УДК 621. 735: 004.94

О.В. ШИПУЛЬ, П.А. ДЫБСКИЙ, А.Н. МЕЩЕРЯКОВ

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ»

ИССЛЕДОВАНИЕ ПАРАМЕТРОВ КОНЕЧНО-ЭЛЕМЕНТНОЙ МОДЕЛИ ПРИ ФОРМОИЗМЕНЕНИИ ОСЕСИММЕТРИЧНОЙ ЗАГОТОВКИ

Разработана конечно-элементная (КЭ) модель формоизменения цилиндрической заготовки под действием статической нагрузки, которая является тестовой задачей моделирования процесса объемной штамповки. Модель учитывает физико-механические свойства материала, соответствующие сплаву 34ХН1М, находящемуся в состоянии объемного деформирования, и контактное взаимодействие заготовки со штампом. Сопоставление расчетных и экспериментальных данных тестовой задачи позволило сделать вывод о корректности построенной модели и о возможности получения с помощью метода конечных элементов не только качественной, но и количественной картины распределения деформаций и напряжений.

метод конечных элементов, конечно-элементная модель, осадка, малоотходная штамповка

Введение

В настоящее время актуальной проблемой кузнечно-штамповочного производства является выпуск высококачественных заготовок широкой номенклатуры сложной формы с высоким коэффициентом использования материала. Решению этой задачи в части объемного деформирования в наибольшей мере отвечают различные методы малоотходной штамповки.

Для корректного проектирования операций технологического процесса штамповки, включающих в себя не только энергосиловые параметры, но и информацию о количестве переходов, форме и размера заготовок, распределении деформаций по объему заготовки необходима достоверная информация о напряженно-деформированном состоянии (н.д.с.) материала заготовки в процессе штамповки. Моделирование процессов объемной штамповки с помощью метода конечных элементов (МКЭ) позволяет с достаточной точностью определять н.д.с. материала заготовки, учитывая недостатки экспериментальных и теоретических методов исследования [1].

Для успешного применения метода конечных элементов для решения задач определения н.д.с. необходима оценка адекватности численной модели реальным процессам деформирования образцов, чему и посвящена данная статья.

1. Конечно-элементная модель процесса осадки

С целью тестирования конечно-элементной модели использованы результаты натурного эксперимента по осадке цилиндрической заготовки с размерами $D_0 = 100$ мм и $H_0 = 200$ мм. Методика постановки эксперимента подробно изложена в работе [2]. Там же приведены опытные данные по обжатию стальных цилиндрических заготовок. Материал испытываемых образцов - сталь 34XH1M. Обжатие производилось на трехтонном молоте при температуре нагрева заготовок до 1200 °С.

Моделирование МКЭ процесса осадки цилиндрической заготовки осуществлено с помощью программного пакета ANSYS. Силовая и геометрическая симметрии послужили основанием для применения двухмерной осесимметричной постановки. Для моделирования МКЭ цилиндрической заготовки были использованы элементы типа PLANE162, допускающие решение задачи в осесимметричной постановке. На рис. 1 представлены исходная недеформированная (а) и деформированная (б) сетка

© О.В. Шипуль, П.А. Дыбский, А.Н.	Мещеряков	
АВИАЦІ	ИОННО-КОСМИЧЕСКАЯ ТЕХНИКА И ТЕХ	НОЛОГИЯ, 2004, № 5 (13)

Рис. 1. КЭ-модель заготовки: а – до деформации; б – после деформации

конечных элементов в процессе имитации обжатия на 50% цилиндрической заготовки.

Для численного описания механических свойств материала принята изотропная модель с билинейным законом деформационного упрочнения. Физические характеристики заданы значениями, соответствующими стали 34XH1M в нагретом до 1200 °C состоянии (табл. 1).

Таблица 1

Физические характеристики материала

Материал	34XH1M			
Плотность, Кг/м ³	7800			
Коэффициент Пуассона	0,32			
Модуль упругости, МПа	150000			
Модуль упрочнения, МПа	0,4			
Предел текучести, МПа	50			

Линеаризация диаграммы «напряжения – деформация» для выбранной модели производится с помощью уравнения (1):

$$\sigma = \sigma_T + E_{pl} \varepsilon_{pl} \,, \tag{1}$$

где σ_T – предел текучести;

$$E_{pl} = \frac{E_{\text{tan}}E}{E - E_{\text{tan}}}$$
 – модуль пластического упроч-

нения;

E, *E*_{tan} – модуль упругости и модуль упрочнения;

ε_{pl} – пластические деформации.

Переход к зоне пластического течения осуществляется при выполнении условия пластичности Мизеса

$$\left|\frac{1}{2}\left[\left(\sigma_x - \sigma_y\right)^2 + \left(\sigma_y - \sigma_z\right)^2 + \left(\sigma_z - \sigma_x\right)^2 + 6\left(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2\right)\right] \ge \sigma_T.$$

Деформирование заготовки осуществляется путем задания перемещений узлам торцевых поверхностей верхней плиты штампа по вертикальной оси *Z* на величину, соответствующую заданной степени деформации. Перемещения узлов плиты в других двух направлениях заданы нулевыми. Движение нижней плиты ограничено во всех направлениях аналогичным способом. Деформации частей штампа в процессе осадки по сравнению с деформациями заготовки пренебрежимо малы, поэтому плиты штампа приняты жесткими телами.

Для описания взаимодействия заготовки с частями штампа применены следующие контактные условия: кинематическое условие непроникновения, условие равенства нормальных контактных усилий штампа и заготовки, и наличие касательного усилия, обусловленного трением между контактирующими телами, подчиняющегося закону Кулона.

2. Оценка адекватности КЭ-модели

Адекватность созданной КЭ-модели оценивалась по четырем признакам.

 Как при реальном деформировании, так и в численной модели, имеются три зоны с различным характером деформации.

На рис. 2 представлены зоны деформации (а) и распределение значений деформаций вдоль линий «A - A» (б) и «B - B» (в), соответствующее конечной стадии осадки цилиндра. Первая зона, прилегающая к контактным поверхностям, зона всестороннего неравномерного сжатия, малодеформирована. Наиболее интенсивна деформация во второй зоне, причем металл течет от центра к периферии, а в областях раздела первой и второй зон как бы обтекает первую зону и стремится выйти на контактную плоскость. В третьей зоне близ свободной боковой поверхности цилиндра, зоне скольжения, деформация имеет сравнительно равномерный характер, по

Сравнение расчетных значений распределения высотной деформации вдоль оси цилиндрической заготовки с экспериментальными данными (рис. 3) позволяет сделать следующие выводы:

Рис. 3. Распределение высотной деформации по оси цилиндрической заготовки

a) характер экспериментальной и расчетной кривых одинаков;

б) полученные МКЭ значения в зоне пластического течения совпадают с экспериментальными данными с точностью порядка 1%;

в) максимальное отклонение данных составляет около 11%, которое объясняется недостаточно точным заданием граничных условий КЭ модели, а именно, при моделировании не учитывается влияние следующих факторов, присущих реальному процессу осадки: наличие окисных пленок и различных загрязнений на контактных поверхностях заготовок, анизотропии механической обработки, изменение температуры деформируемых образцов в процессе осадки и др.

 Посредством МКЭ смоделировано 11 расчетных случаев разных степеней осадки стальных заготовок различной высоты аналогичных опытным данным [2].

В табл. 2 приведено сравнение экспериментальных и расчетных данных формы «бочки» при осадке цилиндров: $D_0 = 30$ мм; $\mu = 0.5$.

Таблица 2

<u>№</u> п/п	<i>Н</i> ₀ мм	$\begin{array}{c c} H_1 & \frac{\Delta H}{H_0} \\ \\ \text{MM} & \% \end{array}$	$\frac{\Delta H}{H_0}$ %	Диаметр после осадки, мм, по опытным дан- ным при различ- ных значениях <i>z/h</i>		Диаметр после осадки, мм, по расчетным данным модели при различных значениях <i>z/h</i>		Отклонения $\frac{D_p - D_{on}}{D_{on}}$, %, при различных значениях z/h				
				0	0,5	1	0	0,5	1	0	0,5	1
1	60	30,9	48,5	44,0	42,4	36,9	44,290	42,486	35,057	0,655	0,202	-5,257
2	45	33,7	25,1	35,9	35,0	32,0	36,544	34,938	31,712	1,762	-0,178	-0,908
3	45	22,0	51,1	45,3	43,3	37,7	45,350	43,370	37,930	0,110	0,161	0,606
4	30	22,6	24,6	35,7	34,9	32,1	36,456	35,122	32,382	2,074	0,632	0,871
5	30	14,8	50,6	44,8	43,4	39,0	44,390	43,110	39,739	-0,923	-0,6723	1,860
6	20	13,8	31,0	37,6	36,7	34,4	37,013	36,308	33,688	-1,586	-1,080	-2,114
7	20	10,4	48,0	43,1	42,5	40,0	42,602	42,200	38,109	-1,169	-0,711	-4,962
8	10	7,8	24,0	35,3	34,8	33,5	34,447	34,218	33,135	-2,476	-1,701	-1,102
9	10	4,8	52,0	44,0	43,0	42,0	43,800	42,700	41,700	-0,457	-0,703	-0,719
10	6,6	4,5	31,5	36,6	36,1	35,6	36,641	36,100	35,596	0,112	0,000	-0,011
11	6,6	3,1	52,5	44,0	43,5	43,0	44,200	44,000	43,300	0,453	1,136	0,693

Экспериментальные и расчетные данные по форме «бочки» при осадке цилиндров

При постановке эксперимента после осадки измерены диаметры заготовок:

- в срединных сечениях (z/h = 0);

– у контактной поверхности (z/h = 1);

– на расстояни
и $0,25\,{H}_2\,$ от контактной поверхности (
 z/h=0,5).

Диаметр конечно-элементной модели деформированного образца (D_p) получен путем суммирования исходного диаметра с максимальным значением компонента перемещения U_x в радиальном направлении граничных узлов элементов, соответствующих сечениям:

$$z/h = 1; z/h = 0.5; z/h = 0.$$

Сравнение результатов конечно-элементного моделирования и эксперимента показало, что отличия формы в трех сечениях не превышает 5%. Методом конечных элементов произведен расчет потребных усилий для осадки цилиндрических заготовок. В качестве примера рассмотрим расчетный случай, соответствующий опыту № 9

$$\left(\frac{D_0}{H_0} = 3; \frac{\Delta H}{H_0} = 52\%\right)$$
 вышеописанных эксперимен-

TOB.

На рис. 4 приведено распределение нормального напряжения по контактной поверхности поковки при максимальной осадке. Всплеск распределения нормального напряжения при $r \approx 0,015 \text{ M}$, т.е. в зоне перехода металла с боковой поверхности на контактную, вызван вырождением углового конечного элемента.

Этот эффект становится незначительным при увеличении плотности конечно-элементной дискретизации.

Рис. 4. Распределение нормального напряжения по контактной поверхности поковки

Полное усилие осадки определено выражением (2) и составляет 152 кН:

$$P = -\int_{R}^{0} \sigma_y 2\pi r dr , \qquad (2)$$

где σ_y – распределение нормального напряжения по поверхности контакта.

Удельное усилие, очевидно, определяется как частное от деления полного усилия на площадь контактной поверхности (3):

$$q = \frac{P}{\pi r^2} \tag{3}$$

и равно 111 МПа

Для данного случая по формуле, полученной Е.П. Унксовым [3], среднее давление равняется:

$$q = \sigma_s \left(1 + \frac{\mu}{3} \cdot \frac{D}{H} \right) = 122 \text{ M}\Pi a . \tag{4}$$

Различие полученных результатов составляет 9%.

Заключение

На основании проведенных исследований параметров МКЭ-модели можно сделать вывод о корректности ее применения при анализе процессов формоизменения осесимметричных заготовок для определения не только качественной, но и количественной картины распределения деформаций и напряжений. В частности для моделирования процесса деформирования заготовок из стали 34XH1M может быть использована изотропная модель с билинейным законом деформационного упрочнения и следующими физико-механическими характеристиками: плотность – 7800 Кг/м³; коэффициент Пуассона – 0,32; модуль упругости – 150000 МПа; модуль упрочнения – 0,4 МПа; предел текучести – 50 МПа.

Литература

 Зенкевич О., Морган К. Конечные элементы и аппроксимация. – М.: Мир, 1986. – 318 с.

Теория обработки металлов давлением / Тарновский И.Я., Поздеев А.А., Ганаго О.А., Колмагоров В.Л., Трубин В.Н. и др. – М.: Металлургиздат, 1963. – 672 с.

 Унксов Е.П. Инженерная теория пластичности. – М.: Машгиз, 1959. – 328 с.

Поступила в редакцию 20.09.2004

Рецензент: канд. физ.-мат. наук, доц. А.Н. Лукин, Харьковский национальный университет им. В.Н. Каразина, Харьков.