УДК 621.387.424

А.И. КОРЯКИН¹, В.М. МУРАШКО¹, А.Н. НЕСТЕРЕНКО¹, С.В. ОЛОТИН¹, М.Т. АЛИЕВА², Н.В. БЕЛАН², В.И. БЕЛОКОНЬ², Н.Н. КОШЕЛЕВ², А.В. ЛОЯН², С.Ю. НЕСТЕРЕНКО², А.И. ОРАНСКИЙ²

¹Федеральное государственное унитарное предприятие "Опытное конструкторское бюро "Факел", Россия ²Национальный аэрокосмический университет им. Н.Е.Жуковского "ХАИ", Украина

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ХАРАКТЕРИСТИК БЫСТРОГО БЕЗНАКАЛЬНОГО ЗАПУСКА СТАЦИОНАРНЫХ ПЛАЗМЕННЫХ ДВИГАТЕЛЕЙ

Представлены результаты экспериментальных исследований характеристик запуска известных серийных российских холловских двигателей СПД-70 и СПД-100 производства ОКБ "Факел", в которых штатные системы накального запуска заменены на инженерные модели систем безнакального запуска на основе безнакальных катодов-компенсаторов БНК М1.05 и БНК М5.04 и блоков поджига, разработанных и изготовленных в Межотраслевом научно-техническом центре космической энергетики и двигателей ХАИ. Приведены сравнительные параметры этих двух модификаций двигателей. Показано, что пусковые характеристики стационарных плазменных двигателей с безнакальными катодами удовлетворяют требованиям, предъявляемым к двигателям систем управления ориентацией и стабилизацией космических аппаратов.

стационарный плазменный двигатель, безнакальный катод, система быстрого безнакального запуска

Введение

С каждым годом расширяется область использования электроракетных двигателей (ЭРД). Сейчас назревает время необходимости и целесообразности применения ЭРД в системах управления ориентацией и стабилизацией (СУОС) космических аппаратов (КА). По ряду параметров одним из наиболее перспективных двигателей СУОС является холловский ЭРД, другое название – стационарный плазменный двигатель (СПД). Значительным препятствием на этом пути является большое время запуска современных СПД. Так, например, известные российские холловские двигатели СПД-70 и СПД-100 имеют время функционального запуска 160...180 с [1], тогда как время срабатывания двигателей СУОС не должно превышать 1 с.

1. Постановка задачи

1.1. Состояние проблемы

У большинства современных ЭРД, в том числе – СПД, наиболее инерционными узлами, определяю-

щим время функционального запуска, являются католы

Среди разрабатываемых для ЭРД типов катодов наиболее перспективными являются газоразрядные полые высокоэмиссионные катоды (ГПВК), относящиеся к классу плазменных эмиттеров электронов [2]. Такие катоды позволяют получать большие плотности эмиссионного тока (до $10^6...10^7$ A/m² в выходном отверстии) с малыми затратами энергии (10...25 Вт/А) и способны работать в режиме само-подогрева не только в стационарном режиме, но и в режиме запуска, что позволило создать на их основе безнакальные катоды (БНК), у которых отсутствует стартовый нагреватель (накал) [3]. Известно, что время запуска БНК значительно меньше, чем на-кальных катодов (НК) [3].

Одной из первых публикаций об осуществлении безнакального способа запуска катодов, связанного с исключением из конструкции катода стартового нагревателя, и обеспечением запуска путем газоразрядного самонагрева катода, является статья Астона [4]. Однако, безнакальный запуск в этой работе обеспечивался ценой разрушения элементов конструкции катода.

Более детальный анализ и исследования безнакального запуска экспериментальных макетов ГПВК проведены в работе M.Schatz [5]. Наработка 3500 циклов при 3430 успешных зажиганиях показала, что принципиально возможно практическое осуществление безнакального зажигания ГПВК с несколькими тысячами циклов.

В МНТЦ КЭД ХАИ накоплен большой опыт как в научных исследованиях рабочих процессов безнакального запуска ГПВК [6], так и в разработке конструкции и технологии изготовления БНК нескольких типоразмеров на токи разряда от 0.3 A до 300 A. [7, 8].

В кооперации МНТЦ КЭД ХАИ и ОКБ "Факел" уже имеется опыт совместных работ по созданию ГПВК, в том числе БНК [9]. Так например, безнакальный катод БК-4, созданный в ОКБ "Факел" в кооперации с ХАИ, испытывался в составе СПД-100 на 2000 запусков. В результате обследования и измерения основных параметров установлено, что видимых следов эрозии и изменений основных рабочих параметров катода не обнаружено [9].

1.2. Задача данных исследований

Конечной целью работ по данному направлению является создание летных образцов СПД с быстрым безнакальным запуском, которые соответствовали бы требованиям, предъявляемым к двигателям СУОС КА. Данная работа посвящена экспериментальному исследованию характеристик быстрого безнакального запуска стационарных плазменных двигателей и является очередным этапом совместных работ ОКБ "Факел" и ХАИ на пути достижения выше указанной конечной цели.

2. Решение поставленной задачи

2.1. Основные технические характеристики объектов исследования

Исследовались хорошо известные серийные холловские двигатели ОКБ "Факел" СПД-70 и СПД-100, в которых штатные НК-компенсаторы КЭ-5А и КН-3 заменены на инженерные модели (ИМ) безнакальных катодов БНК М1.05 ($I_p = 2,2$ А) и БНК М5.04 ($I_p = 4,5$ А), разработанные и изготовленные в МНТЦ КЭД ХАИ. Основные технические параметры двух модификаций этих двигателей приведены в табл. 1.

Таблица 1

	Величины параметров				
Наименование и размерность характеристик	СПД-70		СПД-100		
	КЭ-5А	БНК М1.05	КН-3	БНК М5.04	
1. Тяга двигателя, мН	40	41.4	83	85	
2. Мощность двигателя, Вт	660	660	1350	1350	
3. Удельный импульс, с	1450	1450	1500	1500	
4. Тяговый к.п.д., %	48	> 48	50	> 50	
5. Ресурс (наработка) в стационарном режи-	3100		9000		
ме, час	5100		9000		
6. Номинальный разрядный ток, А	2,2	2,2	4,5	4,5	
7. Напряжение разряда в двигателе, В	300	300	300	300	
8. Пусковой расход ксенона, мг/с	0,250,35	0,10,2	0,350,50	0,10,2	
9. Энергопотребление при запуске, Вт	8095	2030	8095	2540	
10. Время запуска, с	160	0,.010,02	160	0,020,025	
11. Ресурс (наработка) по числу включений		1000			
12. Масса, кг	1,5	< 1,5	3,5	< 3,5	
13. Состояние разработки	Летная мо-	Инженерная	Летная мо-	Инженерная	
	дель	модель	дель	модель	

Технические параметры СПД-70 и СПД-100 с накальными и безнакальными катодами-компенсаторами

Фотографии ИМ БНК М1.05 и БНК М5.04 показаны на рис. 1. Их основные технические параметры привдены в табл. 1 и на рис. 3.

Пробой разрядного промежутка и электропитание всех стадий развития разряда в БНК в период их запуска осуществлялись с помощью специального блока поджига (БП). Основные технические параметры БП, созданных в МНТЦ КЭД ХАИ, представлены в табл. 2.

Рис. 1. БНК 5.04 (слева) и БНК М1.05 (справа)

Таблица 2

технические параметры DII, созданных в МПТГЦ КЭД ЛАК.	Технические па	раметры БП.	созданных в	з МНТЦ	КЭД	ХАИ
---	----------------	-------------	-------------	--------	-----	-----

Наименование и размерность параметров	Величины параметров	
1. Выходное напряжение цепи пробоя разрядного промежутка, В	800,01050,0	
2. Ток цепи пробоя, А	0,1	
3. Выходное напряжение цепи поддержки тлеющего разряда, В	320,0480,0	
4. Ток поддержки тлеющего разряда, А	≤ 0,25	
5. Выходное напряжение цепи поддержки дугового разряда, В	20,030,0	
6. Ток поддержки дугового разряда, А	≤ 1,2	
7. Напряжение питания блока, В	24,030,0	
8. Ток, потребляемый от источника питання, А	4,05,0	
9. Габаритные размеры БП приборного исполнения, мм	155 × 95 × 35	
10. Масса блока поджига приборного исполнения, г	450	

2.2. Принцип работы блока поджига

БП разрабатывался с учетом результатов и рекомендаций статьи [10].

Работа БП основана на преобразовании напряжения источника питания постоянного тока в напряжения, необходимые для пробоя вспомогательного разрядного промежутка газопроточного полого катода, поддержки режима тлеющего разряда и дугового разряда соответственно. Структурная схема БП представлена на рис. 2.

При подаче питающего напряжения 27 В на входные клеммы БП стабилизатор напряжения обеспечивает подачу напряжения 6 В на ШИМконтроллеры блока поджига. При этом начинают работать задающие генераторы ШИМ-контроллеров, и на их выходах формируются последовательности импульсов частотой 60 кГц. Каждый из ШИМ-контроллеров формирует две последовательности импульсов, сдвинутых на 180°. Эти импульсы поступают на входы транзисторов соответствующих двутактных преобразователей.

Рис. 2. Схема структурная электрическая блока оджига

180

Трансформаторы, подключенные к стоковым выводам транзисторов, обеспечивают преобразование напряжения источника питания до величин, необходимых для инициирования и протекания соответствующих процессов во вспомогательном плазменном промежутке полого катода, а также гальваническое разделение источника питания и цепей разрядного устройства.

До пробоя вспомогательного разрядного промежутка все ШИМ-контроллеры и двухтактные преобразователи вцелом работают одновременно. Напряжения отдельных преобразователей совмещаются в выходной цепи БП. Напряжение на выходных зажимах блока поджига в этот период соответствует выходному напряжению наиболее высоковольтной цепи БП- цепи пробоя промежутка. После пробоя промежутка и достижения значения тока цепи пробоя 0,1 А с помощью элемента обратной связи начинает работать схема ограничения тока этой цепи. При переходе разряда вспомогательного промежутка в фазу тлеющего разряда и достижении значения 0,25 А выходного тока цепи поддержки тлеющего разряда с помощью элемента обратной связи этой цепи включается блокировка цепи пробоя и схема ограничения тока цепи поддержки тлеющего разряда.

При переходе разряда вспомогательного промежутка в фазу дугового разряда и достижении значения 1,05 А выходного тока цепи поддержки дугового разряда с помощью элемента обратной связи этой цепи включается блокировка цепи поддержки тлеющего разряда и цепи пробоя и схема ограничения тока цепи поддержки дугового разряда. Работа блока поджига на любом этапе может быть прервана отключением питающего напряжения источника питания.

2.3. Методы и средства измерения исследуемых параметров

Испытания и исследования технических характеристик перечисленных в п. 2.1 объектов исследований проводились на стендах ОКБ "Факел" и МНТЦ КЭД ХАИ с использованием комплекса технических средств, более подробно описанного в работе [11].

БНК были установлены на СПД на технологических кронштейнах в положении аналогичном к положению штатных катодов.

Экспериментальные исследования СПД с БНК были выполнены в следующем объеме:

приработка в течение не менее 30 мин на номинальном режиме двигателей (для СПД-70 – Ip = 2,20 A, Up = 300 B, для СПД-100 – Ip = 4,50 A, Up = 300 B);

 исследование влияния расхода ксенона через катод на стационарные параметры СПД в диапазоне 0,05 – 0,40 мг/с при номинальных разрядных токах;

– исследование влияния тока разряда на стационарные параметры СПД-70, начиная с тока 2,20 А в сторону уменьшения с шагом 0,20 А при расходе в катод 0,15 мг/с при автономном подключении магнитных катушек, ток в катушках на всех режимах составлял 2,20 А;

– определение пусковых характеристик СПД с БНК, которое включало в себя измерение времени функционального запуска, т.е. времени между включением БП и появлением номинального значения тока разряда І_р при различных паузах между включениями катода и исследование изменений во времени электрических характеристик СПД (І_р, U_р) и тока и напряжения (І_п, U_п) в цепях БП и БНК. Время измерялось путем осциллографирования напряжения поджига и тока разряда. Для этих целей использовались двухлучевой осциллограф VC-5470 и автоматизированная система регистрации быстропротекающих процессов [11].

Последовательность запуска СПД с БНК была следующая:

- подавался расход ксенона через анод и катод;

- подавалось разрядное напряжение;

- включался БП, подачей питания 27 В;

выдерживался включенным БП в течение
1 ... 2 с, после чего отключение БП.

2.4. Результаты исследований

2.4.1. Стационарные характеристики

Исследовано влияние расхода ксенона через катод m_к на стационарные параметры СПД-70 в диапазоне 0,05...0,40 мг/с при номинальном токе разряда I_p = 2,2 А и напряжении разряда U_p = 300 В при работе с тремя катодами - штатным КЭ-5А, ИМ БНК М1.05 и ИМ БНК М1.04. Установлено, что во всем диапазоне исследованных параметров тяга СПД-70 с БНК была равна 41,1...41,6 мН, т.е. несколько превышала номинальное значение 40 мН при работе двигателя со штатным катодом КЭ-5А. Это объясняется более низким энергопотреблением сравнению со штатным БНК по катодомкомпенсатором. Некоторой ориентировочной характеристикой энергопотребления катода при работе в составе двигателя может служить величина плавающего потенциала Uкз, которая измерялась как разность потенциалов между катодом и "землей". На рис. 3 приведены зависимости U_{к3} от m_и для трех катодов. Видно, что энергопотребление БНК М1.05 и БНК М5.04 на 5...8 Вт/А меньше, чем у катода КЭ-5А. Оптимальная величина \dot{m}_{κ} для БНК М1.05 составляет 0,15 мг/с.

Изучено влияние тока разряда I_p на стационарные параметры СПД-70. Установлено, что БНК М1.05 обеспечивает устойчивую работу двигателя в диапазоне I_p = 0,65...2,2 А при \dot{m}_{κ} = = 0,15 мг/с. При этом тяга СПД-70 изменялась от 7,5 мН до 41,2 мН.

2.4.2. Пусковые характеристики.

При определении пусковых характеристик СПД-70 с БНК БП включался на 1...2 с и каждый раз запуск катодов происходил нормально, без сбоев. Исследования пусковых харктеристик проводились в двух режимах: "холодный" – запуск БНК из холодного состояния, когда пауза между включениями составляла не менее 1 час, и "горячий" – запуск БНК с горяего состояния, когда пауза составляла не более 6 с после стационарной работы СПД не менее 15 мин, либо запуск НК, разогретого до горячего состояния с помощью штатного накала в номинальном режиме.

На рис. 4 – 9 продемонстрированы наиболее типичные электрические характеристики запуска СПД-70: изменение во времени в период функционального запуска напряжения U_p и тока разряда I_p , а также напряжения U_{π} и тока I_{π} в цепях поджига и поддержания разряда в катодах. Измерения указанных характеристик производились в милисекундном диапазоне, что обеспечивало регистрацию всех стадий развития разряда при запуске, кроме пробоя (микро- , а возможно даже наносекундный диапазон).

2.4.3. "Холодный" запуск.

На рис. 4 хорошо видно три стадии развития разряда при "холодном" запуске СПД-70 с БНК М1.05 при m_к=0,15 мг/с: I стадия продолжительностью 4 мс – высоковольтная форма тлеющего разряда поддерживаемая цепью пробоя БП; II стадия длительностью 10 мс – нормальный тлеющий разряд, поддерживаемый цепью поддержки тлеющего разряда БП, и III стадия – дуга, поддерживаемая соответствующей цепью БП. Таким образом, время функционального запуска двигателя составляет 14 мс.

Рис. 4. Характеристики "холодного" запуска СПД-70 с БНК М1.05 при $\dot{m}_{\kappa} = 0,15$ мг/с

Рис. 5 демонстрирует, что "холодный" функциональный запуск того же СПД-70 с тем же безнакальным диодом М1.05 при таком же \dot{m}_{κ} осуществим за 5 мс за две стадии – I (5 мс) и III, минуя II.

Из рис. 6 видно, что при всех тех же неизменных исходных условиях, что и в предыдущих двух случаях (рис. 4, 5) "холодный" функциональный запуск СПД-70 возможен за 2 мс с переходом после пробоя сразу же на II стадию, обеспечивающую за указанное время 2 мс переход на последнюю III дуговую стадию развития разряда.

При этом реализация одного из трех вышеназванных сценариев "холодного" запуска происходит случайно, и для того, чтобы этим процессом можно было управлять, необходимы дополнительные исследования запуска с набором большого объема статистики.

Рис. 5. Характеристики "холодного" запуска СПД-70 с БНК М1.05 при $\dot{m}_{\kappa} = 0,15$ мг/с

Рис. 6. Характеристики "холодного" запуска СПД-70 с БНК М1.05 при $\dot{m}_{\kappa} = 0,15$ мг/с

2.4.4. "Горячий" запуск.

Поведение разрядного напряжения U_p и тока I_p , характерное для запуска СПД-70 с горячим БНК М1.05 при $\dot{m}_{\kappa} = 0,15$ мг/с, показано на рис. 7. На рис. 8 представлена развертка параметров разряда в двигателе и в цепях поджига БНК в 3,2 милисекундном диапазоне.

Рис. 7. Характеристики "горячего" запуска СПД-70 с БНК М1.05 при m_e = 0,15 мг/с

Рис. 8. Характеристики "горячего" запуска СПД-70 с БНК М1.05 при $\dot{m}_{\kappa} = 0,15$ мг/с

На рис. 9 показаны те же характеристики переходного процесса в период запуска СПД = 70, но полученные при работе со штатным катодом КЭ-5А после его накала с помощью нагревателя в номинальном режиме мощностью 90 Вт в течение 160 с. Из сравнения рис. 8 и 9 видно, что характер изменения и величины параметров переходных процессов в период запуска с горячим БНК и с нагретым КЭ-5А очень близки. Как в том, так и в другом случаях в работе участвует только II и III цепи БП. Их задачей является догрев эмиссионной поверхности в зоне привязки разряда до рабочей температуры. По всей видимости, в этот преиод происходит также окончательное формирование структуры эмиссионного слоя.

Рис. 9. Характеристики "горячего" запуска СПД-70 с катодом-компенсатором КЭ-5А при $\dot{m}_{\nu} = 0.4$ мг/с

2.5. Обсуждение полученных результатов

В результате проведенных исследований показано, что замена НК на БНК позволяет сократить время функционального запуска двигателей на 4 порядка, мощность, потребляемую катодом во время запуска и пусковой расход ксенона через катод – в 2...3 раза. При стационарной работе катодов в составе СПД-70 и СПД-100 энергопотребление БНК М1.05 и М5.04 меньше, чем у штатных катодов КЭ-5А и КН-3.

Таким образом, использование БНК в составе серийных СПД-70 и СПД-100 существенно улучшает их технические, в первую очередь – пусковые, характеристики, что позволяет расширить область их применения на системы управления ориентацией и стабилизацией космических летательных аппаратов.

Заключение

В результате экспериментальных исследований характеристик запуска известных серийных российских холловских двигателей СПД-70 и СПД-100 производства ОКБ "Факел", в которых штатные системы накального запуска заменены на инженерные модели систем безнакального запуска на основе безнакальных катодов-компенсаторов БНК М1.05 и БНК М5.04 и блоков поджига, разработанных и изготовленных в Межотраслевом научно-техническом центре космической энергетики и двигателей ХАИ, установлено, что по времени срабатывания СПД с БНК (до 25 мс) удовлетворяет требованиям, предъявляемым к двигателям СУОС КА.

В дальнейшем предстоит отработка ИМ систем безнакального запуска СПД на ресурс как по числу запусков, так и в стационарном режиме, а также комплекс конструкторских и технологических работ и специальных испытаний, обеспечивающие их перевод на следующие стадии разработки – квалификационную и летную модели.

Литература

1. Arhipov B., Kozubsky K.L. The Development of the Cathodes-Compensators for Stationary Plasma Thrusters in USSR // Proc. of the 22-th International Electric Propulsion Conf. – Viareggo (Italy). – 1991. – IEPC-91-23. – P. 197 – 201.

Oranskiy A.I. Plasma hollow cathodes // Problems of atomic science and technology. Series: Plasma physics. – Kharkov. – 1999. – Is. 3, 4. – P. 259 – 261.

 Оранский А.И. Перспективные катоды электроракетных двигателей // Авіаційно-космічна техніка і технологія: Зб. наук. праць. – Х.: Нац. аерокосмічний ун-т "Харк. авіац. ін-т". – 2002. – Вип.. 31. Двигуни та енергоустановки. – С. 257 – 259.

4. Aston G. Ferm cathode operation in the test bed ion engine // Proc. of the 17-th International Electric Propulsion Conf.-Japan (Tokyo). – 1984. – P. 76 – 82.

5. Schatz M.F. Heatless Ignition of Inert Gas Ion Thruster Hollow Cathodes // 18th International Electric Propulsion Conference, AIAA Papers, Alexandria, Virginia, Sept. 30 – Oct. 2, 1985. – IEPC-85-208.

6. Studying of non-stationary heating processes of self-heated hollow cathodes / N.N. Koshelev, A.V. Lo-

yan, S.A. Lobov, A.I. Oranskiy // AIAA/ASMT/ SAE/ASTT Proc. Of the 35th Joint Propulsion Conf. and Exhibit. – Los-Angeles (USA). – 1999. – AIAA Paper 99-2864 (A99-31525).

7. The Results of Reasearching of Low-Current Self Heated Hollow Cathodes on Electric Current Range from 0,3 to 0,5 A / A. Loyan, N. Belan, A. Oranskiy, N. Koshelev, S. Lobov // Proc. of the 27th International Electric Propulsion Conf. – Pasadena, California, USA. – 2001. – IEPC-01-272.

8. High-Current Self-Heated Hollow Cathodes with Operation Current More Than 25 A: State and Development / A. Loyan, A. Oranskiy, Ye. Ischenko, N. Koshelev // Proc. of the 27th International Electric Propulsion Conf. – Pasadena, California, USA. – 2001. – IEPC-01-273.

 9. Архипов Б.А., Мурашко В.М., Оранский А.И.
Опыт создания полых высокоэмиссионных катодов
// Авиационно-космическая техника и технология:
Сб. науч. тр. Гос. аэрокосм. ун-та им. Н.Е. Жуковского "ХАИ". – Х.: ГАУ «ХАИ». – 1999. – Вып. 10. –
С. 360 – 363.

10. Лоян А.В., Кошелев Н.Н., Алиева М.Т. Экспериментальные исследования пусковых характеристик безнакальных полых катодов // Авіаційнокосмічна техніка і технологія: Зб. наук. праць. – Х.: Нац. аерокосмічний ун-т "Харк. авіац. ін-т". – 2002. – Вип. 30. – С. 256 – 258.

11. Комплекс технических средств для экспериментальной отработки ЭРД и подсистем ЭРДУ / Н.В. Белан, В.И. Белоконь, Е.В. Барздун, С.В. Верютин, В.Д. Олендарев, С.А. Огиенко, Н.П. Степанукин // Авіаційно-космічна техніка і технологія: Зб. наук. праць. – Х.: Нац. аерокосмічний ун-т "Харк. авіац. ін-т". – 2002. – Вип. 31. – С. 265 – 269.

Поступила в редакцию 25.04.2004

Рецензент: д-р физ.-мат. наук, проф. В.И. Терешин, Институт физики плазмы Национального научного центра "ХФТИ", Харьков.