θmod1 = -0.03 (compressor flow parameter) and 

Θmod4 = -0.02 (high pressure turbine efficiency 

parameter); other 4 parameters are equal to zero. 

A choice of noted values is explained in more details 

below. 

Table 1 includes the base calculation results which 

show that first two parameters possess a lower accuracy 

and other ones have the approximately constant 

dispersion 0.0048. The accuracy mean number  

Θδ
__

 = 0.00557 is used below for a comparison of 

calculations. The systematic error presented by the 

estimation displacements looks as insignificant. 

 
Table 1 

Identification accuracy of the base calculation  

   δΘ1      δΘ2      δΘ3      δΘ4      δΘ5      δΘ6       Θδ
__

 

 .00750 .00615  .00482  .00481  .00480  .00477  

.00557 

      Averaged estimation displacements 

.00132 -.00081 .00144  .00106  .00100 -.00066  

It is practically interesting to know how clear is 

distinguished the simulated failure on the background of 

identification errors of such a level. To provide the 

answer, the basic calculation was repeated with an 

introduction of the failure simulation modΘ
→

 after the 

testing cycle 200. The resulting estimations for four state 

parameters are plotted in Figure 1. It is evident from the 

plots Θ1 and Θ4 that the failure is statistically recognized.   

 

 
Fig. 1. State parameter estimations 

 
5.2 Testing precision 

 
So, the first task of factors analysis was to establish 

proper cycle number NS to provide necessary precision 

level of the testing calculations. With the number 1000, 

the level [±(2-3)% for δΘj and ±1% for Θδ
__

] was 

reached. This level is sufficient for reliable determination 

of the factor influence on the criteria and presents a 

compromise between the achieved precision and required 

computer time. 
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5.3 Determination of identification 
 procedure parameters 

 
To determine the identification procedure parameters, 

let analyze Figure 2 where identification flow in the base 

conditions (excepting NI = 10) is demonstrated. Common 

logarithms of current iteration increments dYi, dΘi and 

current accuracies δY*I, δΘi are plotted here versus 

iteration number variable. It may be noted that more and 

more short steps follow after the largest first one, and the 

increments are stabilized to the iterations 7-8, but 

accuracy stabilization is reached already on the iterations 

2-3. Due to a flatness of the curves dY and dΘ in the right 

part of the plot, besides the increment limitation, an 

iteration number boundary was also introduced for loop 

termination and the value NI = 3 is accepted as basic. 

 

 

Fig. 2. Identification process 
 
Usually, the first iteration is carried out with small 

regularization coefficient and later it runs up to the 

maximum αmax therefore the limit αmax influences to 

identification behavior. However, the calculations with 

wide limit variation had been shown its weak influence on 

the accuracy and necessary iteration number. So, the 

values αmax = 5600 and NI = 3 were conserved. 

 
5.4 Influence of structure of measuredand estimated 

parameters 
 

In the investigations related with gas turbine model 

identification, the influence of measured and estimated 

parameters structure on identification accuracy is one of 

the traditional problems. Particularly, it is known that 

measured parameters number increase and/or estimated 

parameters number decrease lead to better estimation 

accuracy. This rule acts with one exception: all state 

parameters that really affect an engine state must be 

included in estimation least. In contrast, the accuracy will 

drop sufficiently.  

To verify and specify the noted influence five 

calculations were fulfilled in addition to base calculation. 

Calculation conditions (differences from base calculation 

only) and mean accuracies are included in Table 2. 

Consequent comparison of the calculations B1, A, 

and B2 as well as C1, C2, A, and C3 shows that the 

mentioned rule is kept generally. It may be noted too that 

the relation Θδ
__

(m,r) is not linear and, besides the 

parameters number, the structure also influences on the 

accuracy.  

So, for example, the weak influence of measurement 

system extension until 10 parameters (compare 

calculations A and B2) may be explained by the high self-

descriptiveness of regular parameters and low one of 

additional parameters.  

Other example: the enormous accuracy drop in the 

calculation C3. It is related with two states parameters 

included additionally for rotor inertia changes. Accuracy 

loss follows from a weak action of these parameters on 

the dynamic process in the calculation C3 conditions. 

 
Table 2 

 
Parameter number influence 

 
Calculation 

designations 

Calculation 

conditions 
Θ

__
δ  

A basic (m = 8, r = 6) 0.00557 

B1 m = 6 0.01356 

B2 m = 10 0.00554 

C1 r = 2 0.00373 

C2 r = 4 0.00484 

C3 r = 8 2.05661 
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5.5 Influence of measurement error structure 
 
During one transient regime, the long-term noise 

induces a constant displacement of all registered values of 

a thermodynamic parameter and may be considered as a 

systematic error which is transferred wholly on state 

parameter estimations. In contrast, the short short-term 

noise produces the random displacements and the 

averaged error only is transmitted on the estimations. So, 

it may be supposed beforehand that the short-term noise 

will induce lower identification error than the long-term 

one.  

To verify this supposition, calculations with short-

term noise simulation only were executed and the results 

are presented in Table 3 as well as the base calculation 

result. From comparison of the calculations D1 and C 

follows that the short-term noise causes more than two 

times lower estimation error. Comparison of the 

calculations D1, D2, and D3 confirms noted in the part 

5.4 influence of the measured parameters number m. 

 
Table 3 

 Short-term noise calculations 
 

Calculation 

designations 

Calculation 

conditions Θδ
__

 

A basic (ε1Y=ε1U=0.008) 0.00557 

D1 ε2Y=ε2U=0.008  0.00256 

D2 ε2Y=ε2U=0.008, m = 6 0.00835 

D3 ε2Y=ε2U=0.008, m=10 0.00254 

 
In constant identification conditions, systematic 

measurement errors will induce identification systematic 

errors. On the other hand, the condition change may lead 

to a shift of the estimation and estimation errors.  

To evaluate this effect, three sets of fixed systematic 

measurement errors were formed and DMI-procedure was 

repeated for every set in the seven different condition 

variants. Related with variant change scatters of six 

estimated parameters are presented in Table 4. It is seen 

that the scatters may reach the level of simulated state 

parameters. So, systematic measurement errors may 

induce the random estimation errors when random 

changes of identification conditions take place. 

Systematic estimation errors are not considered here 

because it is supposed that in the diagnosis, the time-

series of estimation will be analyzed and a relative 

estimative change only will be considerable.   

Table 4 
 Systematic measurement error influence  

 
Sets                    Estimation scatters  

  1        0.0363  0.0139  0.0170  0.0076  0.0262  0.0146 

  2        0.0099  0.0010  0.0059  0.0035  0.0074  0.0032 

  3        0.0122  0.0064  0.0121  0.0047  0.0143  0.0072 

 
 

5.6 Influence of dynamic process profile  
 and failure type 

 
To estimate dynamic process and failure type on the 

identification accuracy, the process profile (regime 

parameter change during the process and process total 

time) and failure development were modified. The results 

presented in Table 5 display the estimation error stability 

to these factors (the scatter does not exceed the testing 

error level).  

So, an attempt had been made to analyze 

systematically a maximal number of factors affecting the 

identification accuracy and to determine numerically this 

influence. Applied statistical testing included the model-

based simulation of failures and generation of random 

measurement errors with theoretical distribution. 

 
Table 5 

 Calculations with variation  
of dynamic process profile and failure type 

 
Calculation 

designations 

Calculation conditions 
Θδ

__
 

A basic  0.00557 

E1 3 times decrease of 

regime parameter 

change  

0.00580 

E2 5 times increase of time 

interval 

0.00561 

F1 3 times decrease of 

failure development 

0.00557 

F2 absence of failure 0.00555 
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However, it is clear that conducted investigations do 

not resolve all difficulties of such a challenge as gas 

turbine dynamic model identification. Besides the known 

problems of static model identification [7] that are actual 

here too, new ones, for example, a dynamic measurement 

error problem, are expected. Not all of these problems 

may be resolved by means of the model-based simulation 

and one of the near future tasks will be to verify the 

procedure on the data of physical failure simulation 

and/or real failure display. 

 
6. Conclusion 

 
Thus, to verify the developed dynamic model 

identification procedure for including into gas turbine 

health monitoring systems, the statistical testing had been 

carried out. A lot of factors affecting the identification 

accuracy were analyzed. Sufficient factors had been 

determined, for instance, the systematic and random long-

term measurement errors. An invariance of the accuracy 

to other group of factors such as dynamic process profile 

and simulated failure type was also noted. 

The achieved accuracy level is sufficient to suggest 

this identification procedure for realization in monitoring 

systems. The procedure promises to make gas turbine 

diagnosing more universal by enabling attraction of 

transient regimes.  
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