УДК 681.586.54

Д.И. ВОЛКОВ, В.Ф. МИРГОРОД

ОАО «Элемент», Одесса, Украина

ФОРМИРОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ СОВМЕСТНОЙ РАБОТЫ ДВУХ ТВАД С РЕДУКТОРОМ И ДВУХРЯДНЫМ ВИНТОМ В СОСТАВЕ ДВУХДВИГАТЕЛЬНОЙ УСТАНОВКИ ВЕРТОЛЕТА

Предлагается математическая модель двухдвигательной силовой установки вертолета с соосными винтами, учитывающая динамические характеристики двигателей и крутильную жесткость соединительных валов трансмиссии. Выполнен анализ условий возникновения колебательных режимов при совместной работе двух двигателей на динамическую нагрузку.

математическая модель, двухдвигательная установка, трансмиссия, колебательный режим

Введение

Построение адекватных математических моделей сложных динамических объектов авиационной техники является в настоящее время необходимым этапом при создании современных систем управления, выполняемых в профиле систем с полной ответственностью. Одним из таких объектов является силовая установка, состоящая из двух ГТД, трансмиссии и соосных винтов.

Основным вопросом для такого типа силовых установок является исключение возбуждения колебательных режимов, вызванных конечной крутильной жесткостью соединительных валов трансмиссии и нагрузки. Отработка алгоритмов цифровой системы управления ГТД обусловливает необходимость создания численно реализуемой математической модели силовой установки, учитывающей в полном виде ее динамические свойства.

Формулирование проблемы

Разработанные и апробированные на практике математические модели ГТД [1, 2] достигли в настоящее время высокой степени совершенства и позволяют адекватно прогнозировать динамику двигателя для различных режимов функционирования и с различными управляющими воздействиями. В наибольшей степени соответствуют задачам синтеза цифровых систем управления кусочно-линейные динамические модели [2], в которых достигается компромисс между требуемой точностью воспроизводства характеристик реальных ГТД и сложностью численной реализации.

Модели динамики нагрузки строятся в виде классических уравнений Лагранжа [3, 4]. В то же время недостаточное внимание уделяется описанию реальной трансмиссии как многозвенной составной механической системы с учетом крутильной жесткости соединительных валов и особенностями работы двух двигателей на общую динамическую нагрузку переменного характера. Известная особенность такого рода силовых установок состоит в возможном возбуждении слабо демпфированных колебаний при несоответствующем выборе алгоритмов управления режимами ГТД.

Дополнительные проблемы возникают в связи с необходимостью синхронизации ГТД по крутящему моменту. Указанный комплекс задач обусловливает необходимость разработки математической модели двухдвигательной силовой установки, учитывающей как характеристики и возможную неидентичность двигателей, так и динамические и статические параметры нагрузки, что и является целью настоящей статьи.

Решение проблемы

Динамическая модель, учитывающая моменты инерции редуктора, нижнего и верхнего винтов, а также коэффициенты крутильной жесткости валов, имеет следующую структуру (рис. 1).

Рис. 1. Динамическая (механическая) модель несущего винта с редуктором

Представленная модель характеризуется следующими параметрами: J_1 – момент инерции верхнего винта; J_2 – момент инерции нижнего винта; J_3 и J_4 – моменты инерции свободных турбин двигателей № 1 и № 2; J_5 – момент инерции редуктора; C_1 – коэффициент крутильной жесткости вала верхнего винта; C_2 – коэффициент крутильной жесткости вала нижнего винта; $C_3 = C_4$ – коэффициент крутильной жесткости вала, соединяющего свободную турбину и редуктор вертолета.

Приведенной структуре (рис. 2, 3) соответствует Лагранжева система дифференциальных уравнений:

$$\begin{cases} J_{1}\ddot{\varphi}_{1} = c_{1}(\varphi_{5} - \varphi_{1}) - M_{c1}; \\ J_{2}\ddot{\varphi}_{2} = c_{2}(\varphi_{5} - \varphi_{2}) - M_{c2}; \\ J_{3}\ddot{\varphi}_{3} = c_{4}(\varphi_{5} - \varphi_{3}) + M_{\kappa p1}; \\ J_{4}\ddot{\varphi}_{4} = c_{4}(\varphi_{5} - \varphi_{4}) + M_{\kappa p2}; \\ J_{5}\ddot{\varphi}_{5} = c_{1}(\varphi_{1} - \varphi_{5}) + c_{2}(\varphi_{2} - \varphi_{5}) + \\ + c_{3}(\varphi_{3} - \varphi_{5}) + c_{4}(\varphi_{4} - \varphi_{5}). \end{cases}$$
(1)

Для механической системы, состоящей из верхнего и нижнего винтов при жесткой заделке вала в области редуктора, схема представлена на рис. 2.

Уравнение собственного движения соответствует первым двум уравнениям системы (2):

$$\ddot{\varphi}_i = \frac{1}{J_i} (M_i - c_i \varphi_i).$$
⁽²⁾

Рис. 2. Механическая схема винта при жесткой заделке редуктора

Рис. 3. Структурная схема системы при жесткой заделке винта

Рассмотрим структурную схему системы (рис. 3). Передаточная функция имеет следующий вид:

$$W_i(p) = \frac{1}{J_i \cdot p \cdot p + C} \,. \tag{3}$$

Запишем передаточную функцию (3) в виде Фурье-преобразования

$$W_i(p) = \frac{1}{C_i - J_i \cdot \omega^2}.$$
 (4)

Амплитудно-частотная характеристика соответственно (рис. 4) равна

$$A = \left| \frac{R(j\omega)}{Q(j\omega)} \right| = \frac{\sqrt{(\operatorname{Re} R(j\omega))^2 + (\operatorname{Im} R(j\omega))^2}}{\sqrt{(\operatorname{Re} Q(j\omega))^2 + (\operatorname{Im} Q(j\omega))^2}}, \quad (5)$$

где $R(j\omega)$ – оператор воздействия; $(j\omega)$ – собственный оператор.

Рис. 4. Амплитудно-частотная характеристика: а) верхнего винта; б) нижнего винта.

Для трехмассовой системы, состоящей из двух винтов (нижнего и верхнего), а также редуктора с жесткой заделкой свободных турбин двигателей, схема представлена на рис. 5.

Рис. 5. Механическая схема редуктора и винтов вертолета при жесткой заделке свободных турбин

Данной схеме (рис. 5) соответствует структурная схема, показання на рис. 6.

Рис. 6. Структурная схема системы, состоящей из редуктора и винтов вертолета при жесткой заделке свободных турбин

На схеме рис. 6:

ļ

$$W_{1}(p) = \frac{\frac{C_{1}^{2}}{J_{1} \cdot p \cdot p}}{1 + \frac{C_{1}}{J_{1} \cdot p \cdot p}} = \frac{C_{1}^{2}}{J_{1} \cdot p \cdot p + C_{1}};$$

$$W_{2}(p) = \frac{C_{2}^{2}}{J_{2} \cdot p \cdot p + C_{2}}; \quad W_{5}(p) = \frac{1}{J_{5} \cdot p \cdot p + C_{1} + C_{2}};$$

Соответственно передаточная функция системы

$$W(p) = \frac{W_1(p)}{\frac{1}{W_5(p)} - W_2(p) + C_3 + C_4 - W_1(p)}.$$
 (6)

В соответствии с (5) получим амплитудночастотную характеристику данной системы, представленную на рис. 7.

Рис. 7. Амплитудно-частотная характеристика редуктора и винтов при жесткой заделке валов свободных турбин

Для пятимассовой системы, состоящей из двух винтов (нижнего и верхнего), а также редуктора с жесткой заделкой свободных турбин двигателей механическая и структурная схемы представлены на рис. 8 и9 соответственно.:

Рис. 9. Структурная схема системы, состоящей из двух винтов (нижнего и верхнего), а также редуктора с жесткой заделкой свободных турбин двигателей

На схемах рис. 8 и 9:

$$W_{1}(p) = \frac{C_{1}^{2}}{J_{1} \cdot p \cdot p + C_{1}}; \quad W_{2}(p) = \frac{C_{2}^{2}}{J_{2} \cdot p \cdot p + C_{2}};$$
$$W_{3}(p) = \frac{C_{3}^{2}}{J_{3} \cdot p \cdot p + C_{3}};$$
$$W_{4}(p) = \frac{C_{4}^{2}}{J_{4} \cdot p \cdot p + C_{4}};$$
$$W_{5}(p) = \frac{1}{J_{5} \cdot p \cdot p + C_{1} + C_{2} + C_{3} + C_{4}}.$$

Для упрощения рассмотрен канал *М_{КР}*--ф5 и М_{КР} приложен к редуктору. При частотном анализе это допустимо, так как собственные частоты системы одинаковые для всех точек системы. Изменяется только коэффициент усиления (и соответственно амплитуда колебаний).

Передаточная функция *М_{КР}*--φ₅ имеет следующий вид:

$$W(p) = \frac{W_5(p)}{1 - \binom{W_1(p) + W_2(p) + }{+W_3(p) + W_4(p)}} W_5(p)$$
(7)

Амплитудно-частотная характеристика системы, состоящей из двух винтов (нижнего и верхнего), а также редуктора с жесткой заделкой свободных турбин двигателей представлена на рис. 10.

характеристика системы

Данная пятимассовая система имеет две основные собственные частоты колебания, что необходимо учитывать при синтезе контура управления мощностью двигательной установки.

Заключение

Основной задачей, решаемой при построении математической модели двухдвигательной силовой установки, является достижение ее соответствия реальным характеристикам двигателей и нагрузки, позволяющей выполнить численное моделирование выполнения алгоритмов управления мощностью.. При работе перечисленных алгоритмов должно быть исключено возбуждение крутильных колебаний трансмиссии с частотами близкими к собственным частотам колебания системы, состоящей из винтов, редуктора и свободных турбин двигателей.

Перспективы дальнейших исследований заключаются в детализации нелинейных статических характеристик нагрузки и уточнении параметров разработанной модели по данным стендовых испытаний двухдвигательной силовой установки.

Литература

 Марковские модели сложных динамических систем идентификация, моделирование, и контроль состояния / Куликов Г.Г., Флеминг П.Дж. и др. – Уфа: Уфимск. гос. авиац. техн. ун-т, 1998. – 104 с.

Синтез систем управления и диагностирования газотурбинных двигателей / С.В. Епифанов,
 В.Л. Кузнецов и др. – К.: Техніка, 1998. – 312 с.

3. Рутковский В.Ю., Земляков С.Д., Глумов В.М., Епифанов С.В. Информативные признаки, предшествующие обрыву вала трансмиссиии // ТВД. – 2004. – №7 (15). – С. 174 – 178.

4. Рутковский В.Ю., Суханов В.М., Епифанов С.В. Задача согласования лагранжевой модели упругой трансмиссии ТВД с моделями индукционного датчика оборотов и моментов винтов // Авиационно-космическая техника и технология. – Х.: НАКУ «ХАИ». – 2004. – Вып. 4/12. – С. 43 – 49.

Поступила в редакцию 31.05.2005

Рецензент: д-р техн. наук, проф. С.В. Епифанов, Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Харьков.