## УДК 624.073

# Я.С. КАРПОВ, В.Г. СТАВИЧЕНКО

## Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Украина

# ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРНЫХ ПРОГИБОВ ЗАКРЕПЛЕННЫХ СЛОИСТЫХ ПЛАСТИН

Разработана методика определения малых остаточных прогибов, возникающих при монтаже слоистых панелей с поводкой. Получено решение в двойных тригонометрических рядах для прямоугольных ортотропных пластин. Рассмотрены возможности применения метода Ритца-Тимошенко для приближенного определения прогибов пластин с произвольным армированием, с различными условиями опирания краев, а также пластин, имеющих непрямоугольную форму. В качестве аппроксимирующей функции для реализации метода Ритца-Тимошенко использовался степенной многочлен с неизвестными коэффициентами. Приведены численные примеры использования предложенных методов.

## композиционный материал, температурное воздействие, теория пластин, вариационные принципы механики, потенциальная энергия упругой системы, условия опирания

### Введение

В связи с увеличением объема применения композиционных материалов (КМ) в авиационных конструкциях возрастает потребность во всесторонних исследованиях их поведения при самых различных условиях нагружения. Помимо объемных и поверхностных нагрузок, на конструкции из КМ воздействуют температурные поля, которые вызывают появление температурных напряжений и деформаций. Это необходимо учитывать как при проектировании, так и при выборе технологических процессов.

Известно, что после горячего формования форма композитных панелей может отклоняться от заданной. Это связанно с наличием поля напряжений, неуравновешенного по толщине панели.

В фундаментальных работах О.С. Циплакова, А.Г. Савина, А.В. Клопоты, В.Е. Гайдачука, М.А. Сидоренковой и др. исследуются вопросы влияния технологических параметров формования на НДС. В то же время практически отсутствуют исследования поведения панелей общивки с поводкой при их установке на каркас летательного аппарата.

В статье рассмотрены вопросы прогнозирования остаточных прогибов закрепленных слоистых пластин.

#### Постановка задачи

К авиационным панелям, которые непосредственно соприкасаются с воздушным потоком, предъявляются жесткие требования к сохранению аэродинамического качества поверхности, что накладывает определенные ограничения на прогибы таких панелей.

В связи с этим, актуальной является оценка остаточных (монтажных) прогибов панелей с поводкой после закрепления их на каркас летательного аппарата.

Исходными данными являются: физикомеханические свойства материалов слоев, структура укладки, геометрия панели, приращение температуры и условия опирания.

В статье принимается, что панель была сначала закреплена по контуру, а затем подвергнута температурному воздействию. В связи с этим, условия закрепления должны позволять свободные перемещения в плоскости панели.

Для иллюстрации полученных решений рассмотрен случай, когда неуравновешенное поле напряжений возникает при однородном температурном поле вследствие несимметричности укладки слоев панели относительно срединной поверхности.

# Вывод функционала энергии деформации слоистой пластины с учетом температуры

Для решения широкого класса задач строительной механики могут быть применены энергетические методы, базирующиеся на различных вариационных принципах. В статье используется вариационный принцип Лагранжа [1], согласно которому, из всех возможных систем перемещений, истинные доставляют минимум функционалу полной потенциальной энергии упругой системы

$$\Pi = U - A, \tag{1}$$

где U- энергия деформации системы;

А – работа внешних сил.

В случае чисто температурной задачи A = 0.

С учетом классических допущений теории пластин

$$\varepsilon_z = \gamma_{xz} = \gamma_{vz} = 0,$$

функционал энергии деформации имеет вид:

$$U = \frac{1}{2} \iint_{S} \int_{-e}^{h-e} (\sigma_{x}(\varepsilon_{x} - \alpha_{x}\Delta T) + \sigma_{y}(\varepsilon_{y} - \alpha_{y}\Delta T) + \tau_{xy}(\gamma_{xy} - \alpha_{xy}\Delta T)) dz \, dS = \iint_{S} \overline{U} dS,$$
(2)

где  $\sigma_x, \sigma_y, \tau_{xy}$  и  $\varepsilon_x, \varepsilon_y, \gamma_{xy}$  – напряжения и деформации в плоскости пластины;

α<sub>x</sub>, α<sub>y</sub>, α<sub>xy</sub> – коэффициенты линейного температурного расширения материала (КЛТР);

 $\Delta T$  – приращение температуры;

е – расстояние от нижней поверхности пластины
 до начальной поверхности [2] (рис. 1);

*h* – толщина пластины;

 $\overline{U}$  – удельная энергия деформации.

Выражение для удельной энергии деформации можно представить в виде двух слагаемых

$$\overline{U} = \overline{U}_0 + \overline{U}_T \,, \tag{3}$$

где

$$\overline{U}_{0} = \frac{1}{2} \int_{-e}^{h-e} (\sigma_{x} \varepsilon_{x} + \sigma_{y} \varepsilon_{y} + \tau_{xy} \gamma_{xy}) dz; \qquad (4)$$



Рис. 1. Схема пластины

$$\overline{U}_T = -\frac{1}{2} \int_{-e}^{h-e} (\sigma_x \alpha_x + \sigma_y \alpha_y + \tau_{xy} \alpha_{xy}) \Delta T dz .$$
 (5)

Для тонких пластин, согласно гипотезе плоских сечений, распределение деформаций по толщине задается в виде

$$\varepsilon_x = \varepsilon_x^0 + \kappa_x z; \varepsilon_y = \varepsilon_y^0 + \kappa_y z; \gamma_{xy} = \gamma_{xy}^0 + \chi_{xy} z, (6)$$

где  $\varepsilon_x^0, \varepsilon_y^0, \gamma_{xy}^0, \kappa_x, \kappa_y, \chi_{xy}$  – обобщенные деформационные характеристики [2].

Напряжения приводятся к усилиям и моментам по формулам:

$$N_{x} = \int_{-e}^{h-e} \sigma_{x} dz; N_{y} = \int_{-e}^{h-e} \sigma_{y} dz; N_{xy} = \int_{-e}^{h-e} \tau_{xy} dz;$$

$$M_{x} = \int_{-e}^{h-e} \sigma_{x} z dz; M_{y} = \int_{-e}^{h-e} \sigma_{y} z dz; M_{xy} = \int_{-e}^{h-e} \tau_{xy} z dz.$$
(7)

Подставляя формулы (6) в выражение (4), получим:

$$\overline{U}_{0} = \frac{1}{2} \left( N_{x} \varepsilon_{x}^{0} + N_{y} \varepsilon_{y}^{0} + N_{xy} \gamma_{xy}^{0} + M_{x} \kappa_{x} + M_{y} \kappa_{y} + M_{xy} \chi_{xy} \right)$$

$$(8)$$

Для решения задачи в перемещениях усилия и моменты необходимо выразить через деформационные характеристики из физических соотношений. Они могут быть получены путем подстановки физических соотношений для армированного слоя [3] в формулы (7) с учетом формул (6).

Физические соотношения для армированного слоя имеют вид:

$$\sigma_{x} = b_{11}\varepsilon_{x} + b_{12}\varepsilon_{y} + b_{13}\gamma_{xy} - a_{T1}\Delta T;$$
  

$$\sigma_{y} = b_{12}\varepsilon_{x} + b_{22}\varepsilon_{y} + b_{23}\gamma_{xy} - a_{T2}\Delta T;$$
  

$$\tau_{xy} = b_{13}\varepsilon_{x} + b_{23}\varepsilon_{y} + b_{33}\gamma_{xy} - a_{T3}\Delta T.$$
(9)

Проделывая указанные выше операции, получим:

$$N_{x} = B_{11}\varepsilon_{x}^{0} + B_{12}\varepsilon_{y}^{0} + B_{13}\gamma_{xy}^{0} + \\+ C_{11}\kappa_{x} + C_{12}\kappa_{y} + C_{13}\chi_{xy} - B_{T1};$$

$$N_{y} = B_{12}\varepsilon_{x}^{0} + B_{22}\varepsilon_{y}^{0} + B_{23}\gamma_{xy}^{0} + \\+ C_{12}\kappa_{x} + C_{22}\kappa_{y} + C_{23}\chi_{xy} - B_{T2};$$

$$N_{xy} = B_{13}\varepsilon_{x}^{0} + B_{23}\varepsilon_{y}^{0} + B_{33}\gamma_{xy}^{0} + \\+ C_{13}\kappa_{x} + C_{23}\kappa_{y} + C_{33}\chi_{xy} - B_{T3};$$

$$M_{x} = C_{11}\varepsilon_{x}^{0} + C_{12}\varepsilon_{y}^{0} + C_{13}\gamma_{xy}^{0} + \\+ D_{11}\kappa_{x} + D_{12}\kappa_{y} + D_{13}\chi_{xy} - D_{T1};$$

$$M_{y} = C_{12}\varepsilon_{x}^{0} + C_{22}\varepsilon_{y}^{0} + C_{23}\gamma_{xy}^{0} + \\+ D_{12}\kappa_{x} + D_{22}\kappa_{y} + D_{23}\chi_{xy} - D_{T2};$$

$$M_{xy} = C_{13}\varepsilon_{x}^{0} + C_{23}\varepsilon_{y}^{0} + C_{33}\gamma_{xy}^{0} + \\+ D_{13}\kappa_{x} + D_{23}\kappa_{y} + D_{33}\chi_{xy} - D_{T3}.$$
(10)

Здесь коэффициенты  $B_{kj}, C_{kj}, D_{kj}$  – обобщенные жесткости пластины, а  $B_{Tk}, D_{Tk}$  – аналогичные температурные коэффициенты [2].

Для преобразования температурной составляющей удельной энергии деформации подставим соотношения (9) в формулу (5), и после некоторых преобразований получим:

$$\overline{U}_{T} = -\frac{1}{2} \int_{-e}^{h-e} (b_{11}\alpha_{x} + b_{12}\alpha_{y} + b_{13}\alpha_{xy})\varepsilon_{x} + (b_{12}\alpha_{x} + b_{22}\alpha_{y} + b_{23}\alpha_{xy})\varepsilon_{y} + (b_{13}\alpha_{x} + b_{23}\alpha_{y} + b_{33}\alpha_{xy})\gamma_{xy} - (a_{T1}\alpha_{x} + a_{T2}\alpha_{y} + a_{T3}\alpha_{xy})\Delta T.$$
(12)

Учитывая, что при отсутствии напряжений деформации будут возникать только вследствие температурного расширения, из формул (9) вытекают следующие соотношения:

$$a_{T1} = b_{11}\alpha_x + b_{12}\alpha_y + b_{13}\alpha_{xy};$$
  

$$a_{T2} = b_{12}\alpha_x + b_{22}\alpha_y + b_{23}\alpha_{xy};$$
  

$$a_{T3} = b_{13}\alpha_x + b_{23}\alpha_y + b_{33}\alpha_{xy}.$$
(13)

С учетом полученных зависимостей и формул (6), температурная составляющая энергии деформации будет иметь вид

$$\overline{U}_{0} = -\frac{1}{2} \Big( B_{T1} \varepsilon_{x}^{0} + B_{T2} \varepsilon_{y}^{0} + B_{T3} \gamma_{xy}^{0} + D_{T1} \kappa_{x} + D_{T2} \kappa_{y} + D_{T3} \chi_{xy} \Big)$$
(14)

Окончательно функционал энергии деформации слоистой пластины с учетом температуры запишем в виде

$$U = \frac{1}{2} \iint_{S} \left[ (N_{x} - B_{T1}) \varepsilon_{x}^{0} + (N_{y} - B_{T2}) \varepsilon_{y}^{0} + (N_{xy} - B_{T3}) \gamma_{xy}^{0} + (M_{x} - D_{T1}) \kappa_{x} + (M_{y} - D_{T2}) \kappa_{y} + (M_{xy} - B_{T3}) \chi_{xy} + C \right] dxdy.$$
(15)

Усилия и моменты, входящие в эту формулу, определяются соотношениями (10), (11). Свободный член C вычислять не обязательно, так как он не влияет на решение.

Для записи функционала (15) через перемещения точек начальной поверхности нужно воспользоваться геометрическими соотношениями [2]. В линейной постановке они имеют вид:

$$\varepsilon_x^0 = \frac{\partial u}{\partial x}; \ \varepsilon_y^0 = \frac{\partial v}{\partial y}; \ \gamma_{xy}^0 = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y};$$

$$\kappa_x = -\frac{\partial^2 w}{\partial x^2}; \ \kappa_y = -\frac{\partial^2 w}{\partial y^2}; \ \chi_{xy} = -2\frac{\partial^2 w}{\partial x \partial y}.$$
(16)

Здесь u, v, w – перемещения точек начальной поверхности в направлениях x, y, z соответственно.

Для плоской пластины, края которой могут свободно перемещаться в плоскости x, y, и при отсутствии внешних нагрузок в этой плоскости, поле напряжений будет самоуравновешенным, т.е.

$$N_x = N_y = N_{xy} = 0$$
.

Этот факт позволяет исключить из функционала энергии деформации  $\varepsilon_x^0, \varepsilon_y^0, \gamma_{xy}^0$ , а, следовательно, и перемещения *u* и *v*.

Учитывая равенство нулю усилий, выразим из соотношений (10) деформации.

Получим:

$$\begin{aligned} \varepsilon_{x}^{0} &= -P_{11}\kappa_{x} - P_{12}\kappa_{y} - P_{13}\chi_{xy} + P_{T1}; \\ \varepsilon_{y}^{0} &= -P_{21}\kappa_{x} - P_{22}\kappa_{y} - P_{23}\chi_{xy} + P_{T2}; \\ \gamma_{xy}^{0} &= -P_{31}\kappa_{x} - P_{32}\kappa_{y} - P_{33}\chi_{xy} + P_{T3}, \end{aligned}$$
(17)

где 
$$P_{kj} = \sum_{i=1}^{3} C_{ji} \overline{B}_{ik}; P_{Tk} = \sum_{i=1}^{3} B_{Ti} \overline{B}_{ik}; k, j = 1, 2, 3;$$
  
 $\overline{B}_{11} = \frac{B_{22}B_{33} - B_{23}^2}{B}; \overline{B}_{22} = \frac{B_{11}B_{33} - B_{13}^2}{B};$   
 $\overline{B}_{33} = \frac{B_{11}B_{22} - B_{12}^2}{B}; \overline{B}_{12} = \frac{B_{13}B_{23} - B_{12}B_{33}}{B};$   
 $\overline{B}_{13} = \frac{B_{12}B_{23} - B_{13}B_{22}}{B}; \overline{B}_{23} = \frac{B_{12}B_{13} - B_{11}B_{23}}{B};$   
 $B = B_{11}B_{22}B_{33} + 2B_{12}B_{13}B_{23} - B_{11}B_{23} - B_{11}B_{23} - B_{11}B_{23} - B_{11}B_{23} - B_{11}B_{23} - B_{12}B_{13} - B_{13}B_{12} - B_{13}B_{13}; \overline{B}_{21} = \overline{B}_{12}; \overline{B}_{23} = \overline{B}_{32}.$ 

Подставив  $\varepsilon_x^0, \varepsilon_y^0, \gamma_{xy}^0$  из соотношений (17) в со-

отношения (11), получим:

$$\begin{split} M_{x} &= \overline{D}_{11} \kappa_{x} + \overline{D}_{12} \kappa_{y} + \overline{D}_{13} \chi_{xy} - \overline{D}_{T1}; \\ M_{y} &= \overline{D}_{21} \kappa_{x} + \overline{D}_{22} \kappa_{y} + \overline{D}_{23} \chi_{xy} - \overline{D}_{T2}; \\ M_{xy} &= \overline{D}_{31} \kappa_{x} + \overline{D}_{32} \kappa_{y} + \overline{D}_{33} \chi_{xy} - \overline{D}_{T3}, \end{split}$$

где

$$\overline{D}_{kj} = D_{kj} - \sum_{i=1}^{3} C_{ki} P_{ij}; \ \overline{D}_{Tk} = D_{Tk} - \sum_{i=1}^{3} C_{ki} P_{Ti};$$
  
k, j = 1,2,3.

После подстановки деформационных характеристик из соотношений (17) и моментов из соотношений (18) в выражение (15), функционал энергии деформации будет иметь вид

$$\overline{U} = \iint_{S} (d_{11}\kappa_{x}^{2} + 2d_{12}\kappa_{x}\kappa_{y} + d_{22}\kappa_{y}^{2} + 2d_{13}\kappa_{x}\chi_{xy} + 2d_{23}\kappa_{y}\chi_{xy} + d_{33}\chi_{xy}^{2} - (19) - 2d_{T1}\kappa_{x} - 2d_{T2}\kappa_{y} - 2d_{T3}\chi_{xy} + C)dxdy,$$

где

$$d_{11} = \overline{D}_{11}; d_{22} = \overline{D}_{22}; d_{33} = \overline{D}_{33};$$
  
$$d_{12} = (\overline{D}_{12} + \overline{D}_{21})/2; d_{13} = (\overline{D}_{13} + \overline{D}_{31})/2;$$
  
$$d_{13} = (\overline{D}_{23} + \overline{D}_{32})/2,$$

а температурные коэффициенты после соответствующих преобразований принимают вид:

$$d_{T1} = \overline{D}_{T1};$$
  
$$d_{T2} = \overline{D}_{T2}; d_{T3} = \overline{D}_{T3};$$

С – свободный член.

# Прямоугольная ортотропная пластина, шарнирно закрепленная по контуру

Рассмотрим прямоугольную пластину с размерами сторон a, b, шарнирно закрепленную по контуру (рис. 2).



Рис. 2. Прямоугольная шарнирно опертая пластина

Если каждый слой пластины является ортотропным в осях *x*, *y*, то в физических соотношениях (9) коэффициенты

$$b_{13} = b_{23} = a_{T3} = 0.$$

Для слоистых композиционных материалов ортотропными в указанных осях являются слои с укладкой под углами 0 и 90° относительно оси x. С некоторым приближением одним ортотропным слоем можно считать также расположенные рядом слои с укладкой под углами + $\phi$  и – $\phi$ . Применительно к температурной задаче следует оговорить, что пренебрежение крутящим моментом, создаваемым этими слоями, некорректно для пластин с произвольной геометрией. Как показали численные исследования, этот момент не вызывает прогибов прямоугольной пластины, а для пластин, форма которых отлична от прямоугольной, влияние крутящего момента существенно.

Функционал энергии деформации для рассматриваемой пластины имеет вид:

$$\overline{U} = \int_{0}^{ab} \int_{0}^{b} (d_{11}\kappa_x^2 + 2d_{12}\kappa_x\kappa_y + d_{22}\kappa_y^2 + d_{33}\chi_{xy}^2 - (20)) - 2d_{T1}\kappa_x - 2d_{T2}\kappa_y + C)dxdy.$$

Вследствие равенства нулю коэффициентов при произведениях  $\kappa_x \chi_{xy}$  и  $\kappa_y \chi_{xy}$  в выражении (20),

можно получить простое решение задачи в двойных тригонометрических рядах.

Подобные решения для пластин, нагруженных давлением или сосредоточенной силой, можно найти, например, в [1].

Зададим прогиб пластины в виде:

$$w = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} w_{mn} \sin \lambda_m x \sin \lambda_n y, \qquad (21)$$

где  $\lambda_m = \pi m / a$ ;  $\lambda_n = \pi n / b$ ;

*w<sub>mn</sub>* – неизвестные коэффициенты.

Очевидно, что функция (21) удовлетворяет условию равенства нулю прогибов на краях пластины.

Из соотношений (16) получим:

$$\kappa_{x} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \lambda_{m}^{2} w_{mn} \sin \lambda_{m} x \sin \lambda_{n} y;$$

$$\kappa_{x} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \lambda_{n}^{2} w_{mn} \sin \lambda_{m} x \sin \lambda_{n} y;$$

$$\chi_{xy} = -\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} 2\lambda_{m} \lambda_{n} w_{mn} \cos \lambda_{m} x \cos \lambda_{n} y.$$
(22)

Подставим формулы (22) в функционал (20). При интегрировании следует учесть свойство ортогональности выбранной системы функций:

$$\int_{0}^{a} \sin \frac{\pi kx}{a} \sin \frac{\pi jx}{a} dx = \begin{cases} a/2, \text{ при } k = j; \\ 0, \text{ при } k \neq j, \end{cases}$$

$$\int_{0}^{a} \cos \frac{\pi kx}{a} \cos \frac{\pi jx}{a} dx = \begin{cases} a/2, \text{ при } k = j; \\ 0, \text{ при } k \neq j. \end{cases}$$
(23)

Учитывая формулы (23), в выражениях, включающих произведения двойных сумм, можно сохранить только члены при квадратах тригонометрических функций.

Заметив также, что

$$\int_{0}^{a} \sin \lambda_{m} x \, dx = \left(1 - (-1)^{m}\right) \frac{a}{\pi m};$$

$$\int_{0}^{b} \sin \lambda_{n} y \, dy = \left(1 - (-1)^{n}\right) \frac{b}{\pi n};$$

получим следующую функцию от переменных w<sub>mn</sub>.

$$U = \frac{ab}{2} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left\{ \frac{w_{mn}^2}{4} \left( d_1 \lambda_m^4 + 2d_3 \lambda_m^2 \lambda_n^2 + d_2 \lambda_n^4 \right) - \frac{2w_{mn}}{\pi^2 mn} \left( 1 - (-1)^m \right) \left( 1 - (-1)^n \right) \left( d_{T1} \lambda_m^2 + d_{T2} \lambda_n^2 \right) \right\},$$
(24)

где  $d_1 = d_{11}; d_2 = d_{22}; d_3 = d_{12} + 2d_{33};$ 

Коэффициенты w<sub>mn</sub>, доставляющие минимум функции (24), будут равны:

$$w_{mn} = \frac{4\left(1 - (-1)^{m}\right)\left(1 - (-1)^{n}\right)\left(d_{T1}\lambda_{m}^{2} + d_{T2}\lambda_{n}^{2}\right)}{\pi^{2}mn\left(d_{1}\lambda_{m}^{4} + 2d_{3}\lambda_{m}^{2}\lambda_{n}^{2} + d_{2}\lambda_{n}^{4}\right)}.$$
(25)

В силу присутствия выражений 1-(-1)<sup>m</sup> и  $1-(-1)^n$  в формуле (25), члены суммы (21) при нечетных значениях *m* и *n* равны нулю. Тогда полученное решение можно записать в виде:

$$\overline{w}_{mn} = \frac{16\left(d_{T1}\overline{\lambda}_m^2 + d_{T2}\overline{\lambda}_n^2\right)}{\pi^2 (2m-1)(2n-1)(d_1\overline{\lambda}_m^4 + 2d_3\overline{\lambda}_m^2\overline{\lambda}_n^2 + d_2\overline{\lambda}_n^4)}, (26)$$
  
rge

$$\overline{\lambda}_m = \pi (2m-1)/a; \ \overline{\lambda}_n = \pi (2n-1)/b.$$

Прогиб в этом случае будет равен

$$w = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \overline{w}_{mn} \sin \overline{\lambda}_m x \sin \overline{\lambda}_n y.$$
 (27)

Для иллюстрации полученного решения, рассмотрим двухслойную пластину с укладкой [0, 90]. Материал монослоя - однонаправленный углепластик со следующими свойствами [3]:

E1 = 100 ΓΠα; E2 = 10 ΓΠα; G12 = 6 ΓΠα;

 $\mu 12 = 0.35; \alpha 1 = 0; \alpha 2 = 30 \times 10^{-6} 1/K.$ 

Толщина монослоя  $\delta_0 = 0,1 \, \text{мм}$ .

На рис. 3 приведен график сходимости ряда для значения прогиба в центре пластины, т.е. график функции

$$w(N) = \sum_{m=1}^{N} \sum_{n=1}^{N} \overline{w}_{mn} \sin \overline{\lambda}_m x \sin \overline{\lambda}_n y.$$

На рис. 4 приведена зависимость относительной погрешности определения прогиба

$$\delta w(N) = \left| w(N) - w(N-1) \right| / w(N) \times 100\%.$$

На рис. 5 изображено распределение момента  $M_x$  по длине пластины при y = b/2. Рис. 5 показывает, что статические граничные условия не удовлетворяются точно при конечном значении N, но должны удовлетвориться при переходе к бесконечным суммам.

На рис. 6, *a* – *г* представлены контурные графики прогиба рассматриваемой пластины, а также пластин с аналогичной структурой, но с другими соотношениями размеров сторон.



Рис. 3. График сходимости ряда (27) для прогиба в центре пластины



Рис. 4. Зависимость погрешности вычисления прогиба в центре пластины от предела суммирования N



Рис. 5. Распределение момента  $M_x$  по длине пластины при y = b/2.



Рис. 6. Прогиб пластин со структурой [0, 90] с различными соотношениями размеров сторон

## Приближенный метод определения температурных прогибов

Для пластин с произвольным армированием, различными условиями опирания, а также для непрямоугольных пластин температурные прогибы можно определить приближенно, используя метод Ритца-Тимошенко.

Согласно вышеупомянутому методу прогиб задается в виде:

$$w = \sum_{k=1}^{n} a_k \varphi_k(x, y),$$
 (28)

где  $a_k$  – неизвестные коэффициенты;  $\phi_k$  – некоторые заданные непрерывные функции, удовлетворяющие кинематическим граничным условиям [1].

Подставляя выражение (28) в геометрические соотношения (16), полученный результат – в выражение (19) и производя интегрирование по сечению пластины, получим функцию от переменных *a<sub>k</sub>*..

Коэффициенты *a<sub>k</sub>*, доставляющие минимум полученной функции, определяются из решения системы линейных алгебраических уравнений вида

$$\mathbf{A} \cdot \mathbf{a} = \mathbf{B} \,, \tag{29}$$

где А – матрица коэффициентов системы;

 а – вектор-столбец неизвестных коэффициентов;

В – вектор-столбец свободных членов.

Коэффициенты матрицы **A** и вектора **B** вычисляются по следующим формулам:

$$A_{kj} = d_{11}J_{11}^{kj} + d_{22}J_{22}^{kj} + 4d_{33}J_{33}^{kj} + d_{12}(J_{12}^{kj} + J_{12}^{jk}) + 2d_{13}(J_{13}^{kj} + J_{13}^{jk}) + 2d_{23}(J_{23}^{kj} + J_{23}^{jk});$$

$$B_k = -d_{T1}J_1^k - d_{T2}J_2^k - 2d_{T3}J_3^k,$$
(30)

где

$$J_{mn}^{kj} = \iint_{S} \Psi_{m}^{k} \Psi_{n}^{j} dx dy; J_{m}^{k} = \iint_{S} \Psi_{m}^{k} dx dy;$$
  
$$\Psi_{1}^{k} = \frac{\partial^{2} \varphi_{k}}{\partial x^{2}}; \Psi_{2}^{k} = \frac{\partial^{2} \varphi_{k}}{\partial y^{2}}; \Psi_{3}^{k} = \frac{\partial^{2} \varphi_{k}}{\partial x \partial y};$$
  
$$m, n = 1, 2, 3$$

Прогиб пластины удобно задавать в виде алгебраического многочлена

$$w = \Phi \cdot (a_1 + a_2 x + a_3 y + a_4 x^2 + a_5 x y + a_6 y^2 \dots),$$

где функция Ф обеспечивает выполнение условий опирания пластины.

В этом случае

$$\varphi_k = \Phi \cdot \varphi_{0k}$$

$$\varphi_0 = [1, x, y, x^2, xy, y^2, \dots, xy^{N-1}, y^N],$$

где *N* максимальная степень многочлена.

Оценим точность этого метода на примере ортотропной пластины, рассмотренной в предыдущем разделе. Ввиду симметрии задачи, начало координат удобно расположить в центре пластины.

Функция, обеспечивающая условия опирания, имеет вид:

$$\Phi(x, y) = \left(x^2 - a^2/4\right) \cdot \left(x^2 - a^2/4\right)$$

В табл. 1 приведены значения прогибов в центре рассматриваемой пластины для ряда значений N, а также погрешность вычисления прогиба относительно значения, полученного по формуле (27) w = 3,32624 мм.

Таблица 1 Оценка точности метода Ритца-Тимошенко

| Степень<br>многочлена, N | <i>w<sub>N</sub></i> ,(0;0) мм | δ <i>w</i> , % |
|--------------------------|--------------------------------|----------------|
| 2                        | 3,43049                        | 3,1            |
| 4                        | 3,32547                        | 0,023          |
| 6                        | 3,32787                        | 0,049          |
| 8                        | 3,32594                        | 0,009          |
| 10                       | 3,32675                        | 0,015          |

Из табл. 1 следует, что даже при невысоких степенях многочлена точность является достаточной для практических расчетов.

Для прямоугольных пластин, края которых имеют различные условия опирания, функция Ф может быть представлена в виде:

$$\Phi = \left(x - \frac{a}{2}\right)^{P_1} \left(x + \frac{a}{2}\right)^{P_2} \left(y - \frac{b}{2}\right)^{P_3} \left(y + \frac{b}{2}\right)^{P_4}.$$
 (31)

Каждое из выражений в скобках в функции (31) удовлетворяет условию равенства нулю прогибов на соответствующей границе. А показатели степени *p*<sub>1</sub>, *p*<sub>2</sub>, *p*<sub>3</sub>, *p*<sub>4</sub> выбираются в соответствии с условием опирания на границах:

$$p_i = \begin{cases} 0 - \text{свободная граница;} \\ 1 - \text{шарнирное опирание;} \\ 2 - \text{заделка.} \end{cases}$$

Например, для прямоугольной пластины, у которой две противоположные стороны при  $x = \pm a/2$ шарнирно оперты, а две оставшиеся заделаны,

$$\Phi = (x^2 - a^2/4)^2 (y^2 - b^2/4) \,.$$

Для пластины, две противоположные стороны которой в общем случае являются криволинейными и задаются функциями  $y_1(x)$  и  $y_2(x)$  (рис. 7), функционал энергии деформации имеет вид:

$$U = \int_{0}^{a} \int_{y_1(x)}^{y_2(x)} \overline{U} dy \, dx \,.$$
(32)

А условиям шарнирного опирания по всем сторонам удовлетворяет функция

$$\Phi(x, y) = x(x - a)[y - y_1(x)][y - y_2(x)].$$
(33)



Рис. 7. Пластина с двумя криволинейными границами

На рис. 8, *а* – *г* представлены контурные графики прогибов, квадратных пластин со структурой [0, 90] с различными условиями опирания.

На рис. 9, *а* – *г* можно увидеть контурные графики прогибов пластин, имеющих форму трапеции, со структурами [±45] и [0, 90].

Следует отметить, что прогиб непрямоугольных пластин, имеющих структуру [± $\phi$ ], не равен нулю, как в случае прямоугольных пластин. Таким образом, геометрия пластины оказывает существенное влияние на решение задачи.



Рис. 8. Прогиб квадратных пластин со структурой [0, 90] с различными условиями опирания



Рис. 9. Прогиб шарнирно опертых трапецеидальных пластин со структурами: *a*, *б* – [±45]; *в*, *г* – [0, 90]

#### Заключение

Таким образом, получено точное решение температурной задачи, применимое для прямоугольных шарнирно опертых пластин с ортотропной структурой. Решение представлено в виде двойных тригонометрических рядов по синусам.

Для пластин с произвольной схемой армирования, с различными условиями опирания и для пластин, имеющих непрямоугольную форму, для определения температурных прогибов может быть успешно применен метод Ритца-Тимошенко. Непосредственные расчеты показали, что используемый в качестве аппроксимирующей функции степенной многочлен достаточно хорошо представляет прогибы рассматриваемых пластин.

Приведенные в статье примеры показывают, что на решение температурной задачи существенно влияют условия опирания и форма пластины.

## Литература

 Строительная механика летательных аппаратов: Учебник для авиационных специальностей вузов / И.Ф. Образцов Л.А.Булечев, В.В.Васильев и др.; под ред. акад. И.Ф. Образцова. – М.: Машиностроение, 1986. – 536 с.

Васильев В.В. Механика конструкций из композиционных материалов. – М.: Машиностроение, 1988. – 272 с.

 Карпов Я.С. Механика композиционных материалов. Учебное пособие. – Х.: Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», 2001. – 122 с.

### Поступила в редакцию 3.09.2005

**Рецензент:** канд. тех. наук, проф. В.В. Кириченко, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков.