УДК 621.896:669.018.6

С.Н. СОЛОВЬЕВ, В.А. ПОЛИЩУК, А.Л. НИКОЛАЕВ

Национальный университет кораблестроения имени адмирала Макарова, Украина

К РАСЧЕТУ ФУНКЦИОНАЛЬНЫХ ЭЛЕМЕНТОВ РЕГУЛЯТОРА ТЕМПЕРАТУРЫ СИСТЕМЫ СМАЗКИ ГТД

Предложена методика расчета термочувствительных элементов с эффектом памяти формы в виде цилиндрических пружин сжатия с витками круглого поперечного сечения, используемых в качестве исполнительных элементов регулятора температуры системы смазки ГТД. Методика опирается на диаграммы сдвига полуфабрикатов из сплавов с памятью формы, полученных для исходного и мартенситного состояний, и позволяет определять диаграммы сжатия и геометрические параметры пружинных элементов термосиловых приводов для малогабаритных исполнительных устройств систем судовых энергетических установок.

газотурбинный двигатель (ГТД), масляная система(МС), регулятор температуры (РТ), эффект памяти формы (ЭПФ), термочувствительный элемент (ТЧЭ), термосиловой привод (ТСП)

Оптимальная работоспособность подшипников опор ГТД обеспечивается поддержанием температуры масла в жестко заданном интервале.

Для реализации частичнопоточной схемы системы смазки ГТД с воздушным охлаждением масла перспективным является применение регуляторов с ТЧЭ на базе сплавов с ЭПФ [1].

Для реализации возвратно-поступательного движения исполнительного звена терморегулирующих приборов, малогабаритной тепловой арматуры и приводов циклического действия систем СЭУ целесообразно использовать элементы пружинного вида с ЭПФ. Пружинные ТЧЭ обеспечивают наиболее удачное сочетание величин перемещений, развиваемых усилий, простоту регулировки указанных параметров и температурного интервала срабатывания, а также высокую циклическую стойкость, простоту конструкции и компоновки в узле.

Однако точное проектирование пружинных ТЧЭ с ЭПФ с заданными свойствами затруднено, поскольку кривые напряжение-деформация сплавов с ЭПФ являются нелинейными, модуль сдвига *G* и постоянная упругости не являются константами и, следовательно, общая методика проектирования спиральных пружин в этом случае неприменима. Кроме того, кривая напряжение-деформация изменяется в зависимости от термической или деформационной предыстории, нет достаточно полных данных относительно свойств при кручении и сложном деформационном воздействии.

Задачей данной работы является разработка методики расчета ТЧЭ с ЭПФ в виде цилиндрических пружин сжатия с витками круглого поперечного сечения, позволяющей определять диаграммы сжатия и геометрические параметры таких элементов в составе ТСП. Методика опирается на положения теории больших перемещений цилиндрических винтовых пружин и методы их расчета при заневоливании [2].

При нагружении цилиндрических пружин осевыми силами P такие внутренние силовые факторы как нормальная сила N, поперечная сила Q и изгибающий момент M_u в любом из поперечных сечений витков практически малосущественны, а решающим фактором является крутящий момент $M_{\kappa p}$. При этом возникающими в опорах моментами, препятствующими повороту торцов, и дополнительным изгибом пружины вследствие практически несколько эксцентричного приложения силы P и несоосности витков пренебрегаем, как малыми и не поддающи-

© С.Н. Соловьев, В.А. Полищук, А.Л. Николаев АВИАЦИОННО-КОСМИЧЕСКАЯ ТЕХНИКА И ТЕХНОЛОГИЯ, 2005, № 10 (26) мися точному учету факторами [2]. Таким образом, методика расчет базируется на следующих допущениях:

1) при расчете пружинных ТЧЭ учитываются только напряжения от кручения τ (влияние кривизны витка, усилия сдвига и угла подъема витков α на величину касательных напряжений учитывается коэффициентом корректировки напряжений k);

 виток пружины рассматривается как брус малой кривизны;

 при нагрузке, вызывающей переход за предел упругости, деформированное состояние в сечении витка пружины получается таким, как если бы никакого перехода за предел упругости не было.

Для расчета пружин с ЭПФ необходимо иметь диаграммы сдвига $\tau = f(\gamma)$ используемых полуфабрикатов (прутков или проволоки), полученные для исходного и мартенситного состояний. К сожалению, такие диаграммы практически невозможно найти в справочной литературе, а имеющиеся не поддаются классификации, что тормозит внедрение методов расчета пружинных ТЧЭ с ЭПФ.

Диаграмму сдвига можно получить из диаграммы растяжения на основе теории пластичности квазиизотропного тела, которая базируется на гипотезе о том, что интенсивность касательного напряжения является функцией интенсивности деформации сдвига, справедливой для любого напряженного состояния. Согласно этой гипотезе, если в двух различных напряженных состояниях интенсивности касательного напряжения т одинаковы, то тогда и интенсивности деформации сдвига γ также одинаковы. Из этих положений получены зависимости:

$$\tau = \frac{\sigma}{\sqrt{3}} ; \quad \gamma = \sqrt{3} \left(\varepsilon - \frac{1 - 2\mu}{3E} \sigma \right), \tag{1}$$

где сде о – нормальное напряжение;

е – относительная деформация;

E – модуль упругости;

µ – коэффициент Пуассона.

Очевидно, что располагая диаграммой растяже-

ния $\sigma = f(\varepsilon)$, при помощи формул (1) можно построить диаграмму сдвига $\tau = f(\gamma)$.

В том случае, когда отсутствуют диаграммы растяжения сплава с памятью формы (СПФ), оптимальным способом получения диаграмм сдвига является предварительное пластическое обжатие опытной пружины большого индекса и шага, изготовленной по принятой технологии из полуфабриката, намеченного к использованию в ТСП. По полученным в результате такого обжатия нелинейным характеристикам пружины в низко- и высокотемпературном состояниях, построенным в координатах "абсолютная деформация λ – усилие Р" (рис. 1), строят соответствующие диаграммы сдвига (γ, τ). Для этого используют выражение для момента внутренних сил в любом из поперечных сечений и зависимость, связывающую деформацию сдвига в наружном слое материала у_{тах} и осевое перемещение λ пружинного ТЧЭ (справедлива как в пределах, так и за пределами упругости) [2]:

$$M_{KP} \approx \frac{PD}{2} = \frac{\pi d^3}{4\gamma_{\max}^3} \int_{0}^{\gamma_{\max}} \tau \gamma^2 d\gamma ; \qquad (2)$$

$$\gamma_{\max} = \frac{\lambda d}{\pi D^2 n},\tag{3}$$

где d – диаметр проволоки пружины;

D – диаметр навивки пружины;

n – число витков пружины.

После преобразования выражения (2), учитывая,

что $\frac{d\lambda}{\lambda} = \frac{d\gamma_{max}}{\gamma_{max}}$, для наибольшего касательного

напряжения в поперечном сечении проволоки, соответствующего угловой деформации γ_{max}, имеем

$$\tau_{\max} = \frac{2D}{\pi d^3} \left(3P + \lambda \frac{dP}{d\lambda} \right). \tag{4}$$

Выражение в скобках в некотором масштабе равно сумме утроенного отрезка *AB* и отрезка *BD* (рис. 1). Таким образом, задаваясь значениями λ , определяют по диаграмме сжатия пружины соответствующие значения *P*, после чего по формулам (4) и (3) находят τ_{max} и соответствующее ему значение γ_{max} . Так устанавливается зависимость касательного напряжения от угловой деформации и строится диаграмма сдвига. Особое внимание следует обратить на тот факт, что кривую $\tau - \gamma$, предназначенную для расчета реактивных напряжений в исходной фазе, получают путем преобразования кривой $P - \lambda$, построенной при понижении нагрузки P, то есть при разгрузке, а кривую $\tau - \gamma$ для расчета напряжений наведения в низкотемпературной фазе получают путем преобразования соответствующей кривой $P - \lambda$ при повышении нагрузки.

Рис. 1. Диаграмма первичного сжатия пружинного ТЧЭ в низкотемпературном состоянии

Исходными данными являются деформация восстановления формы λ_n и максимальные усилия в холодном и горячем состояниях P_M и P_A (либо одно из них и максимальное полезное усилие $P_n = P_A - P_M$).

Руководствуясь диаграммой сдвига для материала ТЧЭ в мартенситном состоянии, задают величину наибольшего сдвига γ_{max} , который практически целесообразно допустить в конкретном случае (величина γ_{max} зависит от используемого СПФ, числа циклов работы ТЧЭ и не должна превышать предельной деформации фазовой пластичности γ_{np}), и вычисляют функцию $\Phi_M(\gamma_{max})$ по формуле

$$\Phi_M(\gamma_{\max}) = \frac{1}{\gamma_{\max}^3} \int_{0}^{\gamma_{\max}} \tau \gamma^2 d\gamma .$$
 (5)

Интеграл в формуле (5) представляет собой момент инерции площади, ограниченной диаграммой сдвига, осью абсцисс γ и прямой γ_{max} = const, относительно оси ординат.

Задавшись индексом пружины с = 3...8, определяют диаметр проволоки $d = \sqrt{\frac{2P_M c}{\pi \Phi_M(\gamma_{\text{max}})}}$ и диа-

метр пружины D = cd.

Усилия и угловые деформации должны удовлетворять соотношению

$$\frac{P_M}{P_A} = \frac{\Phi_M(\gamma_{\max})}{\Phi_A(\gamma_A)},$$
(6)

где $\Phi_A(\gamma)$ – функция, определяемая уравнением (5), руководствуясь диаграммой сдвига СПФ в исходной фазе;

 γ_A – сдвиг, соответствующий усилию P_A , развиваемому при реализации ЭПФ.

Используя диаграмму сдвига для материала ТЧЭ в исходной фазе и выражение (6), определяют величину γ_A . Тогда сдвиг, соответствующий деформации памяти формы λ_n :

$$\gamma_n = \gamma_H - \gamma_A = (\gamma_{\max} - \gamma_V) - \gamma_A, \qquad (7)$$

где γ_{*n*} – деформация сдвига, соответствующая осадке пружины λ_{*n*};

 γ_y – деформация сдвига, возникающая при разгрузке пружинного ТЧЭ после деформации наведения в низкотемпературном состоянии.

В соответствии с формулой (3) и законом разгрузки [3] имеем (рис. 1):

$$\gamma_y = \frac{\lambda_y d}{\pi D^2 n} = \frac{8P_M Dk}{G_M d^3 \pi}.$$
 (8)

где G_M – модуль сдвига СПФ в мартенситном состоянии (при расчетах модули сдвига низкотемпературной и высокотемпературной фаз материала ТЧЭ будем считать постоянными величинами, что вполне допустимо для температурных интервалов эксплуатации масляной системы ГТД);

k – коэффициент корректировки напряжений.

Для пружин растяжения-сжатия с витками круглого поперечного сечения *k* определяется по следующим известным уравнениям [3]:

уравнение Валя: уравнение Ревера: $k = \frac{4c - 1}{4c - 4} + \frac{0.615}{c};$ $k = \frac{c}{c - 1} + \frac{1}{4c};$ $k = \frac{c}{c - 1} + \frac{1}{2c};$

уравнение Вуда: уравнение Генера:

уравнение Генера: $k = 1 + \frac{5}{4c} + \frac{7}{8c^2} + \frac{1}{c^3}$. Число витков *n*, необходимое для обеспечения заданной деформации восстановления формы λ_n :

$$n = \frac{\lambda_n d}{\pi D^2 \gamma} \,.$$

Зная параметры пружины *d*, *D* и *n*, учитывая (3), (7), (8), определяют:

- максимальную осадку пружины

$$\lambda_{\max} = \frac{\pi D^2 n \gamma_{\max}}{d}; \qquad (9)$$

 осадку, снимаемую при разгрузке в мартенситном состоянии

$$\lambda_y = \frac{8P_M D^3 nk}{Gd^4};$$

– деформацию наведения

$$\lambda_H = \lambda_{\max} - \lambda_Y;$$

- деформацию пружины после реализации ЭПФ

$$\lambda_A = \frac{\pi D^2 n}{d} \gamma_A$$
или $\lambda_A = \lambda_H - \lambda_n$.

Для получения максимальной работы термомеханического возврата необходимо исключить зазор в силовом узле между ТЧЭ и соединяемыми деталями и не производить разгрузку ТЧЭ в мартенситном состоянии, тогда $\lambda_H = \lambda_{max}$.

Руководствуясь диаграммой сдвига материала ТЧЭ в мартенситной фазе, строится диаграмма сжатия пружинного ТЧЭ в режиме наведения деформации при касательных напряжениях больше фазового (дислокационного) предела текучести при сдвиге проволоки. Учитывая выражения (2) и (5), получим

$$P = \frac{\pi d^3 \Phi(\gamma_{\max})}{2D}.$$
 (10)

Тогда, задаваясь значениями γ_{max} , по формуле (10) при помощи предварительно построенного графика функции $\Phi(\gamma_{\text{max}})$ подсчитывается сила *P*, а по формуле (9) – осадка пружины λ , после чего строится диаграмма сжатия $\lambda - P$ (рис. 1).

Построение диаграммы сжатия для пружинного ТЧЭ в режиме восстановления деформации осуществляется аналогично, руководствуясь диаграммой сдвига проволоки из СПФ в исходной фазе (рис. 2). При этом, из-за незамкнутости термомеханического гистерезиса на первых циклах, данную диаграмму сдвига предварительно необходимо сместить относительно начала координат по оси γ на величину γ_{ocm} :

$$\gamma_{ocm} = \gamma_{H}(1-C),$$

где $C = \frac{\gamma_n^0}{\gamma_H}$ – степень восстановления деформации;

 γ_n^0 – сдвиг при реализации ЭПФ, когда напряжение сопротивления $\tau_c = 0$.

Рис. 2. Деформационно-силовые диаграммы пружинного ТЧЭ из СПФ в высокотемпературном (1) и мартенситном (2) состояниях

Реактивные напряжения, генерируемые в процессе обратного фазового превращения, достигают максимального значения в абсолютно жестких условиях противодействия, т.е. при полном запрещении восстановления деформации. Развиваемое при этом усилие P_{max}^A (прямая AB, рис. 2) определяется по формуле (10) для ТЧЭ в высокотемпературном состоянии при $\gamma = \gamma_n$, а деформация памяти формы $\lambda_n = 0$. Если пружинный ТЧЭ после деформации в мартенситной фазе разгружен, а затем нагрет в свободном состоянии, то процесс формовосстановления идет по пути AND, где AN – упругое, а ND – термоупругое восстановление. При этом деформация памяти формы, когда напряжение сопротивления отсутствует

$$\lambda_n^0 = C\lambda_H = \lambda_H - \lambda_{ocm},$$

где λ_{ocm} – остаточная деформация пружины, соответствующая сдвигу γ_{ocm} в сечениях витков

$$\lambda_{ocm} = \frac{\pi D^2 n}{d} \gamma_H (1 - C) = \lambda_H (1 - C) \,.$$

При конечной жесткости сопряженной системы генерирование реактивных напряжений будет сопровождаться восстановлением первоначальной формы ТЧЭ (кривая *AC*, рис. 2). Вид кривой *AC* определяется системой, сопряженной с пружинным ТЧЭ.

Из соображений максимальной упругости и минимизации геометрических размеров термосилового узла целесообразно осадку пружины с ЭПФ в режиме наведения деформации осуществлять практически до соприкосновения витков. Тогда длина пружины-заготовки для ТЧЭ

$$H_3 = H_K + \lambda_{\max} + \delta n ,$$

где $H_K = (n-0,5)d$ – высота пружины при сжатии ее до соприкосновения витков;

 $\delta \approx 0,1d$ – зазор между витками, необходимый для уменьшения максимального напряжения наведения, возрастающего на конечном участке характеристики в связи с неравномерностью шага в пределах допусков и допуском на диаметр проволоки. Длина пружины после разгрузки в мартенситном состоянии

$$H_M = H_3 - \lambda_H \, .$$

Длина пружины в высокотемпературном состоянии (после реализации ЭПФ и генерирования усилия P_A):

$$H_A = H_3 - \lambda_A$$
или $H_A = H_M + \lambda_n$

После разгрузки пружины в исходной фазе ее длина увеличится до величины

 $H_A^0 = H_3 - \lambda_{ocm}$ или $H_A^0 = H_M + \lambda_n^0$.

Выводы

Методика расчета ТЧЭ с ЭПФ в виде цилиндрических пружин сжатия опирается на диаграммы сдвига $\tau = f(\gamma)$ полуфабрикатов из СПФ, полученные для исходного и мартенситного состояний, и позволяет определять диаграммы сжатия и геометрические параметры пружинных ТЧЭ, что необходимо для разработки исполнительных адаптивных устройств на базе ТСП в инженерной практике систем смазки ГТД. Применение деформационносиловых чувствительных элементов на основе СПФ является перспективным и имеет значительные преимущества по сравнению с существующими.

Литература

1. Соловьев С.Н., Полищук В.А. Совершенствование систем смазки ГТД с воздушным охлаждением масла // Вестник двигателестроения. – Запорожье: ОАО "Мотор Сич". – 2004. – № 2. – С. 25 – 29.

2. Пономарев С.Д., Андреева Л.Е. Расчет упругих элементов машин и приборов. – М.: Машиностроение, 1980. – 326 с.

Сплавы с эффектом памяти формы / К. Ооцука,
 К. Симидзу, Ю. Судзуки и др.; Под ред. Х. Фунакубо:
 Пер. с японск. – М.: Металлургия, 1990. – 224 с.

Поступила в редакцию 6.06.2005

Рецензент: д-р техн. наук, проф. Л.П. Клименко, Николаевский государственный гуманитарный университет им. Петра Могилы, Николаев.