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In the paper, different gas turbine parametric diagnosing methods are analyzed on the base of trustworthiness 
criteria. The nonlinear gaspath thermodynamic models, random number generators, and real registration data 
are used for methods adjustment and verification. The achieved trustworthiness level is sufficient to recom-
mend the examined methods for realization in automated diagnosing systems.  
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Introduction  

 
Modern gas turbine engines represent powerful 

and efficient sources of mechanical energy for nu-

merous industry branches and transport objects. For 

a gas turbine which is considered as a complex and 

expensive system, there is a tremendous benefit of 

extending the time between overhauls and reducing 

the probability of a failure in the field. Key factor to 

the useful life extending is the capability to extract 

information to produce accurate diagnostics and 

prognostics about the system state.  

The algorithms of gas turbine failure detection 

which analyze registered gaspath parameters (pres-

sure, temperatures and consumptions of the gas 

flow, rotation speeds, fuel consumption, and any 

others) may be considered as principal algorithms of 

the automated diagnosing system. Besides the gas-

path failures, for example, gradually developed 

compressor blade contamination, aerodynamic sur-

faces distortion, and seal wear, control system and 

measurement system malfunctions can be also de-

tected analyzing gaspath parameters.  

To produce the final diagnosing decision the 

raw measurement data are subjected to a complex 

mathematical treatment and a lot of negative factors 

affect the resulting trustworthiness. That is why the 

total diagnosing system effectiveness principally 

depends on its trustworthiness characteristics and 

this is a reason to carry out the investigations in this 

direction. Considerable benefits may be reached 

from such studies especially if this work precedes 

the diagnosing system maintenance stage.  

 
1. Models applied 
 

Mathematical models of different types are 

widely used in diagnosing process due to an infre-

quent display of gas turbine failures, high cost of 

physical failure modelling, and other causes. The 

following types of diagnostic gaspath models were 

used in the fulfilled investigations: nonlinear and 

linear static and nonlinear dynamic models.  

Static multi-regime nonlinear thermodynamic 

model can be presented by the common expression 

)U,Θ(FY


 , where the vector 

Y  of gaspath pa-

rameters depends on the vector of engine regime and 

atmospheric conditions 

U  and the vector of state 

parameters 

Θ  used for describing the engine fail-

ures. Gas turbine component  performance parame-
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ters are chosen as the state parameters; these perform-

ance parameters are able to displace component per-

formances and simulate the failures by this mode. The 

nonlinear model parameters 

Y  are computed numeri-

cally as a solution of the system of algebraic equations 

reflecting the conditions of the components combined 

work on steady-state regimes. 

The linear model 


 ΘHδYδ  connects the small 

relative deviations 

Θ  of state parameters with the 

relative deviations 

Yδ  of gaspath parameters by means 

of the matrix of influence coefficients H on a constant 

chosen operational regime. 

A modification of the static model equations to the 

conditions of transient regimes permits to form a dy-

namic model ]t,Θ),t(U[FY


 , where the vector of 

regime and atmospheric conditions )t(U


, in contrast to 

the static model, is given as a function of time, and a 

separate influence of the time variable t is explained by 

an inertia nature of gas turbine dynamic processes. 

Let us consider that the models adequately describe 

the object, the model generated values 

Y  differ from 

the measured ones *Y


 due to the random measurement 

errors 

ε  only, and 


 εY*Y . 

The models may be fitted to real data by means of 

identification procedures which look for the state pa-

rameter estimations 


 Y*YminargΘ̂


 minimizing 

the error level and carrying the diagnostic information 

of engine current state.  

 

2. Diagnosing method groups 
 

It is supposed in the pattern recognition theory that 

an object may belong to one of q determined beforehand 

classes D1, D2, … , Dq  only. Various types of gas tur-

bine classifications exists; in this paper a class is deter-

mined as a failures totality of corresponding engine 

component.  

Let us name the space 

Z  in which the classes are 

formed and the diagnosing decision is taken as a diag-

nostic space. Depending on a type of the diagnostic 

space, numerous failure detection methods may be 

united into two main groups. 

Methods of the group 1 [for example, 1]. The diag-

nostic space is congruent with the space of measured 

parameter deviations: 


 YδZ . For methods of this 

group there is a theoretical possibility to form the classi-

fication on real data and eliminate the models (and their 

inaccuracy) from the diagnosing process that promises a 

significant engine controllability growth. On the other 

hand, the available real information generally is not 

sufficient and the models are involved in the class for-

mation. Additionally, rigid class boundaries make diffi-

culties for the diagnosing of complex gaspath multi-

component degradation which often occurs in practice.   

Methods of the group 2 [2 – 4]. The total diagnos-

ing process is divided into two steps. Primarily, to sim-

plify the diagnosing the estimations of state parameters 

̂


 are calculated by any identification procedure. Sec-

ondarily, a diagnosing decision is taken in the diagnos-

tic space of state parameters: 


 ΘZ . This step is con-

siderably simplified here because every state parameter 

indicates failure locality and development.  

Advantages and disadvantages of the methods of 

each group depend on various factors (type of engine, 

life cycle stage, presence of prototypes, presence of 

accurate models etc.) and, generally, it is impossible to 

choose the more perspective method group. That is why 

trustworthiness indices were introduced and analyzed 

for both groups. For methods of the group 1 the indices 

are formed as average probabilities of correct/incorrect 

class recognition and for the group 2 these indices pre-
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sent the accuracy characteristics achieved on the gas-

path parameters 

Y  and the state parameters 


Θ  after 

the model identification.  

The necessary software of the diagnostic mod-

els, identification procedures, and trustworthiness 

calculation algorithms was developed for the mod-

ern gas turbine power plant for natural gas pump 

units.  

 
3. Probabilistic indices  
of trustworthiness 
 
In the general form every class Dj is described in 

the region j* of the chosen diagnostic space 

Z  by the 

probability density function )D/*Z(f j


 of measured 

parameters. To determine the functions 

q1j  ),D/*Z(f j 


, the following assumptions were 

taken: 1) linear model adequacy, 2) uniform distribution 

)D/Z(f j


 of the model values 

Z , 3) normal distribu-

tion )Z/*Z(f


 of the errors.  

For the current measurement vector *Z


 the condi-

tional posteriori probabilities *)Z/D(P j


, j = 1 – q  are 

calculated according to the Bayes formula: 

)D(P)D/*Z(f

)D(P)D/*Z(f
*)Z/D(P

ll
q

1l

jj
j 







 ,        (1) 

where P(Dj) is a priory probability of the class Dj. 

The set of the found probabilities *)Z/D(P j


, 

j = 1 – q, determines the trustworthiness of the diagnos-

ing decision for one current measure only. Necessary 

characteristics of average trustworthiness, which are not 

connected with current measure, are calculated by 

means of statistical simulation of the measurements for 

every class, calculation of the probabilities (1), and their 

averaging.  

The software RAPID [5] was elaborated for com-

puting such probabilistic indices. One variant of the 

indices is presented in the table 1. The classification 

includes here the following component based classes: 

C – gas-generator compressor, CC – combustion 

chamber, T – gas-generator turbine, and PT – power 

turbine. Every element PDjl of the presented matrix 

signifies an average probability of the diagnosis Dj 

for measurements of the class Dl. The diagonal ele-

ments form the vector of correct diagnosis probabili-

ties TDP


 y represent indices of distinguishing pos-

sibilities of gaspath classes, and parameter TD
__
P  

formed as a mean number of these elements charac-

terizes the total controllability of the engine with its 

measurement system.  

A lot of calculations were fulfilled on the program 

RAPID to analyze numeric influence of factors that 

affect on the gas diagnosing trustworthiness. The list of 

these factors includes 1) measurement system structure, 

2) measured parameters accuracy, 3) diagnosing re-

gimes number and structure, 4) classification structure 

and type, 5) methodological errors, and any others.  

The measured parameter faults were classified too 

and the measurement system controllability was esti-

mated by the software RAPID. On base of the criterion 

__
TDP  the analyzed power plant was also compared with 

engines of other types. The ways of measurement sys-

tem optimization were established and practical recom-

mendations to the power plant manufacturer were sug-

gested.  

However, the described approach that uses class 

description by the probability density functions  is not 

without its difficulties: simple type classes based on the 

linear model and ordinary theoretical parameter distri-

butions may be realized only. That is why a new ap-

proach is developed.  
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Table 1 
Probabilistic indices 

 

Diagnosis probabilities PDjl 
Classes Dl Diagno- 

sis Dj      C          CC               T            PT 
     C          0,7597    0,0587       0,0940    0,0852 
   CC         0,0522    0,8241       0,0870    0,0195 
     T          0,0977    0,0973       0,8011    0,0135 
    PT         0,0904    0,0200       0,0179    0,8817 
Correct diagnosis probabilities  
                 0,7597     0,8241       0,8011    0,8817 
Average probability  0,8167 

 
4. Probabilistic indices:  
new approach 

 
It is suggested describing the classes in the form of 

arrays of measured parameters (samples of measure-

ment points) and applying the nonlinear model for fail-

ure development simulating. This approach to the trust-

worthiness problem permits forming the classes of any 

complex type including real classes constructed without 

model help. The computation algorithm incorporates the 

following items. 

1) The trajectories of failure developments in the 

diagnostic space 

Z  are calculated for every class using 

the nonlinear model.  

2) The reference samples *
jZd  are formed by the 

calculation of the diagnostic parameters  

Td1t  ,q1j   ,Zd*
jt 



                (2) 

in Td points for every class Dj with usage of random 

number generators and the failure trajectories. In the 

fig. 1 four classes are shown as the samples *
jZd . Class 

intersections and a requirement in recognition tech-

niques can be noted. 

3) The measurements  

Tt1t  ,q1l   ,Zt*lt 


                (3) 

of the testing samples q1l   ,Zt*l   are generated by 

the same mode as in the item 2.  

4) The criterion   is introduced of closeness of the 

current measurement point 


*Z  and the failure class Dj 

presented by its reference sample. For every point of 

testing samples (3) and every reference sample *
jZd  the 

criterion   is calculated and the nearest class is se-

lected.  

5) The trustworthiness indices DP , TDP


, and 

TD
__
P  mentioned above are formed by the averaging 

diagnostic decisions of the item 4.  

Before the new approach practical usage, two tasks 

had to be solved: guaranteeing necessary accuracy of 

statistical simulation and selecting the best closeness 

criterion. 

As a result of the calculations fulfilled it was es-

tablished that the numbers Td = 1 000 and Tt = 1 000 

of simulated points are sufficient and provide the 

necessary practical accuracy about 1% of the average 

probability TD
__
P . The needed computing time of 

about 40 min (Pentium IV, 1.7 GHz) can be consid-

ered as acceptable.  

 

 
 

Fig. 1. Reference samples 
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Five criteria   were chosen for a comparison: 

– criterion 1 – mean inverse distance M(1/Rl) 

between a testing sample point and the reference 

points; 

– criterion 2 – mean inverse quadratic distance 

M(1/Rl
2) between a testing point and the reference 

points; 

– criterion 3 – mean distance M(Rl) between a 

testing point and the reference points; 

– criterion 4 – distance between a testing point 

and the class trajectory; 

– criterion 5 – distance between a testing point 

and the gravity center of a reference sample. 

The resulting indices TDjP  and TDP  for the 

compared criteria are presented in the table 2; the 

classification variant incorporates nine gas turbine 

classes (two classes for every already mentioned 

components and one more for the inlet device). It can 

be seen according to the index TDP  that the criteria 

3 and 5 provide the worst controllability. The crite-

rion 4 looks as the best, but it is rather a theoretical 

criterion since in real class type the trajectory is not 

known. Change of the distance measure from 1/Rl 

(criterion 1) to 1/Rl
2 (criterion 2) leads to better 

distinguishability of every class. Thus, the criterion 2 

is selected as more perspective.  

 
Table 2 

Criteria comparison 
 

Correct diagnosis probabilities PTDj Cri-
teria D1    D2    D3      D4     D5     D6      D7     D8      D9 TD

__
P  

   1         ,654  ,718  ,765  ,529  ,739  ,989  ,755  ,762  ,746    ,739 

   2         ,740  ,758  ,792  ,614  ,788  ,981  ,788  ,778  ,778    ,780 

   3         ,543  ,506  ,711  ,441  ,644  ,998  ,708  ,733  ,684    ,663 

   4         ,891  ,728  ,896  ,796  ,889  ,466  ,869  ,817  ,839    ,799 

   5         ,643  ,284  ,757  ,568  ,656  ,984  ,732  ,774  ,558    ,662 

 
This approach related with class presentation by 

the reference samples promises interesting results. 

The model linearization effect and the influence of 

the diagnosing regime structure are investigated 

now. The next step will be to explore all possible 

remaining directions of diagnosing system optimiza-

tion with model based and empiric classifications.  

 
5. Group 1 algorithm 

 

With usage of the described probabilistic crite-

ria, the algorithm on the base of Bayes formula was 

chosen and tuned up optimally for the real power 

plant diagnosing system. Special diagnostic testing 

of the power plant with physical modeling of four 

gaspath failures was organized to adjust finally the 

algorithm. Repeated testing had demonstrated the 

successful detecting all failures by the trained algo-

rithm.   

The fig. 2 reflects the algorithm maintenance 

work. The complex index R of the compressor foul-

ing probability and development is shown versus the 

power plant total work t; the compressor cleaning 

corresponds here to the point t = 7980. It can be 

concluded that the algorithm correctly reflects the 

fouling development and cleaning results. 

 
6. Group 2: static model identification 

 

An identification algorithm is a principal part of 

any method of the group 2 and the identification 

procedure of the nonlinear static model was devel-

oped and verified on simulated and real data. 

Any exact analytic solution for the identifica-

tion estimations Θ̂


 does no exist due to model non-

linearity, and numeric iteration procedure is applied.  

For the iteration n + 1 the solution may be writ-

ten as the sum  

nn1n
ΘΘΘ


 ,                     (4) 

where the current correction 
n

Θ


  presents a regu-

larized solution of the linear system  

)Θ(VΘ)Θ(C
nnn 

  .                (5) 
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Fig. 2. Fouling index 
 

The generalized matrix )Θ(C
n

 of this equation 

incorporates the influence matrices Hi calculated for N 

diagnosing regimes; the generalized vector )Θ(V
n

 

unites deviations iY


  for the same regimes. 

Two accuracy characteristics were introduced 

and analyzed during the procedure initial verifica-

tion on model information: Y – average relative 

deviation of the model gaspath parameters from 

measured ones and   – average deviation of state 

parameter estimations from simulated values. It is 

necessary to note that dependency of the index   

from main diagnosing factors presents a primary 

interest for detection algorithms and can be deter-

mined and studied by the failure simulating only 

because the true failure parameters are not known in 

real conditions.  

During the verification, the failures were simu-

lated by corresponding state parameter changes. The 

gaspath parameters were generated later by the 

model, random measurement noise was added, and 

the identification procedure was executed. This 

simulation and identification cycle was repeated 

numerously with independent variation of every 

sufficient factor affecting the identification process 

and statistical dependencies of accuracy parameters 

Y  and   from these factors were obtained. In 

general, an appropriateness of the identification 

procedure for diagnosing had been demonstrated, 

however a multi-regime configuration (N > 5 – 10) 

is required for necessary estimation accuracy. 

 
7. Identification on real data 

 
Second stage of the identification procedure 

verification was fulfilled on maintenance data in-

cluding the period of compressor fouling and next 

washing. The fouling presents the most common 

cause of engine performance deterioration and its 

influence on the gaspath parameters and on the state 

parameter estimations was a primary aim.  

The data sample was formed from 1880 data-

base registration points until and after the compres-

sor washing and divided into the 47 consecutive 

portions of 40 points (regimes). During the calcula-

tions, the maintenance diagnosing process was imi-

tated: the model identification was repeated for 

every portion and corresponding 47 consecutive 

estimations Θ̂


 were found.   

The initial deviations dPc of compressor pres-

sure measured values from the model ones, deter-

mined on the first identification step, are shown in 

the fig.3, as well as the estimations of state parame-

ters dGC and dEFFC which shift the compressor 

characteristic in the directions of the consumption 

and efficiency. Following conclusions may be 

drawn.  

1) The random deviations in the compressor 

pressure plot are not so great and mainly do not 

exceed the level of 2%. Jump of the deviations dPc 

after the cleaning (point 918) and the total gas tur-

bine degradation due to the fouling are well distin-

guished. Thus, the identified model satisfies the 

requirements to the norm function for gaspath moni-

toring.  
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2) The compressor characteristic shifts dGC and 

dEFFC correctly reflect the compressor clearing 

influence (after the portion number 23) and the fol-

lowing compressor state degradation, that is why the 

identification procedure suitability for fault detec-

tion algorithms is confirmed.  

3) Accidental fluctuations in the estimations 

dGC and dEFFC related with the fluctuations in the 

deviations 


Y  are still significantly great and may 

mask fault effects. So, the next trustworthiness 

growth depends on the results of analyzing and 

elimination of the fluctuations in the deviations 


Y .  

Great efforts were applied to study this prob-

lem. Table forms, graphic means for viewing and 

visualization of data, verifying calculations, and 

special instruments were used. As the result of these 

efforts, examples of model insufficient adequacy 

and cases of the power plant malfunctions such as 

measurement faults, abnormal functioning of vari-

able inlet guide vanes, and anti-icing system defects 

were detected.  

 

 
 

Fig. 3. Identification results 
 

As anyone can see from previous explications, a 

diagnostic application of static model identification 

requires a long-term period for initial data accumu-

lation. It is also known that one transient process 

carries much more information about gas turbine 

state than one stationary regime therefore an accu-

racy of the identification estimations Θ̂


 could be 

sufficient for reliable diagnosing. That is why a 

dynamic model identification procedure has been 

proposed and analyzed for the short-term diagnos-

ing. 

 

8. Dynamic model identification 
 

In the same manner as in the case of the static 

model identification procedure an identification 

procedure of the dynamic model was elaborated and 

tested on simulated data and real information. Al-

though new algorithm is more critical to computer 

operating speed than the previous one, statistical 

measurement errors simulation and numerous repeti-

tions of the identification are still possible.  

The testing on simulated data has demonstrated 

a software correct functioning and a quick conver-

gence of the iteration procedure (no more than 3 – 5 

iterations are sufficient for estimation process stabi-

lization). It was also demonstrated that the dynamic 

identification procedure ensures a stable detecting 

even 1 percent state parameter change on the back-

ground of the noise induced by real random errors 

of regular measured parameters. This conclusion is 

illustrated by the fig. 4 that contains simulated 

(thick line) and estimated (thin line) values of six 

state parameters: two mentioned above compressor 

parameters, two parameters dGt and dEFFt for a gas 

generator turbine, and two parameters dGpt and 

dEFFpt for a power turbine. 

Maintenance parameter registration by the auto-

matic control system of the power plant was used as 

a source of real information. Numerous cycles of the 

dynamic model identification and analysis of the 

results had confirmed an efficiency of the developed 

procedure. The nearest future task is to verify the   
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is no verify procedure on the data including the 

results of physical failure simulation and/or real 

failure display. 

 

 
 

Fig. 4. State parameter estimations 
 
 

Conclusions 
 

Thus, three techniques are selected for including in 

the power plant automated diagnosing system: the algo-

rithm based on the Bayes formula, the static model 

identification procedure, the dynamic model identifica-

tion procedure. Adjustment and verification of these 

instruments have been fulfilled with usage of probabil-

ity and accuracy criteria of diagnosing trustworthiness. 

It is recommended to include all three instruments in the 

diagnosing system because the advantages and disad-

vantages of these diagnosing techniques become appar-

ent in different conditions. Applied originally for nu-

merous calculations during trustworthiness problem 

investigations, described indices can be used again in 

maintenance conditions for a precise estimation of cur-

rent diagnosing trustworthiness.  
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