УДК 532.529

И.И. ПЕТУХОВ, В.Н. СЫРЫЙ

Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Украина

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ВСКИПАЮЩИХ ПОТОКОВ КРИОЖИДКОСТЕЙ С КРИСТАЛЛИЗАЦИЕЙ КАПЕЛЬ

Построена модель расчёта вскипающего потока в соплах с кристаллизацией дисперсной фазы. Учтена возможность образования пористой структуры твёрдой фазы. Представлены результаты численного и экспериментального исследования кристаллизации водорода и азота.

криогенная жидкость, струйный охладитель, моделирование, вскипающая жидкость, режимы течения, кристаллизация капель

Введение

В последние годы возрос интерес к использованию водорода как экологически безопасного и высокоэффективного топлива. Ведутся работы по созданию автомобилей, гиперзвуковых и воздушнокосмических самолётов по программам: CRYOPLAN, FEVER, NASP, ZANGER [1, 2]. Криогенное топливо предпочтительно хранить на борту в переохлаждённом или шугообразном состоянии, что позволяет повысить его хладоресурс при сохранении текучести.

Получить шугу можно в струйных охладителях, предназначенных для охлаждения и кристаллизации жидкости за счёт её частичного испарения [3]. По сравнению с вакуумированием емкости [4] процесс массообмена в них значительно интенсивнее за счёт развитой межфазной поверхности, а располагаемая работа пара используется для повышения полного давления жидкости. В связи с существенной неравновесностью процесса течение в соплах целесообразно описывать на основе двухскоростной двухтемпературной модели [5], а стационарное решение искать методом установления с применением полунеявной численной схемы ICE [6].

Использование модели [5] для расчёта течения с кристаллизацией капель требует уточнения карты режимов течения, граничных условий и коэффициентов тепломассообмена. Кроме того, для обоснованного выбора режимных параметров процесса и геометрии сопла необходима достоверная оценка времени затвердевания капель.

В данной работе представлены результаты использования уточнённой модели кристаллизации для исследования сопел струйных охладителей на жидком водороде и азоте.

1. Модель вскипающего потока с кристаллизацией капель

Для расчёта параметров вскипающего потока с кристаллизацией капель карта режимов модели [5] на участке дисперсного потока с объёмным паросодержанием $\alpha > 0,7$ дополнена режимом кристаллизации капель. Последний реализуется при охлаждении жидкости до температуры тройной точки T_T . При этом вводится допущение о квазистационарном температурном режиме в капле до её полного затвердевания. Условия на межфазной границе задаются в соответствии с квазиравновесной схемой фазового перехода [7].

Размеры капель и их количество полагаются неизменными. На границе капля – пар скорость фазового перехода определяется межфазным теплообменом и скрытой теплотой сублимации.

Для определения массовой доли твёрдой фазы в капле *x_s* используется выражение

$$\frac{dx_s}{d\tau} = \frac{q_{d\sigma}}{(1-x)\rho_m \psi_{ls}},\qquad(1)$$

где τ – время; ρ_m – средняя плотность смеси; $q_{d\sigma}$ – тепловой поток из капли к её границе, отнесённый к единице объёма смеси; ψ_{ls} – удельная теплота кристаллизации, x – массовая степень сухости в потоке.

Для определения коэффициента теплоотдачи из капли к межфазной границе было выполнено численное исследование затвердевания капли жидкости в собственном паре при постоянных и переменных условиях на межфазной границе.

2. Модель кристаллизации капли жидкости в собственном паре

Как отмечено в [8], в общем случае точное решение задач о затвердевании тел получить невозможно из-за нелинейности описывающих процесс дифференциальных уравнений. Упрощённые модели используют имеющие ограниченный характер допущения о квазистационарности теплового режима вне фронта кристаллизации, и получены для неизменных теплофизических свойств фаз.

Модель [9] исключает эти ограничения. Кроме того, в ней учитывается возможность образования пористой структуры твёрдой фазы, подтверждённая авторами [4], исследовавшими механизм кристаллизации азота при вакуумировании. С одной стороны, паровые поры ухудшают теплопроводность за фронтом кристаллизации. С другой – интенсифицируют процесс затвердевания за счёт отвода вместе с паром скрытой теплоты парообразования. Авторами [4] отмечено также, что процесс затвердевания инициируется без переохлаждения жидкости.

Изменение профиля температуры *T* в капле во времени описывается уравнением теплопроводности в сферических координатах без внутренних источников теплоты и потоков массы

$$\frac{\partial T}{\partial \tau} = \frac{1}{c\rho} \frac{\partial \lambda}{\partial T} \left(\frac{\partial T}{\partial r} \right)^2 + D_T \left(\frac{\partial^2 T}{\partial r^2} + \frac{2}{r} \frac{\partial T}{\partial r} \right), \quad (2)$$

где D_T , λ , c, ρ – соответственно температуропроводность, теплопроводность, удельная теплоёмкость и плотность вещества капли; r – сферическая координата.

Задача полагается сферически симметричной. На поверхности капли принята квазиравновесная схема фазового перехода. Задержки кристаллизации из-за кинетики фазового перехода не происходит.

Распространённым подходом к моделированию процесса затвердевания является задание двух границ фронта кристаллизации, между которыми процесс не завершён и все фазы находятся при температуре тройной точки. Для расчёта положения границы фронта *r*_s со стороны твёрдой фазы используется уравнение теплового баланса

$$\lambda_s \frac{\partial T}{\partial r}\Big|_s - \lambda_l \frac{\partial T}{\partial r}\Big|_l = \rho_l \psi_{ls} \frac{dr_f}{d\tau}.$$
 (3)

Здесь и далее индексы *l*, *s* и *v* отмечают параметры жидкой, твёрдой и паровой фаз.

Для случая затвердевания с образованием паровых пор вместо λ_s используется эффективный коэффициент теплопроводности, определяемый объемной плотностью паровых пор α_v :

$$\lambda_e = (1 - \alpha_v)\lambda_s + \alpha_v\lambda_v, \tag{4}$$

а вместо произведения $\rho_l \psi_{ls}$ – комплекс

$$\rho_l(\psi_{ls}x_s - \psi_{lv}x_v),$$

где ψ_{ls} – удельная теплота парообразования.

Система (2 – 3) замыкается уравнениями сохранения массы и объёма капли, а также соотношениями, описывающими теплофизические свойства вещества фаз.

Для интегрирования уравнения (2) используется явная численная схема [10].

3. Результаты расчётов и их обсуждение

Численные исследования показали, что общее

время кристаллизации капель разного диаметра d хорошо обобщается комплексом $Fo = 4D_T \tau/d^2$, а влияние паровых пор на скорость затвердевания незначительно. Исследования вскипающего водорода в соплах [11] показали, что процесс охлаждения жидкости реализуется с температурным напором порядка 1 К. На рис. 1 представлены результаты расчёта кристаллизации капли водорода с начальной температурой 13,81 К при различных граничных условиях. В исследуемом диапазоне температур на границе капли Т_о среднее для процесса кристаллизации число *Nu* меняется незначительно, и для замыкания системы основных уравнений модели соплового течения на участке кристаллизации было принято значение Nu = 7. Такой же результат был получен и для случая затвердевания азота.

Расчётные параметры вскипающего водорода в сопле Лаваля представлены на рис. 2. Здесь и далее *p* – статическое давление в потоке, *T* – температура, *w* – скорость. Индексы 1 и 2 отмечают параметры во входном и выходном сечении сопла. Большая часть перепада статического давления срабатывается до реализации капельной структуры потока, занимающей около 85% длины сопла. Участок затвердевания капель, в свою очередь, составляет около 50% проточной части. Для получения шуги с концентрацией твёрдой фазы 70% необходимо испарить 18% жидкости, а для достижения температуры тройной точки – 10%.

Наибольшая температурная и скоростная неравновесность потока наблюдается в зоне больших градиентов давления и на участке кристаллизации. Это положительно сказывается на величине полного давления и охлаждении жидкости.

 $p_1 = 1,5$ бар; $T_1 = 21$ K; $p_2 = 0,033$ бар

На участке затвердевания, ввиду существенного снижения интенсивности массообмена с несущим паром, характер течения смеси приближается к потоку газа со взвешенными твёрдыми частицами. Скорость дисперсной фазы на срезе сопла достигает 150 м/с, диаметр частиц – 20 мкм, объёмное паросодержание в потоке – 99%.

На рис. 3 представлены результаты численного и экспериментального исследования кристаллизации вскипающего азота. Получено удовлетворительное совпадение расчётных и опытных значений массового расхода через сопло и распределения статического давления в его проточной части.

Для подтверждения факта получения твёрдой фазы срез сопла был помещён в вакуумируемый криостат, снабжённый средствами визуализации. Для определения степени неравновесности потока в выходном поперечном сечении сопла была установлена гребёнка датчиков полного давления.

Расчёт и эксперимент показали, что расширяющаяся часть сопла Лаваля существенно переразмерена и реализуется режим перерасширения потока. Скорость частиц, достигая в средней части сопла 85 м/с, к его срезу снижается до 40 м/с.

В эксперименте выявлено также достаточно равномерное распределение дисперсной фазы и полного давления в сечении среза сопла.

Процесс кристаллизации завершается уже на расстоянии 400 мм от горла сопла, частицы имеют диаметр 15 мкм. Их объёмная концентрация в выходном сечении сопла менее 0,5% и эффективное разделение фаз в поверхностном сепараторе не представляется возможным.

Заключение

Выполненные исследования подтвердили возможность получения мелкодисперсной твёрдой фазы криогенных жидкостей в струйном охладителе. Построенная модель позволяет адекватно описывать процессы охлаждения и кристаллизации капель в соплах.

Литература

1. Neyat T. Veziroglu. Twenty years of the hydrogen movement // Int. J. Hydrogen Energy. $-1995. - V. 20, N \ge 1. - P. 1 - 7.$

2. Proceedings HYPOTHESIS II International Symposium // Grimstad, Norway. – 1997. – P. 18 – 22.

3. Petukhov I., Bredikhin V., Shakhov Y. Jet Equipment for Cryogenic Fuel Cooling // Proceedings of the XIV International Symposium on Airbreathing Engines ISABE 99. – Florence (Italy). – 1999. – P. 99.

4. Гетманец В.Ф., Михальченко Р.С., Архипов В.Т. Исследование затвердевания криогенных жидкостей при использовании откачки // ИФЖ. – 1972. – Т. 22, № 4. – С. 648 – 655.

5. Блинков В.Н., Иваненко Н.И. Моделирование течения парожидкостной смеси в сопле струйного аппарата: Отчёт / Инв. № 028.80.024.337. – Х.: ХАИ. – 1988. – 42 с.

6. Harlow F., Amsden A. A Numerical Fluids Dynamics Method for All Flow Speeds // J. Comp. Phys. – $1974. - N_{\rm P} 14. - P. 227 - 254.$

7. Нигматуллин Р.И. Динамика многофазных сред. В 2-х ч. – М.: Наука. Гл. ред. физ.-мат. лит., 1987. – 824 с.

 Пехович А.И., Жидких В.М. Расчёты теплового режима твёрдых тел. Изд. 2-е перераб. и доп. – Л.: Энергия, 1976. – 322 с.

9. Петухов И.И., Сырый В.Н. Тепломассообмен при кристаллизации капли криогенной жидкости в собственном паре // Многофазные потоки в энергоустановках. – 1988. – С. 135 – 141.

10. Оран Э., Борис Дж. Численное моделирование реагирующих потоков: Пер. с англ. – М.: Мир, 1990. – 660 с.

11. Блинков В.Н., Петухов И.И., Сырый В.Н. Исследование течения вскипающего водорода в соплах Лаваля // Газотермодинамические процессы в энергоустановках с многофазным рабочим телом. – 1990. – С. 10 – 15.

Поступила в редакцию 20.12.2004

Рецензент: д-р физ.-мат. наук, проф. А.В. Бастеев, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков.