УДК 629.7.036:539.4

А.В. ШЕРЕМЕТЬЕВ, А.В. ПЕТРОВ

ГП "Ивченко-Прогресс", Украина

ИСПОЛЬЗОВАНИЕ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ ДЛЯ УЧЕТА ТЕХНОЛОГИЧЕСКОЙ НАСЛЕДСТВЕННОСТИ ПРИ УСТАНОВЛЕНИИ РЕСУРСОВ ДЕТАЛЕЙ АВИАЦИОННЫХ ГТД

Определена возможность повышения достоверности расчетных методов установления ресурсов деталей авиационных ГТД за счет учета контактного взаимодействия и технологической наследственности при определении НДС. Представлены результаты расчетного исследования по влиянию технологических отклонений в замковых соединениях (в пределах допуска) на НДС и циклический ресурс лопаток вентилятора с учетом контактного взаимодействия.

циклический ресурс, технологические отклонения, авиационный ГТД, лопатка вентилятора, зам-ковое соединение, контактное взаимодействие, напряженно-деформированное состояние

Введение

Основные задачи по обеспечению производственно-технологической надежности деталей авиационных ГТД состоят в том, чтобы деталь соответствовала требованиям конструкторской документации и не имела бы вредных последствий от технологических методов обработки – технологической наследственности [1, 2].

Развитие численных методов расчета, в первую очередь метода конечных элементов, использование моделей высокого уровня позволяет ставить задачи по исследованию резервов технологических процессов для повышения прочностной надежности и обеспечения более высоких значений ресурсов деталей авиационных ГТД [3].

В последние 10 ... 15 лет в странах СНГ получили распространение расчетные методы установления ресурсов авиационных ГТД [3].

Ранее при установлении ресурсов по результатам длительных или эквивалентно-циклических испытаний влияние технологической наследственности выявлялось в процессе испытаний. При установлении циклических ресурсов деталям авиационных ГТД расчетным методом влияние технологии изготовления должно быть показано аналитически. Анализ напряженно-деформированного состояния (НДС) рабочей лопатки вентилятора турбореактивного двухконтурного двигателя (ТРДД) с учетом возможных технологических отклонений показывает, что влияние отклонений геометрии (даже в пределах допусков) может быть значительным [1, 2].

Следовательно, при использовании регламентированного расчетно-экспериментального метода установления ресурса для повышения его достоверности должен быть проведен анализ НДС при возможных вариантах контактного взаимодействия в соединениях деталей в зависимости от сочетания технологических отклонений [4].

В случае использования ретроспективного метода назначенный ресурс деталей нового двигателя определяется по формуле [3]:

$$N_{\mu} = N_{np} \cdot \eta_{M} \cdot \eta_{\kappa m \mathfrak{H}} \cdot \eta_{\mathfrak{B} \mathfrak{U} \delta p} , \qquad (1)$$

где N_{H} – циклический ресурс нового двигателя; N_{np} – циклический ресурс двигателя прототипа; η_{M} – комплекс учета влияния новых материалов; $\eta_{\kappa m 9}$ – комплекс учета влияния конструктивных, технологических и эксплуатационных факторов; η_{subp} – комплекс учета влияния вибрационных напряжений;

$$\eta_{\kappa m \mathfrak{I}} = \frac{N_{p \mathfrak{H}}}{N_{p n p}}, \qquad (2)$$

где N_{ph} – число циклов до разрушения детали нового двигателя; N_{pnp} – число циклов до разрушения детали двигателя-прототипа.

Величины N_{ph} и N_{pnp} определяются с учетом влияния технологических отклонений по кривым малоцикловой усталости или по формуле Мэнсона для максимальных значений самых неблагоприятных сочетаний технологических отклонений.

Величина η_{ктэ} также может быть определена с использованием вероятностного подхода по формуле

$$\eta_{\kappa m \mathfrak{I}} = \frac{\delta_H}{\delta_{np}},\tag{3}$$

где δ – среднеквадратическое отклонение циклической долговечности с учетом отклонений геометрии контактирующих деталей в зоне контакта (табл. 2) для нового двигателя (δ_{H}) и прототипа (δ_{np}).

Однако, этот подход требует достаточно большого статистического материала по технологическим отклонениям, что не всегда возможно (особенно для деталей новых двигателей). В таких случаях расчет $\eta_{\kappa m_2}$ ведется по формуле (2).

Целью данной работы является определение влияния возможных технологических отклонений на циклический ресурс деталей авиационных ГТД, т.е. уточнение комплекса $\eta_{\kappa m_3}$ в формуле (1) расчетными методами.

Результаты исследований

Если конструкция и технология изготовления деталей нового двигателя не претерпела изменения по сравнению с деталями двигателя-прототипа, то технологическая наследственность будет той же и можно принять $\eta_{кm_2} = 1$.

В случае, если у детали изменяется конструкция или технология изготовления, то величина $\eta_{\kappa m_3}$ должна быть определена, в том числе и с учетом возможных технологических отклонений.

Предполагается, что изменен тип замкового соединения рабочей лопатки вентилятора с диском. Вместо замкового соединения типа "ласточкин хвост" введено замковое соединение типа "двухзубая елочка". На рис. 1 [4] показаны основные виды технологических отклонений хвостовика лопатки. Аналогичные технологические отклонения возможны и при изготовлении пазов дисков.

- Рис. 1. Основные виды возможных технологических отклонений при изготовлении хвостовика лопатки вентилятора:
 - а невыдерживание размеров поперечных сечений по длине деталей;
 - б непараллельность рабочих поверхностей;
 - в несовпадение углов наклона поверхностей;
 - г отклонение от плоскостности поверхностей

Причины возникновения данных отклонений в основном связаны с износом, точностью установки и движения режущего инструмента, а также с различного рода вибрациями и биениями, вызванными недостаточной жесткостью крепления режущего инструмента или люфтами, перекосами и другими дефектами в трансмиссии станка [1].

В табл. 1 [4] описаны 11 моделируемых вариантов технологических отклонений, возможных при изготовлении деталей замкового соединения типа "двухзубая елка", используемого для соединения рабочей лопатки вентилятора с диском. Описанные варианты моделируют все типы возможных технологических отклонений в замковом соединении, показанных на рис. 1.

Таблица 1

Описание расчетных вариантов технологических отклонений

№ варианта	Описание
1	Расширение в диске верхней пары зубьев (поверхности № 3 и 4) со стороны выхода
2	Расширение паза диска в сторону выхода по всем рабочим поверхностям
3	Рабочая поверхность №4 в диске отклонена вверх (на раскрытие зазора) со стороны входа
4	Рабочая поверхность № 4 хвостовика лопатки отклонена вниз со стороны входа
5	Рабочая поверхность № 4 хвостовика лопатки отклонена вниз со стороны входа. Рабо- чая поверхность № 4 диска отклонена вверх со стороны входа
6	Рабочая поверхность №3 в диске отклонена вверх со стороны выхода
7	Рабочая поверхность №3 в диске отклонена вверх (на раскрытие зазора) со стороны входа
8	Рабочие поверхности №4 хвостовика лопатки и диска имеют максимальные встречные отклонения пр углу наклона (контакт сверху)
9	Рабочие поверхности №4 хвостовика лопатки и диска имеют максимальные встречные отклонения по услу наклона (контакт снизу)
10	Отклонения по углу наклона (контакт снизу)
10	Отклонение расочей поверхности уче хвостовика лопатки типа яма
11	Отклонение рабочей поверхности № 4 хвостовика лопатки типа "волна"

Выбор именно этих вариантов отклонений связан с наибольшим их влиянием на НДС в критической зоне хвостовика, фактически определяющей ресурс лопатки.

Рабочие поверхности хвостовика лопатки и сопрягаемые с ними рабочие поверхности паза диска имеют нумерацию, показанную на рис. 2. Аналогичную нумерацию имеют и впадины гребенки хвостовика.

Рис. 2. Обозначение поверхностей хвостовика

лопатки и паза диска (вид со стороны входа)

Определение НДС описанных выше конструкций возможно только при использовании расчетных методик, позволяющих решать задачи контактного взаимодействия в трехмерной постановке.

Для моделирования условий работы рабочей лопатки вентилятора ТРДД с большой степенью двухконтурности использовалась конечно-элементная модель, представляющая собой объемный сектор, включающий в себя лопатку и диск, к которому прикладывались циклосимметричные граничные условия. В модели учитывалось контактное взаимодействие в замковом соединении и в антивибрационных полках лопатки.

Все перечисленные в табл. 1 технологические отклонения моделировались путем изменения формы соответствующих деталей, которые отражались в твердотельной и конечно-элементной моделях. Величины предельных отклонений взяты из технических требований чертежей лопатки и диска на основе отраслевых стандартов.

Следует отметить, что все приведенные технологические отклонения в соединениях "лопатка-диск" лежат в пределах допуска и детали, изготовленные с такими отклонениями, считаются кондиционными.

Результаты расчета на прочность рабочей лопатки вентилятора с технологическими отклонениями в замковом соединении представлялись графически в виде распределений относительных эквивалентных напряжений ($\overline{\sigma}_{_{3KB}}$) вдоль донышек впадин гребенки хвостовика (рис. 3) в направлении от входного торца к выходному. Также результаты приводились в виде процентных изменений максимальных напряжений в хвостовике лопатки с технологическими отклонениями по отношению к базовому варианту конструкции – без отклонений [4]. Изменение ресурсов деталей определялись по экспериментальным кривым МЦУ, используя расчетные значения напряжений в критических зонах.

Форма детали: пунктирная линия – номинальная, непрерывная линия – с отклонениями

Рис. 3. Влияние возможных технологических отклонений на НДС хвостовика лопатки вентилятора (расчетный вариант № 5)

Таблица 2

Влияние возможных технологических отклонений на напряженность в критической зоне и циклический ресурс лопатки вентилятора

№ варианта	$\Delta_{\sigma_{\max}}$, %	ΔN , %
1	-2,76	25,3
2	-4,44	43,8
3	-4,32	42,3
4	-3,00	27,8
5	-5,04	48,2
6	0,24	-2,0
7	4,32	-29,8
8	-6,59	71,5
9	4,32	-29,8
10	4,92	-33,2
11	-1,08	9,2

В табл. 2 приведены величины максимальных изменений эквивалентных напряжений в критической зоне хвостовика, а также циклического ресурса лопатки вентилятора с учетом возможных технологических отклонений.

Выводы

1. Применяемые в настоящее время расчетные методы установления ресурсов деталей авиацион-

ных ГТД требуют обеспечения высокой стабильности производства и расчетно-экспериментальной оценки возможных технологических отклонений, учета их влияния на ресурс деталей.

2. При использовании ретроспективного метода установления ресурса (в случае изменения технологии или конструкции деталей нового двигателя), комплекс влияния $\eta_{кm3}$ может быть уточнен за счет учета влияния возможных технологических отклонений в соединениях.

 Предложена формула для определения комплекса влияния η_{ктэ} детерминированным и вероятностным методами.

Литература

 Кузнецов Н.Д., Цейтлин В.И., Волков В.И.
Технологические методы повышения надежности деталей машин. – М.: Машиностроение, 1993. – 304 с.

Петухов А.Н. Технологическая наследственность и конструкционная прочность деталей ГТД и ЭУ // Конверсия в машиностроении. – 2004. – № 1. – С. 69 – 71.

 Муравченко Ф.М., Шереметьев А.В. О методе определения циклических ресурсов авиадвигателей // Оценка и обоснование продления ресурса элементов конструкций: Тр. междунар. конф. – К.: НАН Украины, ин-т пробл. прочности, 2000. – Т. 2. – С. 831 – 836.

4. Муравченко Ф.М., Шереметьев А.В., Петров А.В. Анализ напряженно-деформированного состояния деталей авиационных ГТД с учетом возможных технологических отклонений // Вісник двигунобудування. – 2005. – № 1 – С. 23 – 28.

Поступила в редакцию 16.05.2005

Рецензент: д-р техн. наук, проф. Д.Ф. Симбирский, Национальный аэрокосмический университет им. Н.Е. Жуковского "ХАИ", Харьков.