УДК 621.317.76.089.68:621.373.82

В.Н. ЧИНКОВ¹, А.П. НАРЕЖНИЙ²

¹Харьковский университет Воздушных Сил, Украина ²Войсковая часть A0785, Украина

ИССЛЕДОВАНИЕ РЕЖИМОВ ВЗАИМОДЕЙСТВИЯ ПРЕЦИЗИОННЫХ МЕР ЧАСТОТЫ С БЛИЗКИМИ ЧАСТОТАМИ

В работе выявлены и классифицированы режимы взаимодействия прецизионных мер частоты при различных начальных отстройках от номинального значения частоты, обусловленные погрешностью взаимодействия через каналы сличения.

меры частоты, погрешность взаимодействия мер частоты, метрологические характеристики мер частоты

Введение

В космических радиотехнических комплексах применяют в качестве источников время- и частотозадающих процессов квантовые меры частоты (МЧ) [1, 2]. Метрологические характеристики (МХ) МЧ в наибольшей степени влияют на такие основные показатели качества космических радиотехнических комплексов, как точность, разрешающая и пропускная способность, диапазон частот, помехозащищенность [1 - 3]. Одной из важнейших МХ МЧ является нестабильность частоты её выходного сигнала [2, 3].

Формулирование проблемы

На практике для определения нестабильности частоты выходного сигнала МЧ применяют два метода измерения – двухгенераторный [3, 4] и трехгенераторный [5]. В первом из них значение нестабильности частоты МЧ определяется путем сравнения частот сигналов исследуемой (поверяемой) МЧ и эталонной. В трехгенераторном методе для расчета нестабильности частоты используется сравнение частот трех сигналов – исследуемой МЧ и двух эталонных. Эти два метода являются модификациями известного в классической метрологии дифференциального, или разностного, метода измерений [3, 5].

При отсутствии эталонной МЧ сличают две меры, близких по точности [4 – 6]. Определение среднеквадратического относительного отклонения (СКО) частоты в этом случае для каждой МЧ сводится к делению на весовой коэффициент $K = \sqrt{2}$ СКО разностного сигнала. Такая оценка является приближенной, поскольку дисперсия разностного сигнала двух МЧ [5]:

$$\sigma^2_{\mathfrak{H}} = \sigma_{\mathfrak{H}}^2 + \sigma_u^2 - 2 \cdot \sigma_{\mathfrak{H}} \sigma_u \cdot r , \qquad (1)$$

где σ_э – СКО частоты выходного сигнала эталонной МЧ; σ_u – СКО частоты выходного сигнала исследуемой МЧ; *r* – коэффициент взаимной корреляции (взаимодействия), обусловленный погрешностью взаимодействия МЧ.

В сложных эталонных комплексах минимизация погрешности взаимодействия достигается применением дорогостоящих технических средств, обеспечивающих развязывание измерительных каналов.

Анализ исследований и публикаций. Известно, что у генераторов с примерно равными частотами, каковыми являются прецизионные МЧ, коэффициент корреляции *r* зачастую существенно больше нуля [4, 5]. Из (1) следует, что при $r \rightarrow -1$, в предположении $\sigma_2 \approx \sigma_u$, СКО частоты $\sigma_u \ll \sigma_{3u}$, а при $r \to 1$ имеем $\sigma_u >> \sigma_{3u}$. Известные методы измерения нестабильности частоты (поверки) не предусматривают определение коэффициента взаимной корреляции r [3, 4, 6].

Значение и знак коэффициента взаимной корреляции *r* зависят от режимов взаимодействия прецизионных МЧ, обусловленных погрешностью их взаимодействия через каналы сличения при различных начальных отстройках от номинального значения частоты [4, 5].

В работе [4] приведены результаты исследований влияния взаимных связей между сличаемыми МЧ на систематическую погрешность оценки относительного отклонения частоты. Однако данные исследования проведены без учета внутренних шумов МЧ.

Цель статьи – выявить и классифицировать режимы взаимного влияния на флуктуации собственных частот (фаз) прецизионных МЧ с близкими частотами, обусловленные погрешностью взаимодействия через каналы сличения с учетом аддитивных внутренних шумов МЧ.

Результаты исследований

Уравнение состояния разности фаз эталонной и исследуемой МЧ с учетом аддитивных шумов можно представить в виде следующего стохастического дифференциального уравнения:

$$\dot{\Phi}(t) = a + b\cos[\Phi(t)] + \xi(t) , \qquad (2)$$

где *a* – разность собственных значений резонансных частот сличаемых мер; *b* – параметр, определяющий степень взаимосвязи между сличаемыми мерами; $\xi(t)$ – нормальный белый шум с математическим ожиданием (м. о.) $M[\xi(t)] = 0$ и дисперсией $D[\xi(t)] = \sigma_{\xi}^{2}$.

Выражение для измерения относительной разности частоты, получаемой с помощью частотного компаратора на временном интервале измерений τ , начинающемся в момент времени t_k :

$$\delta f(t_k, \tau_e) = \frac{\Phi(t_{k+1}) - \Phi(t_k)}{\omega_0 \tau_e}, \qquad (3)$$

где $\Phi(t_k) = \frac{1}{\tau} \int_{t_k}^{t_k+\tau} \Phi(t) dt$ – среднее значение разности

фаз $\Phi(t)$ на *k* -м интервале времени измерения разностей фаз τ выходных сигналов исследуемой и эталонной МЧ частотным компаратором; ω_0 – номинальное значение частоты МЧ; τ_6 – интервал времени выборки.

Численное исследование модели поведения системы двух связанных осцилляторов (МЧ), описываемой соотношением (2) при условии $\tau_{g} = \tau$, проведем с помощью разностной схемы [7, 8] вида

$$\Phi(t_{k+1}) = \Phi(t_k) + \tau a + \tau b \cos[\Phi(t_k)] + \overline{\xi}(t_{k+1}), \quad (4)$$

где
$$\overline{\xi}(t_{k+1}) = \frac{1}{\tau} \int_{t_{k+1}}^{t_{k+1}+\tau} \xi(t) dt$$
 – среднее значение случай-

ного процесса $\xi(t)$ на (k+1)-м интервале времени измерения τ .

Результаты численного моделирования поведения двух электрически связанных осцилляторов (МЧ) при наличии в системе фазового шума показывают: поведение фазы $\Phi(t_k)$ в этом случае будет зависеть не только от соотношения b/a, но и от соотношения σ_{ξ}/a . В отличие от ситуации, описываемой в [4], когда в системе электрически связанных осцилляторов с близкими резонансными частотами возможно лишь два устойчивых стационарных режима функционирования (режим синхронизма и режим биений), наличие в системе аддитивного шума приводит к тому, что система связанных осцилляторов приобретает четыре различных стационарных режима функционирования. В зависимости от соотношения параметров b/a и σ_{ξ}/a (рис. 1) данной системе присущи следующие режимы:

режим жесткой синхронизации (область 1 на рис. 1);

 режим синхронизма с наличием квазискачкообразных изменений разности фаз, возникающих в случайные моменты времени (область 2 на рис. 1);

- режим биений (область 3 на рис. 1);

 случайный процесс с линейным дрейфом разности фаз (область 4 на рис. 1).

Рис. 1. Связь между режимами работы системы связанных осцилляторов при наличии аддитивного фазового шума и параметрами *b/a* и σ_ε/*a*

На рис. 2 приведены результаты моделирования поведения разности фаз $\Phi(t)$ во времени для указанных режимов функционирования пары связанных осцилляторов при наличии в системе аддитивного фазового шума.

График 1 соответствует поведению разности фаз $\Phi(t_k)$ в режиме жесткой синхронизации. В данном режиме отсутствует линейный дрейф фазы, а случайный процесс хорошо описывается моделью диффузионного марковского процесса [5]. График 2 соответствует режиму синхронизма с наличием квазискачкообразных изменений разности фаз, возникающих в случайные моменты времени. График 3 описывает режим биений пары связанных осцилляторов (МЧ) при наличии в системе аддитивного фазового шума.

График 4 показывает, что поведение во времени разности фаз, идентифицируемых в системе двух связанных осцилляторов, представляет процесс типа случайных блужданий с линейным дрейфом разности фаз.

Экспериментальные исследования по определению МХ однотипных МЧ (типа СЧВ-74) проводилось трехгенераторным методом измерения нестабильности частоты. Сличения осуществлялись с помощью частотных компараторов (типа Ч7-39) в режиме измерения разности времени " Δt " типовых значений параметра: $\tau = 1$ с, $\tau_g = 1$ с и интервал времени наблюдения $\tau_H = 1$ сут. Частотный компаратор типа Ч7-39 построен на основе разностновременного метода с использованием двойного смесителя [3]. Поэтому в режиме измерения разности времени " Δt " Ч7-39 дает оценку относительного отклонения разности фаз

$$\Delta t(t_k) = \frac{\Phi(t_k)}{\omega_0 \tau_{\theta}} + \overline{\eta}(t_k),$$

где $\overline{\eta}(t_{k+1}) = \frac{1}{\tau} \int_{t_k}^{t_k+\tau} \eta(t) dt$ – среднее значение адди-

тивного эквивалентного шума измерения $\eta(t)$ на (k+1)-м интервале времени измерения τ .

Рис. 2. Графики поведения разности фаз $\Phi(t_k)$ модели двух связанных осцилляторов при различных отношениях параметра $b/a \in [0.1,...,5]$ при фиксированном значении $\sigma_{\xi}/a = 3$

Рис. 3. Изменение во времени разности фаз между сигналами первой и второй МЧ

На рис. 3 и 4 представлены графики результатов измерений $\Delta t(t_k)$ разности моментов «ноль пересечений» сигналов частотой 5 МГц от первой и второй МЧ типа СЧВ-74, а также первой и третьей МЧ типа СЧВ-74, входящих в состав измерительной схемы по определению МХ.

Из этих графиков следует, что поведение разности фаз между сигналами первых двух сличаемых МЧ (рис. 3) соответствует режиму биений (область 3 на рис. 1), поведение графика разности фаз между сигналами первой и третьей МЧ (рис. 4, интервалы 1 и 2) соответствует режиму области 2 на рис. 1.

Кроме того, график на рис. 4 свидетельствует о том, что в процессе работы возможны ситуации, когда частоты сигналов первой и третьей мер частот затягиваются между собой. В эти интервалы времени t_k измеренная разность $\Delta t(t_k)$ между моментами «ноль пересечений» сигналов первой и третьей МЧ постоянная (интервал 1), что говорит о наличии электрических или электромагнитных связей между первой и третьей МЧ. Отсутствие постоянной синхронизации частот указывает на наличие слабой взаимосвязи, поскольку энергии внутренних шумов МЧ достаточно для разрыва взаимной синхронизации фаз указанных мер.

Наличие двух типов интервалов (1 и 2) на рис. 4, на протяжении которых поведение $\Delta t(t_k)$ различно (наличие и отсутствие дрейфа фазы), приводит, вопервых, к смещению оценки м. о. относительной разности частот $M[\delta f(t_k, \tau_6)]$ между сличаемыми МЧ, и, во-вторых, к завышению оценки вариации относительной разности частот.

Рис. 4. Изменение во времени разности фаз между сигналами первой и третьей МЧ

Количественная оценка математического ожидания относительной разности частот $\delta f(t_k, \tau_u)$ между МЧ определяется с учетом соотношения (3) выражением [9]:

$$M\left[\delta f(t_k, \tau_{\theta})\right] = \frac{1}{N} \sum_{i=1}^{N} \delta f(t_k, \tau_{\theta})$$

где N – количество измерений в выборке.

При вычислении $M[\delta f(t_k, \tau_g)]$ оценки м. о. относительной разности частот на интервалах наблюдения 1 и 2 (рис. 4) соответственно будут иметь следующие значения:

$$\begin{split} M \big[\delta f \big(t_k \,, \tau_{\mathfrak{g}} \big) \big]_1 &\approx 0 \,; \\ M \big[\delta f \big(t_k \,, \tau_{\mathfrak{g}} \big) \big]_2 &= -4.3 \cdot 10^{-12} \,, \end{split}$$

в то время как соответствующее математическое ожидание для всей выборки результатов сличений первой и третьей МЧ составляет

$$M\left[\delta f(t_k, \tau_{\theta})\right]_{\tau_{\mu}} = -1.3 \cdot 10^{-12}$$

Выводы

Анализ результатов численного моделирования системы связанных осцилляторов и натурных экспериментов на группе МЧ показал:

– при наличии погрешности взаимодействия между МЧ для идентификации МХ следует применять стохастическую моделью системы связанных осцилляторов (4), поведение частоты которой зависит от отношения параметров b/a и σ_{ξ}/a , а именно: значений амплитуд колебаний каждого осциллятора (МЧ) в автономном режиме, разности собственных значений резонансных частот и аддитивных шумов, коэффициента связи между осцилляторами;

– при наличии погрешности взаимодействия между МЧ оценки нестабильности частоты будут функциями от количества измерений в выборке N, интервала времени выборки τ_{g} и разности собственных значений резонансных частот a.

Дальнейшие исследования будут направлены на разработку метода измерения нестабильности частоты выходного сигнала МЧ с учетом погрешности взаимодействия.

Литература

 Сетевые спутниковые радионавигационные системы / В.С.Шебшаевич, П.П.Дмитриев, Н.В. Иванцевич и др. – М.: Радио и связь, 1993. – 408 с.

2. Система синхронизации и единого времени наземного автоматизированного комплекса управления космическими аппаратами Украины / Макаренко Б.И., Кулишенко В.Ф. и др. // Космічна наука і технологія. – 2001. – Т. 7, № 4. – С. 107 – 113.

Кварцевые и квантовые меры частоты /
Е.Н. Базаров, Н.А. Демидов, Е.Т. Жуков и др.; под ред. Б.И. Макаренко. – МО СССР, 1989. – 536 с.

4. Євдокименко Ю.І., Хижняк В.В. Про систематичну складову похибки визначення дійсного значення частоти методом звірень за допомогою компаратора // Зб. наук. праць ІЕД. – К.: ІЕД НАН України. – 2000. – № 3. – С. 213 – 217.

5. Евдокименко Ю.И., Нарежний А.П. Оценка погрешностей определения стохастических характеристик группы мер частоты и времени при их взаимных сличениях // Радиоэлектроника и информатика. – 1997. – № 1. – С. 37 – 39.

 Кудряшова Ж.Ф. Определение метрологических характеристик сличением средств измерений одного уровня точности // Измерительная техника. – 1991. – № 3. – С. 3 – 5.

 Марчук Г.И. Методы вычислительной математики. – М.: Наука, 1980. – 536 с.

 Самарский А.А. Введение в теорию разностных схем. – М.: Наука, 1971. – 552 с.

 Основні метрологічні характеристики мір часу і частоти / О.С. Клейман, Г.С. Сидоренко, В.С. Соловйов, О.О. Ткачук // Український метрологічний журнал. – 1997. – Вип. 2. – С. 8 – 9.

Поступила в редакцию 3.07.2005

Рецензент: д-р техн. наук, проф. Л.Ф. Купченко, Харьковский университет Воздушных Сил, Харьков.