УДК 539.4

Д.С. АВРАМЕНКО

Институт проблем прочности им. Г.С. Писаренко НАН Украины, Украина

ПРОГНОЗИРОВАНИЕ ДЛИТЕЛЬНОЙ ПРОЧНОСТИ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ МЕТОДОМ БАЗОВЫХ ДИАГРАММ

Рассмотрены результаты обработки экспериментальных данных о длительной прочности жаропрочных никелевых сплавов методом базовых диаграмм. Обосновывается, что переход к системному анализу известных экспериментальных данных на основе концепции базовых соотношений может способствовать значительному повышению эффективности, точности и надежности прогнозирования длительной прочности.

жаропрочность, кратковременная и длительная прочность, базовые диаграммы, прогнозирование

Введение

Жаропрочные сплавы на основе никеля широко применяются в авиационной технике при высоких гомологических температурах в упрочненном состоянии. Это приводит к вполне закономерной и столь существенной интенсификации временных процессов разупрочнения, что до сих пор разработка новых более жаропрочных и оптимизация известных структурных состояний, прогнозирование их работоспособности на большие сроки службы остаются сложными и актуальными задачами. В данном случае обосновывается полезность учета и развития опыта решения таких задач на основе перехода к обобщенному анализу соответствующих экспериментальных данных с помощью метода базовых диаграмм (МБД) [1 – 3].

Формулирование проблемы

При прогнозировании длительной прочности чаще всего используют параметрические методы Ларсона – Миллера [4], Мэнсона – Хэферда [5], Орра – Шерби – Дорна [6]. Эти методы позволяют ряд диаграмм длительной прочности (ДДП) при различных температурах преобразовать в единую расчетную параметрическую кривую. Обработка больших объемов экспериментальных данных [1 – 3] позволил конкретизировать ряд существенных недостатков этих методов.

Ниже обосновывается целесообразность альтернативного в какой-то мере развития прогнозирования на основе МБД, который позволяет значительно улучшить прогнозирование в частности благодаря переходу к системному анализу известных экспериментальных данных.

Основу МБД составляет уравнение базовых диаграмм

$$\lg \sigma'_{t} = \lg \sigma_{1} - \frac{3.6 - \lg \sigma_{1}}{12} (\lg t + \lg^{2} t), \qquad (1)$$

где σ'_t – текущие напряжения по базовой диаграмме (МПа); отдельная базовая диаграмма задается величиной σ_1 (МПа) – напряжением, которое приводит к разрушению за 1 ч, т.о. величина σ_1 определяет точку пересечения базовой диаграммы с осью ординат в системе координат lg σ'_t – lg t; t – долговечность, ч.

Экспериментальные ДДП рассматривались в виде независимых отдельных участков. Левая граница отдельного участка экспериментальной диаграммы по напряжению и времени обозначается $\sigma_{\alpha t}$, αt , правая – σ_{t_3} , t_3 при отношении $t_3/\alpha t \approx 10$.

С помощью уравнения (1) особенность каждого отдельного участка экспериментальной диаграммы

© Д.С. Авраменко

характеризуется величиной

$$\beta_{\mathfrak{I}} = \frac{\sigma_{\alpha t} - \sigma_{t\mathfrak{I}}}{\sigma_{\alpha t} - \sigma_{t}'},\tag{2}$$

где β_3 – экспериментально устанавливаемая характеристика отклонения участка экспериментальной диаграммы в пределах от αt до t э от соответствующего участка базовой диаграммы в пределах от αt до t при t = t. Например, при $\sigma_{\alpha t} = \sigma_{100} = 400$ и $\sigma_{t_3} = \sigma_{1000} = 340$ МПа для определения β_3 по формуле (2) сначала в (1) вместо σ'_t и t подставляются значения $\sigma_{\alpha t} = 400$ МПа и $\alpha t = 100$ ч, что приводит к уравнению с одним неизвестным σ_1 . Устанавливаемая величина σ_1 определяет ту базовую диаграмму, которая пройдет через точку с координатами $\sigma_{\alpha t}$ и t э. Подстановка в (1) установленного σ_1 позволяет рассчитать σ'_t для t = t и определить по формуле (2) величину β_2 .

Формула (2) после замены $\sigma_{t_3} = \sigma_t, \beta_3 = \beta$ используется в виде

$$\sigma_t = \sigma_{\alpha t} - \beta(\sigma_{\alpha t} - \sigma'_t) \tag{3}$$

для прогнозирования искомого значения σ_t по исходному значению $\sigma_{\alpha t}$ при обобщенном показателе β отклонений отдельных участков экспериментальных диаграмм от соответствующих участков базовых.

Формулы (1) и (2) дают возможность информацию об отдельных участках экспериментальных ДДП представлять точками с координатами ($\beta_9, \sigma_{\alpha l}$) в системе координат $\beta_9 - \sigma_{\alpha l}$. Это дает возможность выполнять простой и эффективный сравнительный анализ больших массивов данных, а также сделать в значительной мере целесообразным переход к системному анализу известных экспериментальных данных.

Важными элементами такого анализа, согласно [7], являются оценки и учет для различных групп материалов характеристик β , β_9 , Δ_1 , Δ_2 , S_1 , S_2 , определяемых по формулам:

$$\Delta_1 = \lg t - \lg t \mathfrak{i}; \tag{4}$$

$$\Delta_2 = \frac{\sigma_t - \sigma_{t_3}}{\sigma_{t_3}}; \tag{5}$$

$$S_m = \sqrt{\frac{\sum_{i=1}^n (\Delta_m)_i}{n-1}}, \qquad (6)$$

где S_1 рассчитывается при m = 1 и подстановке значений Δ_1 , а S_2 – при m = 2 и подстановке значений Δ_2 .

Решение проблемы

Следует заметить, что в литературе в основном представляются весьма ограниченные данные о свойствах отдельных рассматриваемых жаропрочных сплавов, в частности о характеристиках кратковременной и длительной прочности, химическом составе, структурных особенностях и т.п. Это весьма затрудняет оценку влияния большого числа факторов на закономерности длительного разупрочнения. Поэтому предполагается целесообразным развитие обобщенного анализа известных экспериментальных данных с последующим использованием результатов такого анализа для более углубленной оценки свойств материалов в каждом конкретном случае. При этом следует учитывать, что различные сплавы имеют достаточно большое число отличительных признаков, которые в первом приближении влияют на длительную прочность и температурновременные закономерности её изменения, однако из-за большого числа факторов, которые могут оказывать влияние на длительную прочность, трудно определить, какие из них являются наиболее определяющими. Так, например, согласно данным табл. 1 – 3 материалы могут существенно различаться по химическому составу, значениям характеристик кратковременной прочности, пластичности, структуре и т.п. Более того, такие данные в целом известны лишь для сравнительно малых длительностей нагружения. Для больших длительностей их намного меньше и в этом случае уже трудно оптимально проанализировать имеющуюся информацию о сравнительно малых длительностях нагружения.

В связи с этим рассмотрим некоторые возможности обобщенного анализа на основе МБД на примере данных [8].

В табл. 1 приведены данные [8] об основных элементах химического состава ряда зарубежных жаропрочных сплавов. Химический состав этих сплавов существенно различается и, следовательно, рассмотрение комплекса данных о свойствах этих сплавов может быть интересным с точки зрения анализа особенностей их длительного разупрочнения. В первом приближении такие особенности характеризуются данными табл. 2 о характеристиках кратковременной прочности и пластичности при комнатной температуре, хотя вопрос повышения эффективности учета таких данных для конкретизации особенностей длительного разрушения остается актуальным.

Таблица 1

Сплав	С	Fe	Mn	Cr	Ti	Al	Ni	Co	Мо	Nb + Ta	W	V
	Max. 0,10	5.0	1,0	22,0	3,00	1,60	Основа					
INNORACT 80	Min. 0,03	5,0	0,20	18,0	2,20	0,80						
НИМОКАСТ 90	Max. 0,12	5,0	1,0	22,0	3,00	1,60	Основа	20,0				
	Min. 0,05		0,20	18,0	2,20	0,80		15,0				
НИМОКАСТ 242	Max. 0,40	1.0	0,5	23,0	0,30	0.20	Oavana	11,0	11,0			
	Min. 0,27	1,0	0,2	18,0		0,20 00	Основа	9,0	9,0			
НИМОКАСТ 263	Max. 0,07	0,50	0,50	20,5	2,3	0,5	Основа	20,5	6,1			
	Min. 0,05			19,5	2,1	0,4		20,0	5,7			
	Max. 0,04	4,0 2,0	0,5	21,0			Основа	2,0	6,5	7,0	3,0	
INNOKACI FEIU	Min.		0,10	19,0					5,5	6,2	2,0	
	Max. 0,20	2,5	0,25	14,0	1,0	6,5	Основа	1.0	5,2	2,8		
TIMINORACT /15	Min. 0,08			12,0	0,5	5,5		1,0	3,8	1,8		
	Max. 0,10	1,0	0,25	13,0	1,0	6,5	Основа	1,0	5,4	2,5		
TIMINORACT / TJLC	Min.			11,0	0,20	5,0			3,6	1,5		
	Max. 0,20	1,0	0,20	11,0	5,0	6,0	Основа	17,0	4,0		0.2	1,2
TIMMORACT T K24	Min. 0,15			8,0	4,5	5,0		13,0	2,0		0,2	0,7
	Max. 0,15	1,0	0,5	7,0		6,5	Основа	1,0	2,7		11,5	
INNORACT FD21	Min. 0,05			5,0		5,5			1,3		9,5	
	Max. 0,15	0.5	0,2	16,5	3,7	3,7	Основа	9,0	2,0		2,8	2,0
TITIVIORACT /30	Min. 0,05	0,5		15,5	3,2	3,2		8,0	1,5		2,4	1,5

Химический состав. % сплавов на основе никеля

Характеристики кратковременных свойств							
Сплав	σ _{0,1} , МПа	σ _{0,2} , МПа	σ _в , МПа	Ψ %			
НИМОКАСТ 80	500	520	734	15			
НИМОКАСТ90	500	520	700	14			
НИМОКАСТ 242	260	300	465	8			
НИМОКАСТ РЕ10	585	607	680	5			
НИМОКАСТ 713	710	740	850	8			
НИМОКАСТ 713LC		750	900	15			
НИМОКАСТ 738		950	1060	5			
НИМОКАСТ РК24		850	895	7			
НИМОКАСТ PD21	730	750	785	6			
НИМОКАСТ 263		510	734	18			

Один из способов его решения заключается в оценке характеристик особенностей длительного разрушения, например β, β₃, при последующей оценке взаимосвязи этих характеристик и характеристик кратковременной прочности. Об особенностях длительного разупрочнения можно судить, например, по данным табл. 3 и 4. В каждой строчке табл. 4 приведены данные об отдельных участках диаграмм длительной прочности для жаропрочного сплава НИМОКАСТ 80.

Для всех данных этой таблицы произвольно задавались различные значения β , прогнозировались при каждом значении β по $\sigma_{\alpha t}$ значения σ_{t_3} , затем по формулам (5) и (6) рассчитывались значения Δ_2 и S_2 .

Параболическая зависимость $S_2 = f(\beta)$ позволяла определять величину β , при которой значение S_2 является минимальным.

Таблица 3

Длительная прочность сплавов никеля							
Материал	T, ℃	σ_{100}	σ_{1000}	β			
НИМОКАСТ 80	750	147	116	0,725			
НИМОКАСТ 90	750	208	170	0,69			
НИМОКАСТ РЕ10	750	262	201	0,944			
НИМОКАСТ 713	760	571	448	1,177			
НИМОКАСТ 713	1010	94	57	1,218			
НИМОКАСТ РК24	1000	134	77	1,43			
НИМОКАСТ PD21	1000	162	97	1,415			

Согласно данным табл. 4 величина $S_2 = 9,05\%$ при $\beta = 0,9$. При оценке особенностей таких результатов целесообразно ориентироваться на следующие обобщенные данные исследований.

В результате анализа более 2000 ДДП для сплавов с твердорастворным упрочнением в практически важном интервале температур наиболее вероятными являются значения β = 1...1,3, а для дисперсноупрочненных, к которым относятся рассматриваемые сплавы на основе никеля – $\beta = 1, 4...1, 7.$

Указанный интервал значений β объясняется в основном возрастанием экспериментальных значений β_9 по мере возрастания температуры и длительности нагружения. Выполненные исследования приводят к выводу, что значения β_9 изменяются в целом в пределах 0...2,3. Минимальными являются значения $\beta_9 = 0$ в тех случаях, когда временные процессы разупрочнения не проявляются и ДДП являются близкими к горизонтальным. Такие случаи крайне редки. В очень малом интервале низких температур значения β_9 довольно быстро возрастают, поэтому практически важным является в основном интервал изменения значений β_9 от 0,6...0,8 до 2,2...2,3, а для рассматриваемых сплавов – от 1,2...1,3 до 2,2...2,3.

Таблица 4

N⁰	T, ℃	σ _{αt} , ΜΠa	σ _{tэ} , ΜΠa	αt, ч	tэ, ч	$lg\left(\frac{t\Im}{\alpha t}\right)$	Δ, %	β_{ϑ}
1	600	432	378	30	100	0,52	3,19	1,158
2	600	432	324	30	300	1,00	9,04	1,235
3	600	432	260	30	1000	1,52	21,21	1,325
4	600	378	324	100	300	0,48	5,46	1,339
5	600	378	260	100	1000	1,00	16,94	1,436
6	600	324	260	300	1000	0,52	10,51	1,57
7	750	162	147	30	100	0,52	-4,85	0,61
8	750	162	131	30	300	1,00	-7,31	0,688
9	750	162	116	30	1000	1,52	-10,96	0,705
10	750	162	96	30	3000	2,00	-7,64	0,81
11	750	147	131	100	300	0,48	-2,56	0,744
12	750	147	116	100	1000	1,00	-6,44	0,725
13	750	147	96	100	3000	1,48	-3,05	0,851
14	750	131	116	300	1000	0,52	-4,07	0,685
15	750	131	96	300	3000	1,00	-0,75	0,882
16	750	116	96	1000	3000	0,48	3,4	1,075

Результаты обработки данных для сплава НИМОКАСТ 80 по МБД

 $S=9,86,\,\beta_1=1,0;\,S=9,05,\,\beta_1=0,9;\,S=9,86,\,\beta_1=0,8$

Прогнозирование длительной прочности на один порядок по времени было выполнено в результате анализа довольно большого числа диаграмм. При этом было установлено, что при выполнении условия при прогнозировании с помощью МБД выполняется условие

$$S_2 \le 0, 1 \dots 0, 12.$$
 (8)

Задача систематизации известных экспериментальных данных с помощью МБД заключается в определении отдельных численных значений β, ко-

$$\beta - 0,3 \div 0,4 < \beta_{3} < \beta + 0,3 \div 0,4 \tag{7}$$

Анализ данных табл. 4 привел к сравнительно низкой величине $S_2 = 9,05\%$ по сравнению с указанной в условии (8) при низком $\beta = 0,9$. Это объясняется тем, что в табл. 4 рассматриваются и данные, полученные при сравнительно низких температурах. Об этом можно судить по интервалу изменения значений β_3 , который составляет от 0,61 до 1,57. Таким образом, в данном случае особенности отдельных участков ДДП определяются величиной $\beta = 0,9$, а также величинами отклонений $\beta - \beta_3$.

вия (8).

В табл. 4 использованы лишь данные [8] для 16 участков ДДП. Вместе с тем аналогичный общий анализ информации о всех сплавах в [8] и соответственно для n = 280 участков привел к $S_2 = 10,76\%$ при $\beta = 1,2$, что лучше согласуется с приведенными выше результатами обобщенного анализа.

Для удобства анализа больших объемов экспериментальных данных информация может быть представлена различным образом (рис. 1 и 2, табл. 4). Представление данных подобным образом значительно расширяет возможность оценки влияния большого числа факторов на закономерности длительного разрушения. В частности, согласно данным табл. 4 при температуре 750 °С дополнительное легирование приводит к повышению σ_{100} от 147 до 571 МПа и соответственно при увеличении В, от 0,72 до 1,17. При 1000° С повышение σ_{100} от 94 до 162 МПа приводит к сравнительно небольшому увеличению β₂ от 1,21 до 1,41. Эти данные позволяют, в свою очередь, переходить к анализу роли легирования, изменения структурного состояния и т.п. Для такого анализа необходимо иметь возможно более полную информацию о физико-химических, структурных и механических свойствах материалов.

Выше в основном проанализированы данные о длительной прочности при сравнительно небольшой длительности испытаний, порядка 5000-7000 ч. На рис. З представлены результаты аналогичных испытаний NIMS длительностью до 100000 ч и более. Видно, что интервалы изменения характеристик β_3 на рис. 1, а и 3, а, а также значения Δ , на рис. 2 и 3, б являются близкими. Это свидетельствует о том, что

Рис. 1. Зависимость характеристики β_3 от напряжения (а) температуры (б) и относительной температуры (в)

Рис. 2. Прогнозирование по МБД длительной прочности сплавов на основе никеля [4]

данные об испытаниях длительностью до 5000 ч в случае применения МБД в рассматриваемом варианте весьма показательны в отношении характери-

Рис. 3. Зависимость характеристики β₃ (а) и погрешности прогнозирования Δ (б) для сплавов [9 – 12] на основе никеля от напряжения стик длительной прочности при *t* = 10⁵ ч и более.

Заключение

Выполненный анализ приводит к выводу, что прогнозирование длительной прочности металлических материалов на основе широко используемых в мире параметрических методов [4 – 6] должно быть дополнено МБД [1 – 3], что означает переход к существенному развитию прогнозирования на основе соответствующего системного анализа известных экспериментальных данных.

Литература

 Кривенюк В.В. Прогнозирование длительной прочности тугоплавких металлов и сплавов. – К.: Наук. думка, 1990. – 248 с. Писаренко Г.С., Кривенюк В.В. Новый подход к прогнозированию длительной прочности металлов // Доклады АН СССР. Механика. – 1990. – Т. 312, № 3. – С. 558 – 562.

Механическое поведение материалов при различных видах нагружения / В.Т. Трощенко, А.А. Лебедев, В.А. Стрижало и др. – К.: Логос, 2000. – 571 с.

4. Larson R.R., Miller J. Time-temperature relationship for rupture creep stress // Trans. ASME. – 1952. – 74, N 5. – D. 765 – 775.

5. Manson S.S., Haferd A.M. A liner timetemperature relation for extrapolation of creep and stress rupture data // NASA TN. – 1953. – TN-2890.

 Orr R.I., Sherby O.D., Dorn J.E. Correlation of rupture data for metals at elevated temperatures // Trans. ASM. 1954. – V. 46. – P. 113 – 128.

 Кривенюк В.В. Прогнозирование ползучести и длительной прочности металлических материалов на сроки службы до 300000 ч и более // Пробл. прочности. – 2003. – № 4. – С. 104 – 120.

 Nimocast alloys // Publication 3610. Henry Wiggin & Co ltd, England HR4 9SL. – October 1973. – 28 p.

9. Data sheets on the elevated-temperature properties of 19Cr-18Co-4Mo-3Ti-3Al-B. // National research institute for metals (NRIM). Tokyo. – 1993. – N 34 B.

10. Data sheets on the elevated-temperature properties of 15.5Cr-2.5Ti-0.7Al-1Nb-7Fe. // Ibid. – 1992. – N 39 A.

11. Data sheets on the elevated-temperature properties of 15Cr-28Co-4Mo-2.5Ti-3Al. // Ibid. – 1989. – N 24 B.

12. Data sheets on the elevated-temperature properties of 13Cr-4.5Mo-0.75Ti-6Al-2.3(Nb+Ta)-Zr-B. // Ibid. – 1990. – N 29 B.

Поступила в редакцию 1.06.2005

Рецензент: д-р техн. наук Ф.Ф. Гигиняк, Институт проблем прочности им. Г.С. Писаренко, Киев.