УДК 629.7.02.015.4:519.61(06)

Ю.В. ЛИПОВЦЕВ¹, М.Ю. РУСИН², А.С. ХАМИЦАЕВ², В.М. ЮДИН³

¹Обнинский государственный технический университет атомной энергетики, Россия ²Обнинское научно-производственное предприятие «Технология», Россия ³Центральный аэрогидродинамический институт, Жуковский, Россия

К ВОПРОСУ РАСЧЕТА ПАРАМЕТРОВ ПОТОКА, НАПРЯЖЕННОГО СОСТОЯНИЯ И УСТОЙЧИВОСТИ ГОЛОВНЫХ ОБТЕКАТЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ В УСЛОВИЯХ ПОЛЕТА ПО ЗАДАННЫМ ТРАЕКТОРИЯМ

Предложены методы и алгоритмы расчета параметров основных параметров аэродинамического потока, напряженно-деформированного состояния и устойчивости оболочек вращения головных обтекателей летательных аппаратов при полете по заданной траектории. Рассмотрены основные функции соответствующего программного комплекса.

аэродинамический поток, напряженно-деформированное состояние, ортотропные оболочки вращения

Введение

В практике теоретического анализа работоспособности конструкции летательных аппаратов (ЛА) важное значение имеет расчет по заданной траектории параметров аэродинамического потока, напряженно-деформированного состояния (НДС) и устойчивости оболочек вращения, например, головных обтекателей.

Тонкостенная оболочка вращения обтекателя может иметь произвольную форму с переменной по длине толщиной стенки и выполненной из ортотропного материала с заданными модулями упругости по меридиану и окружности и модулем сдвига в плоскости ортотропии.

При выполнении расчетов по разработанной Фортран-программе в качестве исходных данных вводятся:

 форма оболочки и основные ее габаритные размеры, при этом форма оболочки задается в виде таблицы координат ее образующей, а в процессе расчета уравнение образующей по заданной таблице аппроксимируется кубическими сплайнами;

 таблица изменения толщины стенки по длине образующей; механические характеристики материала оболочки: модули упругости Е1, Е2, модуль сдвига в плоскости ортотропии G12, коэффициенты Пуассона;

теплофизические свойства материала оболоч ки: λ, c, ρ, α – теплопроводность, теплоемкость,
 плотность и коэффициент температурного расшире ния (КТР);

 параметры траектории полета в виде таблицы значений высоты, скорости полета и угла атаки в заданные моменты времени.

Все исходные данные к расчетам подготавливаются в виде внешних файлов, а разработанная Фортран-программа оформлена в виде отдельного исполнительного модуля. Если исполнительный модуль программы и файлы исходных данных записать на компакт-диск или обычную дискету, то расчет можно выполнить на любом компьютере, не содержащем компилятора Фортрана. При этом программу можно запустить прямо с компакт-диска без записи ее в компьютер.

В целом математическое обеспечение состоит из методов и алгоритмов расчета всех отмеченных здесь параметров потока, НДС и устойчивости ортотропных оболочек вращения с переменной толщиной стенки и Фортран-программы расчета. Три основные блока программы (ПОЛЕТ, НДС и УСТОЙ-ЧИВОСТЬ) выполняются в цикле по времени для заданной траектории полета с выдачей результатов расчета в заданные моменты времени. По отдельным видам расчета представленные здесь алгоритмы использовались в работах [1 – 6].

1. Основные функции программного комплекса

1.1. Расчет параметров аэродинамического потока

В процессе последовательного выполнения расчета по всем заданным точкам на траектории с заданным шагом по времени проводится непрерывная кусочно-линейная интерполяция заданных параметров траектории. В первую очередь в блоке программы ПОЛЕТ для каждого заданного момента времени вычисляются параметры аэродинамического потока. Основными подпрограммами данного блока являются:

подпрограмма стандартной атмосферы;

 подпрограмма расчета внешнего давления потока;

 подпрограмма расчета параметров теплообмена на поверхности оболочки.

Расчет параметров атмосферы проводится в соответствии с ГОСТом в диапазоне высот до 81020 м. Входной параметр подпрограммы – высота *H*, выходные параметры – скорость звука, ускорение свободного падения, давление, температура и плотность воздуха.

При использовании метода местных касательных конусов вычисляется внешнее давление воздушного потока в заданных точках поверхности при заданных параметрах невозмущенного потока. В диапазоне изменения скорости полета до 10М и местных углах атаки до 400 погрешность вычисления внешнего давления потока не превышает 5%.

Коэффициенты теплопередачи, напряжения трения и энтальпия восстановления в пограничном слое оболочек вращения определяются по формулам для касательных конусов, в которых за параметры газового потока на бесконечности принимаются их значения на внешней границе пограничного слоя, а за координату точки – расстояние по меридиану от вершины оболочки. При этом учитывается возможность существования ламинарного, турбулентного и переходного течения в пограничном слое. Характер течения может быть задан, а по умолчанию определяется автоматически по параметрам потока.

Все параметры аэродинамического потока вычисляются с шагом 4,50 по окружности и с заданным шагом по длине оболочки. Детальная информация по угловой координате позволяет получить с большой точностью внешнее давление в виде ряда Фурье и представить его в виде

$$P(z,\phi) = \sum_{k=0}^{n} P_k(z) \cos k\phi, \qquad (1)$$

где начало отсчета окружной координаты φ находится в плоскости угла атаки.

К числу выходных параметров подпрограммы ПОЛЕТ относятся таблицы функций $P_0(z), P_1(z), ..., P_n(z)$, которые используются далее при расчете основного НДС оболочки.

1.2. Расчет погонных нагрузок, поперечных сил, изгибающих моментов и напряжений

В рамках данной программы для исследования устойчивости основной геометрической формы оболочки необходимы меридиональные T_m , окружные T_{ϕ} и касательные внутренние силы S, которые определяются по теории безмоментных оболочек. Согласно расчетным формулам, полученным в работе [1], их можно выразить через осевую силу N(z), поперечную (перерезывающую) Q(z) и изгибающий момент M(z):

$$T_m(z,\varphi) = \frac{N(z)}{2\pi \cdot r \cos\beta} + \frac{M(z)}{\pi \cdot r^2 \cos\beta} \cos\varphi;$$

$$T_{\varphi}(z,\varphi) = -P \cdot R_2 - \frac{R_2}{R_1} T_m; \qquad (2)$$
$$S(z,\varphi) = \left(\frac{Q(z)}{\pi \cdot r} - \frac{M(z)ctg\beta}{\pi \cdot r^2}\right) \sin\varphi.$$

На рис. 1 показана часть оболочки вращения, выделенная окружным сечением с текущей координатой z, внутренние силы N(z), Q(z) и изгибающий момент M(z), а также силы внешнего давления аэродинамического потока $P(z, \varphi)$, непрерывно распределенные по всей поверхности оболочки.

Рис. 1. Часть оболочки вращения

В подынтегральные выражения уравнений равновесия выделенной части оболочки входит соs *φ*:

$$N(z) = -\iint_{S(z)} P(z', \varphi) \sin \beta \, dS;$$

$$Q(z) = \iint_{S(z)} P(z', \varphi) \cos \varphi \cos \beta \, dS;$$

$$M(z) = -\iint_{S(z)} P(z', \varphi) \sin \beta \cdot r(z') \cos \varphi dS +$$

$$+ \iint_{S(z)} P(z', \varphi) \cos \varphi \cos \beta \cdot (z - z') dS,$$

где z – координата сечения; z' – переменная интегрирования от 0 до z; β – угол между нормалью к поверхности и плоскостью параллельного круга; dS – площадь элемента поверхности.

Из этого следует, что обобщенные силы N(z), Q(z), M(z) зависят только от первых двух коэффициентов $P_0(z)$ и $P_1(z)$ разложения внешнего давления в ряд Фурье (1) и определяются следующими интегралами:

$$N(z) = -\int_{0}^{z} r(z')dz'\int_{0}^{2\pi} P_{0}(z')\frac{dr}{dz}d\varphi =$$

$$= -2\pi\int_{0}^{z} P_{0}(z')r(z')\frac{dr}{dz}dz';$$

$$Q(z) = \int_{0}^{z} r(z')dz'\int_{0}^{2\pi} P_{1}(z')\cos\varphi\cos\varphi d\varphi =$$

$$= \pi\int_{0}^{z} P_{1}(z')r(z')dz';$$

$$M(z) = -\pi\int_{0}^{z} r^{2}(z')\frac{dr}{dz}P_{1}(z')dz' +$$

$$+\pi\int_{0}^{z} (z-z')r(z')P_{1}(z')dz',$$
(5)

где r(z) – радиус параллельного круга; $P_0(z)$, $P_1(z)$ – первые коэффициенты разложения внешнего давления в ряд Фурье (1), а поверхностные интегралы от всех остальных слагаемых равны нулю.

Соотношения (3) – (5) позволяют также получить расчетные формулы для погонных нагрузок (рис. 1): осевых и поперечных сил q_z , q_y и внешних изгибающих моментов m(z), приходящиеся на единицу длины оболочки:

$$\begin{aligned} q_y &= -\pi P_1(z) r(z); \; q_z = 2\pi P_0(z) r(z) \frac{dr}{dz}; \\ m &= -\pi r^2 \frac{dr}{dz} P_1(z). \end{aligned}$$

Относительно поставленных знаков необходимо отметить, что в соответствии с рис. 1 положительными считаются силы q_y , направленные вверх, а изгибающие моменты *m* направлены по часовой стрелке.

1.3. Расчет на устойчивость исходной осесимметричной формы равновесия

Процедуры вычисления внутренних сил основного напряженного состояния реализованы по расчетным формулам (2) – (5), а в уравнения устойчивости внутренние силы основного состояния подставляются в следующем виде:

$$T_m^0 = \sigma T_m(z, \varphi); \quad T_{\varphi}^0 = \sigma T_{\varphi}(z, \varphi); \quad S^0 = \sigma S(z, \varphi),$$

где *T_m*, *T*_φ, *S* – силы при найденном распределении внешнего давления в заданный момент времени.

При исследовании устойчивости параметр σ изменяется от нуля до критического значения $\sigma = \sigma_{\kappa p}$, при котором однородные дифференциальные уравнения устойчивости с однородными граничными условиями имеют ненулевые решения. Если найденное $\sigma_{\kappa p} > 1$, то потери устойчивости при данном напряженном состоянии не происходит и $\sigma_{\kappa p} > 1$ является коэффициентом запаса по устойчивости. Если найденное $\sigma_{\kappa p} < 1$, то при данном напряженном состоянии происходит потеря устойчивости.

В результате расчета на устойчивость определяются значения параметра $\sigma_{\kappa p}$, размеры вмятин по окружности и функция изменения прогибов w(z) оболочки по длине при переходе в смежные состояния равновесия.

В настоящее время мы провели достаточно много расчетов для обтекателей с оболочками из стеклопластиков, и все они неизменно показывают, что в условиях полета преобладающее действие при потере устойчивости оказывают окружные напряжения докритического состояния, как при нулевом, так и при ненулевых углах атаки.

В качестве иллюстрации на рис. 2 показаны результаты четырех расчетных случаев: два с нулевым углом атаки и два случая с углом атаки 8°. При нулевом угле атаки напряженное состояние осесимметричное и потеря устойчивости происходит с образованием вмятин, равномерно распределенных по всей окружности.

В случае угла атаки 8° меридиональные напряжения в верхней части поверхности оболочки ближе к основанию получаются растягивающими, но, тем не менее, потеря устойчивости происходит с образованием вмятин в верхней части поверхности, поскольку окружные сжимающие напряжения здесь существенно увеличиваются.

Ниже представлены полученные нами уравнения устойчивости ортотропных оболочек вращения с переменной толщиной стенки и метод их численного решения [4 – 7], реализованный с помощью разработанной Фортран-программы.

2. Уравнения устойчивости ортотропных оболочек вращения с переменной толщиной стенки и метод решения задач устойчивости

2.1. Нелинейные уравнения изгиба ортотропных оболочек вращения с переменной толщиной стенки

Принимая гипотезу плоских сечений с учетом или без учета деформаций поперечного сдвига, меридиональные, окружные и перемещения точек по нормали к срединной поверхности оболочки можно представить в виде

$$u^{z} = u + z\gamma_{1}; \quad v^{z} = v + z\gamma_{2}; \quad w^{z} = w,$$
 (6)

где u, v, w – перемещения срединной поверхности; γ_1 , γ_2 – углы поворота нормали, которые без учета деформаций поперечного сдвига можно выразить через производные от функции прогиба w, что мы сделаем несколько позже для сохранения общности основных предпосылок и получения исходных выражений для поперечных сил и изгибающих моментов. При учете деформаций поперечного сдвига углы поворота будут дополнительными искомыми функциями.

Выражения для деформаций запишем без учета величин порядка h/R_i по сравнению с единицей, где R_i – радиусы кривизны срединной поверхности оболочки:

$$\varepsilon_{1}^{z} = \frac{\partial u^{z}}{\partial s} + \kappa_{1}w;$$

$$\varepsilon_{2}^{z} = \frac{1}{r}\frac{\partial v^{z}}{\partial \varphi} + \frac{1}{r}\frac{dr}{ds}u^{z} + \kappa_{2}w;$$

$$\varepsilon_{12}^{z} = \frac{1}{r}\frac{\partial u^{z}}{\partial \varphi} + \frac{\partial v^{z}}{\partial s} - \frac{1}{r}\frac{dr}{ds}v^{z};$$
(7)
$$\varepsilon_{13}^{z} = \frac{\partial w}{\partial s} + \frac{\partial u^{z}}{\partial z} - \kappa_{1}u^{z};$$

$$\varepsilon_{23}^{z} = \frac{1}{r}\frac{\partial w}{\partial \varphi} + \frac{\partial v^{z}}{\partial z} - \kappa_{2}v^{z};$$

Рис. 2. Результаты расчета для обтекателя с оболочкой из стеклопластика:

- а угол атаки равен 0°, постоянная толщина стенки $\sigma_{\kappa p} = 1,57$; б угол атаки равен 0°, переменная толщина стенки $\sigma_{\kappa p} = 1,69$; в угол атаки равен 8°, постоянная толщина стенки $\sigma_{\kappa p} = 1,05$; г угол атаки равен 8°, переменная толщина стенки $\sigma_{\kappa p} = 1,16$

В соответствии с линейным законом (6) изменения перемещений по толщине получаем линейное распределение деформаций по координате *z*:

$$\begin{aligned} & \varepsilon_{1}^{z} = \varepsilon_{1} + z \kappa_{11}; & \varepsilon_{13}^{z} = \varepsilon_{13}; \\ & \varepsilon_{2}^{z} = \varepsilon_{2} + z \kappa_{22}; & \varepsilon_{23}^{z} = \varepsilon_{23}; \\ & \varepsilon_{12}^{z} = \varepsilon_{12} + z \kappa_{12}; & \varepsilon_{3}^{z} = 0, \end{aligned}$$

где после подстановки (6) в (7) выделены:

- деформации срединной поверхности:

$$\varepsilon_{1} = \frac{\partial u}{\partial s} + \frac{1}{R_{1}}w + \frac{1}{2}\left(\frac{\partial w}{\partial s}\right)^{2};$$

$$\varepsilon_{2} = \frac{1}{r}\frac{\partial v}{\partial \phi} + \frac{1}{B}\frac{dB}{ds}u + \frac{1}{R_{2}}w + \frac{1}{2}\left(\frac{1}{r}\frac{\partial w}{\partial \phi}\right)^{2}; \quad (8)$$

$$\varepsilon_{12} = \frac{1}{r}\frac{\partial u}{\partial \phi} + \frac{\partial v}{\partial s} - \frac{1}{r}\frac{dr}{ds}v + \frac{1}{r}\frac{\partial w}{\partial \phi}\frac{\partial w}{\partial s};$$

- деформации поперечного сдвига:

$$\varepsilon_{13} = \gamma_1 + \frac{\partial w}{\partial s} - \frac{1}{R_1}u;$$

$$\varepsilon_{23} = \gamma_2 + \frac{1}{r}\frac{\partial w}{\partial \varphi} - \frac{1}{R_2}v;$$
(9)

 дополнительные кривизны срединной поверхности:

$$\kappa_{11} = \frac{\partial \gamma_1}{\partial s}, \quad \kappa_{22} = \frac{1}{r} \frac{\partial \gamma_2}{\partial \varphi} + \frac{1}{r} \frac{dr}{ds} \gamma_1;$$

$$\kappa_{12} = \frac{1}{r} \frac{\partial \gamma_1}{\partial \varphi} + \frac{\partial \gamma_2}{\partial s} - \frac{1}{r} \frac{dr}{ds} \gamma_2.$$
(10)

Уравнения связи между напряжениями и деформациями. Уравнения обобщенного закона Гука для ортотропных оболочек имеют вид:

$$\varepsilon_{1}^{z} = \frac{1}{E_{1}} \sigma_{1} - \frac{\mu_{12}}{E_{2}} \sigma_{2};$$

$$\varepsilon_{2}^{z} = \frac{1}{E_{2}} \sigma_{2} - \frac{\mu_{21}}{E_{1}} \sigma_{1};$$

$$\varepsilon_{12}^{z} = \frac{1}{G_{12}} \sigma_{12};$$
(11)
$$\varepsilon_{13}^{z} = \frac{1}{G_{13}} \sigma_{13};$$

$$\varepsilon_{23}^{z} = \frac{1}{G_{23}} \sigma_{23},$$

где E_1 , E_2 – модули упругости в меридиональном и окружном направлениях; G_{12} – модуль сдвига в срединной поверхности оболочки; G_{13} , G_{23} – модули поперечного сдвига, μ_{ij} – коэффициенты Пуассона.

Эти константы называют также техническими характеристиками упругости ортотропного тела.

Если эти уравнения решить относительно напряжений, то получим:

$$\sigma_{1} = B_{1}\varepsilon_{1} + B_{12}\varepsilon_{2} + z(B_{1}\kappa_{11} + B_{12}\kappa_{22});$$

$$\sigma_{2} = B_{12}\varepsilon_{1} + B_{2}\varepsilon_{2} + z(B_{12}\kappa_{11} + B_{2}\kappa_{22});$$

$$\sigma_{12} = G_{12}\varepsilon_{12} + zG_{12}\kappa_{12};$$

$$\sigma_{13} = G_{13}\varepsilon_{13}; \quad \sigma_{23} = G_{23}\varepsilon_{23};$$

(12)

$$B_1 = \frac{E_1}{1 - \mu_1 \mu_2}; B_2 = \frac{E_2}{1 - \mu_1 \mu_2}; B_{12} = \frac{E_1 \mu_2}{1 - \mu_1 \mu_2}.$$

Здесь следует отметить, что все представленные соотношения соответствуют системе координат с осью z, направленной по внешней нормали, как это показано на рис. 3. Переменная толщина стенки h(s) в эти соотношения не входит. Она появится далее при переходе от напряжений к внутренним силам и моментам, которые возникают в меридиональных и окружных сечениях оболочки.

Рис. 3. Положение системы координат

Внутренние силы и моменты, показанные на рис. 3, статически эквивалентны напряжениям. Они связаны с напряжениями следующими интегральными соотношениями:

$$T_i(s,\varphi) = \int_{-h/2}^{h/2} \sigma_i(s,\varphi,z) dz;$$

$$S(s,\varphi) = \int_{-h/2}^{h/2} \sigma_{i2}(s,\varphi,z) dz, \quad i = 1,2;$$

$$Q_{i}(s,\phi) = \int_{-h/2}^{h/2} \sigma_{i3}(s,\phi,z)dz;$$

$$M_{i}(s,\phi) = \int_{-h/2}^{h/2} z\sigma_{i}(s,\phi,z)dz;$$

$$H(s,\phi) = \int_{-h/2}^{h/2} z\sigma_{i2}(s,\phi,z)dz, \quad i = 1,2.$$
(13)

Уравнения (13) при использовании соотношений (8) – (12) позволяют установить следующую связь между внутренними силами и моментами и перемещениями:

$$T_{1} = B_{1}h\left(\frac{\partial u}{\partial s} + \frac{1}{R_{1}}w + \frac{1}{2}\left(\frac{\partial w}{\partial s}\right)^{2}\right) + B_{12}h\left(\frac{1}{r}\frac{\partial v}{\partial \varphi} + \frac{1}{r}\frac{dr}{ds}u + \frac{1}{R_{2}}w + \frac{1}{2}\left(\frac{1}{r}\frac{\partial w}{\partial \varphi}\right)^{2}\right);$$

$$T_{2} = B_{12}h\left(\frac{\partial u}{\partial s} + \frac{1}{R_{1}}w + \frac{1}{2}\left(\frac{\partial w}{\partial s}\right)^{2}\right) + (14)$$

$$= \int_{0}^{1}\left(1\frac{\partial v}{\partial s} + \frac{1}{r}\frac{dr}{ds}u + \frac{1}{r}\frac{1}{r}\left(1\frac{\partial w}{\partial s}\right)^{2}\right)$$

$$+B_{2}h\left(\frac{1}{r}\frac{\partial u}{\partial \phi} + \frac{1}{r}\frac{\partial u}{\partial s}u + \frac{1}{R_{2}}w + \frac{1}{2}\left(\frac{1}{r}\frac{\partial w}{\partial \phi}\right)\right);$$

$$S = G_{12}h\left(\frac{1}{r}\frac{\partial u}{\partial \phi} + \frac{\partial v}{\partial s} - \frac{1}{r}\frac{dr}{ds}v + \frac{1}{r}\frac{\partial w}{\partial \phi}\frac{\partial w}{\partial s}\right);$$

$$Q_{1} = G_{13}h\left(\gamma_{1} + \frac{\partial w}{\partial s} - \frac{1}{R_{1}}u\right);$$

$$Q_{2} = G_{23}h\left(\gamma_{2} + \frac{1}{r}\frac{\partial w}{\partial \varphi} - \frac{1}{R_{2}}v\right);$$
(15)

$$M_{1} = \frac{h^{3}}{12} B_{1} \frac{\partial \gamma_{1}}{\partial s} + B_{12} \frac{h^{3}}{12} \left(\frac{1}{r} \frac{\partial \gamma_{2}}{\partial \phi} + \frac{1}{r} \frac{dr}{ds} \gamma_{1} \right);$$

$$M_{2} = \frac{h^{3}}{12} B_{12} \frac{\partial \gamma_{1}}{\partial s} + B_{2} \frac{h^{3}}{12} \left(\frac{1}{r} \frac{\partial \gamma_{2}}{\partial \phi} + \frac{1}{r} \frac{dr}{ds} \gamma_{1} \right); (16)$$

$$H = \frac{h^{3}}{12} G_{12} \left(\frac{1}{r} \frac{\partial \gamma_{1}}{\partial \phi} + \frac{\partial \gamma_{2}}{\partial s} - \frac{1}{r} \frac{dr}{ds} \gamma_{2} \right).$$

Таким образом, получены соотношения теории ортотропных оболочек (14) – (16), устанавливающие связь между силами и моментами и пятью функциями перемещений *u*, *v*, *w*, *γ*₁, *γ*₂.

Уравнения равновесия внутренних сил и моментов. Уравнения равновесия сил и моментов не зависят от характеристик упругости оболочки. К ним относятся: три уравнения равновесия проекций всех сил на касательные к координатным линиям поверхности и на нормаль к поверхности:

$$\frac{dT_{1}}{ds} + \frac{1}{r}\frac{dr}{ds}T_{1} + \frac{1}{r}\frac{dS}{d\phi} - \frac{1}{r}\frac{dr}{ss}T_{2} + \frac{1}{R_{1}}Q_{1} + q_{1} = 0;$$

$$\frac{dS}{ds} + \frac{1}{r}\frac{T_{2}}{d\phi} + 2\frac{1}{r}\frac{dr}{ds}S + \frac{1}{R_{2}}Q_{2} + q_{2} = 0;$$

$$\frac{dQ_{1}}{ds} + \frac{1}{r}\frac{dr}{ds}Q_{1} + \frac{1}{r}\frac{dQ_{2}}{d\phi} + T_{1}\frac{d\gamma_{1}}{ds} + T_{2}\left(\frac{1}{r}\frac{d\gamma_{2}}{d\phi} + \frac{1}{r}\frac{dr}{ds}\gamma_{1}\right) + S\left(\frac{1}{r}\frac{d\gamma_{1}}{d\phi} + \frac{d\gamma_{2}}{ds} - \frac{1}{r}\frac{dr}{ds}\gamma_{2}\right) - \frac{T_{1}}{R_{1}} - \frac{T_{2}}{R_{2}} + q_{n} = 0;$$
(17)

два уравнения равновесия изгибающих моментов:

$$\frac{dM_1}{ds} + \frac{1}{r}\frac{dr}{ds}M_1 + \frac{1}{r}\frac{dH}{d\varphi} - \frac{1}{r}\frac{dr}{ds}M_2 - Q_1 = 0; \qquad (18)$$

$$dH = 1 \ dM_2 = 1 \ dr$$

$$\frac{dH}{ds} + \frac{1}{r}\frac{dM_2}{d\phi} + 2\frac{1}{r}\frac{dr}{ds}H - Q_2 = 0.$$

2.2. Уравнения устойчивости ортотропных оболочек вращения с переменной толщиной стенки

Следует отметить, что основные уравнения теории оболочек (14) – (18) здесь представлены с учетом нелинейности выражений для деформаций и уравнений равновесия поперечных сил [8, 9].

Согласно статическому методу Эйлера исследование устойчивости сводится к определению параметров нагрузки, при которых появляются другие состояния равновесия оболочки, отличные от исходного.

Напряжения и деформации исходного состояния можно определить и на основе линейных уравнений (14) – (18), которые получаются при отбрасывании в них нелинейных членов.

Но для вывода уравнений, позволяющих определить существование других форм равновесия, необходимы нелинейные уравнения, аналогичные линейным (14) – (18). Для этого представим все функции перемещений, деформаций, напряжений, сил и моментов смежного состояния равновесия в виде суммы

$$F^* = F^0 + \delta \cdot F, \tag{19}$$

где F^0 – функции в исходном состоянии равновесия, а все функции F с коэффициентом б есть приращения этих функций при переходе в смежное состояние равновесия.

При этом параметр б по определению Эйлера неустойчивого состояния является бесконечно малой величиной. Поэтому, подставляя выражения для искомых функций в виде разложений (19) в уравнения (14) – (18) и приравнивая нулю коэффициент при б, получим две системы уравнений, одна из которых описывает НДС исходного состояния, а вторая описывает НДС смежного состояния.

Уравнения устойчивости. После подстановки выражений (19) в нелинейные уравнения изгиба оболочки и приравнивания нулю коэффициент *s* при малом параметре б получаем систему дифференциальных уравнений, которую мы преобразовали к виду одного дифференциального уравнения относительно вектора перемещений и меридионального изгибающего момента

$$Y''(x) + B(x)Y'(x) + C(x)Y(x) = 0,$$
 (20)

где В, С – квадратные матрицы четвертого порядка.

Наиболее эффективным методом поиска ненулевых решений однородных краевых задач для систем дифференциальных уравнений (20) является метод матричной прогонки, впервые опубликованный в работах [2 – 5] применительно к решению задач устойчивости упругих и вязко-упругих оболочек вращения.

2.3. Алгоритм решения задач устойчивости конечно-разностным методом матричной прогонки

Общая схема разработки алгоритмов решения краевых задач конечно-разностным методом матричной прогонки состоит из трех этапов:

 преобразование уравнений рассматриваемой краевой задачи к системе обыкновенных дифференциальных уравнений второго порядка; в данном случае получена система уравнений (20), представленная в векторно-матричной форме;

 аппроксимация полученной системы уравнений и граничных условий разностной системой трехточечных векторных уравнений:

$$-B_{1}Y_{1} + C_{1}Y_{2} = d_{1};$$

$$A_{\kappa}Y_{k-1} - B_{\kappa}Y_{k} + C_{\kappa}Y_{k+1} = d_{\kappa}, \ \kappa = \overline{2,N}; \quad (21)$$

$$A_{N+1}Y_{N-1} - B_{N+1}Y_{N} + C_{N+1}Y_{N+1} = d_{N+1};$$

– решение полученной системы разностных уравнений путем предварительного преобразования внутренних уравнений к двухчленному виду (прямая прогонка), вычисления вектора на второй границе и вычисления всех остальных в цикле обратной прогонки.

Особенности решения задач устойчивости пластин и оболочек обусловлены тем, что системы исходных дифференциальных уравнений и граничных условий, а также конечно-разностных уравнений (6) являются однородными (векторы всех правых частей $d_k = 0$, k = 1, 2, ..., N + 1). Поэтому сначала требуется определить величину критических параметров внешней нагрузки, при которых система однородных уравнений (21) имеет ненулевые решения и возможна смена исходной формы равновесия, а затем построить эти ненулевые решения, соответствующие смежным формам равновесия.

В системе разностных уравнений (21) $Y_k = Y(x_k)$; $x_k = (k-1)\Delta x$; Y(x) – вектор искомых функций; x_k – дискретные значения независимой переменной x в узловых точках с постоянным шагом Δx между ними; x_1, x_N – координаты узловых точек на границах; $A_{\kappa}, B_{\kappa}, C_{\kappa}$ – матричные коэффициенты.

Первое и последнее в системе уравнений (21) – это граничные условия, первое из которых преобразовано к двучленному виду, а второе здесь не преобразовано и записано с использованием законтурной точки с координатой x_{N+1} .

Прямая прогонка и уравнение для определения критической нагрузки. В результате преобразования первого граничного условия к двучленному виду можно также преобразовать все внутренние уравнения и вместе с первым граничным условием при $d_k = 0$ представить их в виде

$$Y_{k-1} = P_{k-1}Y_k, \ k = \overline{2, N+1};$$

$$P_1 = B_1^{-1}C_1.$$
(22)

Для вывода расчетных формул цикла вычисления матриц прогоночных коэффициентов *P_k* подставим во внутреннее уравнение системы (21) соотношение (22). В результате получаем уравнение

$$A_k P_{k-1} Y_k - B_k Y_k + C_k Y_{k+1} = 0,$$

T.e. $Y_k = (B_k - A_k P_{k-1})^{-1} C_k Y_{k+1}.$
(23)

Сравнивая (22) и (23) видим, что прогоночные коэффициенты вычисляются последовательно по рекуррентной формуле

$$P_k = (B_k - A_k P_{k-1})^{-1} C_k, \quad \kappa = \overline{2, N}.$$

Вычисление этих коэффициентов выполняется в цикле прямой матричной прогонки, после завершения которого второе граничное условие можно преобразовать к уравнению относительно одного вектора искомых функций

$$(A_{N+1}P_{N-1}P_N - B_{N+1}P_N + C_{N+1})Y_{N+1} = 0.$$
(24)

Таким образом, при решении задач устойчивости система однородных уравнений (21) при $d_k = 0$ преобразована к системе уравнений (22), (24), которая имеет ненулевые решения, если определитель Δp уравнений (24) относительно компонентов вектора Y_{N+1} равен нулю:

$$\Delta_p = |A_{N+1}P_{N-1}P_N - B_{N+1}P_N + C_{N+1}| = 0.$$

Корнем этого уравнения является параметр внешней нагрузки, при котором исходная форма равновесия оболочки (пластины) становится неустойчивой. Простейший способ решения уравнения (24) сводится к многократному вычислению определителя Δp при последовательном изменении параметра внешней нагрузки до обнаружения смены знака определителя, что называется захватом в вилку искомого корня, и последующему уточнению корня путем повторного вычисления определителя в пределах установленной вилки с меньшим шагом по параметру нагрузки.

Особенности в таком непосредственном решении задачи обусловлены тем, что определитель Δp преобразованной системы уравнений (22), (24) кроме нулей определителя исходных уравнений (21) имеет полюсы. При этом трудно не только отличить смену знака определителя Δp в окрестности полюса от смены знака в окрестности нуля, но и вообще обнаружить смену знака, если полюсы и нули находятся достаточно близко.

Как показано в работах [5, 6], при разработке вычислительных программ смену знака в окрестности полюса можно устранить, если учесть связь между определителем Δp и определителем Δ исходной системы уравнений. В результате уравнение (24) заменяется решением следующего уравнения:

$$\begin{aligned} |C_{N+1} - B_{N+1}P_N + A_{N+1}P_{N-1}P_N| \times \\ \times sign \frac{|P_2| \cdots |P_N|}{|B_1| \cdot |C_2| \cdots |C_N|} = 0, \end{aligned}$$
(25)

которое записано с учетом выражения для матрицы *P*₁.

Решение уравнения (25) связано с многократным вычислением его левой части при последовательном изменении параметра внешней нагрузки. При использовании современных компьютеров все эти операции выполняются с высокой точностью и очень быстро.

Обратная прогонка. Решив уравнение (25), можно определить и форму равновесия оболочки при

потере устойчивости. Для этого найденное значение критического параметра нагрузки нужно подставить в векторное уравнение (24) и вычислить ненулевой вектор-столбец Y_{N+1} , затем по формулам (22) в обратной последовательности вычисляем векторы Y_k (k = N, N-1, ..., 1) во всех узловых точках.

Заключение

Построенное таким образом решение краевой задач конечно-разностным методом матричной прогонки получается ненулевым при любом уровне внешней нагрузки, но граничные условия на второй границе выполняются только при $\Delta = 0$. Например, в случае классического варианта граничных условий $Y_N = 0$, когда матрицы $A_{N+1} = 0$, $C_{N+1} = 0$, $B_{N+1} = -I$, где I – единичная матрица четвертого порядка, получим

$$Y_N^T = (\Delta_p, 0, 0, 0).$$
(26)

Корни уравнения (26) всегда числа иррациональные и абсолютным нулем Δp не бывает. Этим обеспечена возможность выполнения всех операций над матрицами даже в окрестности критической точки, где $\Delta p = 0$.

Литература

 Липовцев Ю.В., Русин М.Ю., Хамицаев А.С.
 Расчет и проектирование составных оболочечных конструкций: Учебное пособие. – Обнинск: ИАТЭ, 2003. – 76 с.

2. Юдин В.М. Комплекс программ расчета параметров аэродинамического теплообмена на поверхности конструкций летательных аппаратов. – М.: НПЦ «Вега-94», НТО, 2003. – 39 с.

3. Кравченко В.Ф., Розенсон Е.Б., Юдин В.М. Методы расчета температурных полей в элементах конструкций самолетов: Руководство для конструкторов. – 1980. – Т. 3, кн.3. – Вып. 5.

 Липовцев Ю.В. К устойчивости упругих и вязкоупругих оболочек при наличии локальных напряжений // Механика твердого тела. – М.: Наука. – 1968. – № 5. – С. 174 – 180.

Липовцев Ю.В. Особенности применения метода прогонки к решению задач устойчивости оболочек и пластин // Известия АН СССР. – М.: Наука, МТТ. – 1970. – № 3. – С. 43 – 49.

 Липовцев Ю.В.Разностный метод решения задач устойчивости оболочек вращения // Теория пластин и оболочек. – М.: Наука. – 1971. – С. 166 – 172.

Липовцев Ю.В. Постановка и алгоритмы решения нестационарных осесимметричных краевых задач термоупругости для оболочек вращения // ПММ. – М.: Наука. – 2003. – Том 67, вып. 6. – С. 954–964.

 Муштари Х.М., Галимов К.З. Нелинейная теория гибких оболочек. – Казань: Таткнигоиздат, 1957. – 432 с.

 Вольмир А.С. Устойчивость деформируемых систем. – М.: Наука, 1967. – 984 с.

Поступила в редакцию 15.12.2004

Рецензент: д-р техн. наук, проф. В.Е. Гайдачук, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков.