УДК 681.3

М.А. ЛАТКИН, Т.И. БОНДАРЕВА, А.Р. ЕМАД

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Украина

ФОРМАЛИЗАЦИЯ ПРОЕКТНЫХ РИСКОВ

Рассмотрены проблемы формализации проектных рисков. Сформулированы основные требования, которые позволили обосновать выбор математического аппарата для формализованного представления проектных рисков, а также провести качественный и количественный анализ рисков, предупредить возникновение неблагоприятных событий, повысить эффективность процессов реализации проекта.

управление проектами, проектные риски, формализация рисков

Актуальность

Предприятия аэрокосмической отрасли Украины осуществляют переход на современные технологии управления проектами. Реализация таких крупных международных проектов, как создание самолета АН-148, связана с большими временными и финансовыми затратами, требует предварительного анализа эффективности и рисков. Выполнение аналогичных проектов усложняется необходимостью интеграции, неопределенностью и случайным характером будущих событий, внешней и внутренней среды предприятий участников.

Таким образом, разработка технологий, методов анализа и управления рисками на всех этапах реализации проектов имеет важное практическое значение для дальнейшего развития аэрокосмической отрасли Украины.

Под риском будем понимать неблагоприятное событие, которое характеризуется вероятностью появления и возможным ущербом, потерями в результате деятельности предприятия.

В соответствии с общепринятыми международными стандартами (РМВОК) управление рисками в проекте включает в себя следующие процессы [1]:

- идентификация рисков;
- количественная оценка рисков;
- мероприятия по нейтрализации рисков;
- контроль рисков в ходе выполнения проекта.

Идентификация рисков позволяет выделить основные проектные риски (факторы), определить причины их возникновения и последствия, планиро-

вать процессы реализации проекта с учетом возможных неблагоприятных событий. Количественная оценка рисков связана с определением вероятности возникновения неблагоприятного события и величины его ущерба, позволяет определить приоритеты и отношение руководства к проектным рискам, разработать мероприятия по их нейтрализации. К наиболее распространенным методам нейтрализации неблагоприятных событий и уменьшения их ущерба относят:

- избежание риска;
- принятие, контроль риска (самострахование);
- распределение риска;
- страхование риска [2, 3].

Поэтому для более полного анализа рисков, точного определения их качественных и количественных характеристик, обоснования мероприятий по нейтрализации рисков на этапах планирования, контроля выполнения проекта необходима единая интеграционная формализация основных проектных рисков.

Анализ существующих публикаций в рамках выделенной проблемы позволяет сделать следующие выводы:

- существуют стандарты, методы, средства управления рисками на различных этапах жизненного цикла проекта;
- возможно широкое использование моделирования, статистических и экспертных методов для количественной оценки проектных рисков;
- возможно применение различных методов по нейтрализации проектных рисков.

В качестве нерешенных частей рассматриваемой проблемной области можно выделить следующее:

- отсутсвует единый методический подход к формализации основных внешних и внутренних проектных рисков;
- существующая технология управления проектами не позволяет предусмотреть места возникновения риска;
- отсутствуют рекомендации по условиям, ограничениям, области применения методов количественной оценки проектных рисков;
- применение тех или иных методов управления рисками не позволяет определить наименьшие затраты для нейтрализации возможных неблагоприятных событий.

Таким образом, формализация основных проектных рисков для последующего качественного и количественного анализа в целях предупреждения возникновения неблагоприятных событий, реагирования на их появление, повышения эффективности и качества процессов планирования, контроля выполнения проекта является актуальной научноприкладной задачей.

Основным математическим аппаратом для решения поставленной проблемы являются модифицированная система алгоритмических алгебр и контекстно-свободные языки высокого уровня, которые позволяют описывать слабоформализованные процессы управления научно-исследовательской деятельностью, различными производственными системами, в том числе и проектами [4].

1. Постановка задачи

Существующие компьютерные технологии, например, MS Project, Project Expert, не позволяют планировать и моделировать выполнение проекта с учетом большинства распространенных рисков, обосновывать и разрабатывать мероприятия по их нейтрализации. Поэтому для создания информационной технологии и компьютерной системы поддержки принятия решений руководителя проекта в условиях неопределенности и риска необходимо

единое формализованное представление проектных рисков.

Таким образом, одно из требований к выбору математического аппарата описания проектных рисков заключается в возможности преобразования знаний, моделей при переходе от формализованного представления рисков к технологии их анализа, оценки и к компьютерной системе поддержки принятия решений (рис. 1).

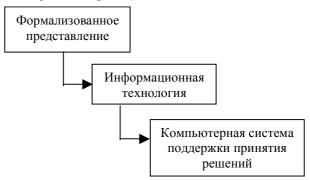


Рис. 1. Преобразование знаний при описании проектных рисков

В ходе выполнения проекта часто возникают задачи внесения изменений в его содержание, перепланирования работ, обусловленных неопределенностью будущих событий и рисками.

К основным процессам планирования проекта относятся:

- планирование содержания проекта;
- определение последовательности и длительности работ;
 - разработка календарного плана;
 - планирование ресурсов;
 - составление сметы и бюджета проекта;
 - разработка плана общего проекта.

Кроме этого учитываются вспомогательные процессы поддержки планирования:

- планирование качества;
- организационное планирование;
- планирование информационного взаимодействия участников проекта;
- идентификация, оценка рисков, планирование мероприятий по их нейтрализации;
 - планирование закупок.

Очевидно, что внесение изменений в любой основной или вспомогательный процесс планирования приведет к изменению всего плана проекта. Поэтому перед руководителем проекта возникают проблемы контроля изменений во всей системе планов проекта.

Информационную технологию контроля выполнения проекта с учетом возникновения рисков, их влияния на эффективность проекта, методов реагирования на неблагоприятные события можно представить в виде схемы (рис. 2).

Рис. 2. Взаимосвязь процессов планирования и управления проектом

В соответствии с предложенной схемой взаимосвязи процессов планирования и управления выполнением проекта перепланирование работ, перерасчет показателей рисков в целях их последующего предупреждения осуществляется в следующих случаях:

- возникновение и нейтрализация рисков;
- внесение изменений в проект;
- отчет по контрольным этапам выполнения проекта.

Таким образом, в процессе управления проектом и рисковыми событиями возникает постоянная необходимость в контроле выполнения плана, перепланировании, то есть в возврате к определенным точкам системы планов проекта. Возможность обеспечения рекурсии - следующее требование к выбору математического аппарата формализации проектных рисков.

Поскольку исходными данными для идентификации, количественного анализа, оценки основных

проектных рисков являются иерархическая структура работ проекта (WBS) и организационная структура проекта (OBS), то необходимо использовать методы декомпозиции и структуризации рисков, получения их интегральных показателей при переходе по уровням иерархии, что также является одним из требований к выбору математического аппарата формализации проектных рисков.

2. Формализованное представление проектных рисков

Для формализации проектных рисков предлагается использовать математический аппарат регулярных схем системных моделей (РССМ), который применяется для формализованного представления процессов проектирования сложных технических систем [5].

Поскольку структурные модели описывают состав элементов системы на выделенном уровне представления, то для связи между операторами ${y}_{i}$ (элементами системы) будем использовать ба-

зовую операцию конъюнкции \mathcal{V} .

Структурные модели в РССМ можно представить в таком виде:

$$R = f(y_i, e, \otimes, y),$$

где е описывает переход без выполнения основных операторов; \otimes – пустой оператор, который может выполнять роль индикатора останова.

Таким образом, формализованное представление структурной модели верхнего уровня иерархии сложной системы можно записать в операторах РССМ в следующем виде:

$$R \quad SSys = [y_1^{Sys} \wedge \cdots \wedge y_n^{Sys}].$$

Поскольку событийные модели описывают процессы, которые происходят в системе на определенном уровне представления, то для связи между операторами \mathcal{Y}_i (элементами процессов системы), начиная с оператора y_1 , будем использовать базовые операции: умножение y — последовательное выполнение операторов; конъюнкция y — параллельное выполнение операторов; дизъюнкция y — условное выполнение операторов.

Событийные модели в РССМ можно представить так:

$$R = f(y_i, x_k, e, \otimes, 1, 0, y, y, y),$$

где x_k — условия переходов между основными операторами; 1, 0 — тождественно-истинное и тождественно-ложное условия.

Таким образом, формализованное представление событийной модели верхнего уровня иерархии сложной системы можно записать в операторах РССМ таким образом:

$$R \quad SSys = [y_1^{Sys} \cdots y_n^{Sys}].$$

К основным проектным рискам, которые могут возникать в процессе выполнения проекта и учитываются на этапах его планирования, относятся:

- превышение длительности выполнения работ;
 - превышение стоимости выполнения работ;
- низкое качество выполненных работ, их результатов.

Исходными данными для формирования моделей проектных рисков (Risk Breakdown Structure) являются:

- иерархическая структура работ проекта (WBS);
 - организационная структура проекта (OBS);
- логика выполнения работ проекта (календарный план);
- результаты этапа идентификации проектных рисков (причины, последствия рисков).

Структурные модели рисков будут отражать место (структуру работ проекта) и время возникновения неблагоприятного события, а событийные модели позволят сконцентрировать внимание руководителя проекта на цепочках работ, имеющих самые

наихудшие количественные характеристики рисков (вероятность, ущерб).

Заключение

Формализация проектных рисков позволяет усовершенствовать существующие технологии управления проектами и рисками, которые все чаще используются большинством предприятий аэрокосмической отрасли Украины.

Для более детальных количественных оценок и анализа рисков на этапах планирования и контроля выполнения проекта в целях акцентирования внимания на работах, подверженных наибольшему влиянию неблагоприятных событий, необходимо создание формализованных моделей проектных рисков. Это дает возможность более обоснованно определить привлекательность и эффективность проекта с учетом возможных рисков, реакции на их последствия, предупредить руководителя проекта о причинах, последствиях, месте и времени возникновения неблагоприятных событий.

Литература

- 1. Бушуєв С.Д. Керівництво з питань проектного менеджменту. К.: Українська асоціація управління проектами, 1999. 197 с.
- 2. Верба В.А., Загородніх О.А. Проектний аналіз: Підручник. К.: КНЕУ, 2000. 322 с.
- 3. Москвін С.О. Проектний аналіз. К.: Лібра, 1999. 366 с.
- 4. Применение методов искусственного интеллекта в управлении проектами / Под. ред. д-ра техн. наук А.Ю. Соколова. Х.: НАКУ «ХАИ», 2002. 474 с.
- 5. Луханин М.И. Основы научно-методического обеспечения оценки реализуемости государственных программ и проектов. К.: Кит, 2002. 206 с.

Поступила в редакцию 06.01.04

Рецензент: д-р техн. наук, проф. И.В. Чумаченко, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», г. Харьков